1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 *
4 * Copyright (C) 2011 John Crispin <blogic@openwrt.org>
5 */
6
7 #include <linux/kernel.h>
8 #include <linux/slab.h>
9 #include <linux/errno.h>
10 #include <linux/types.h>
11 #include <linux/interrupt.h>
12 #include <linux/uaccess.h>
13 #include <linux/in.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/phy.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/skbuff.h>
20 #include <linux/mm.h>
21 #include <linux/platform_device.h>
22 #include <linux/ethtool.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/io.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/module.h>
28 #include <linux/property.h>
29
30 #include <asm/checksum.h>
31
32 #include <lantiq_soc.h>
33 #include <xway_dma.h>
34 #include <lantiq_platform.h>
35
36 #define LTQ_ETOP_MDIO 0x11804
37 #define MDIO_REQUEST 0x80000000
38 #define MDIO_READ 0x40000000
39 #define MDIO_ADDR_MASK 0x1f
40 #define MDIO_ADDR_OFFSET 0x15
41 #define MDIO_REG_MASK 0x1f
42 #define MDIO_REG_OFFSET 0x10
43 #define MDIO_VAL_MASK 0xffff
44
45 #define PPE32_CGEN 0x800
46 #define LQ_PPE32_ENET_MAC_CFG 0x1840
47
48 #define LTQ_ETOP_ENETS0 0x11850
49 #define LTQ_ETOP_MAC_DA0 0x1186C
50 #define LTQ_ETOP_MAC_DA1 0x11870
51 #define LTQ_ETOP_CFG 0x16020
52 #define LTQ_ETOP_IGPLEN 0x16080
53
54 #define MAX_DMA_CHAN 0x8
55 #define MAX_DMA_CRC_LEN 0x4
56 #define MAX_DMA_DATA_LEN 0x600
57
58 #define ETOP_FTCU BIT(28)
59 #define ETOP_MII_MASK 0xf
60 #define ETOP_MII_NORMAL 0xd
61 #define ETOP_MII_REVERSE 0xe
62 #define ETOP_PLEN_UNDER 0x40
63 #define ETOP_CGEN 0x800
64
65 /* use 2 static channels for TX/RX */
66 #define LTQ_ETOP_TX_CHANNEL 1
67 #define LTQ_ETOP_RX_CHANNEL 6
68 #define IS_TX(x) ((x) == LTQ_ETOP_TX_CHANNEL)
69 #define IS_RX(x) ((x) == LTQ_ETOP_RX_CHANNEL)
70
71 #define ltq_etop_r32(x) ltq_r32(ltq_etop_membase + (x))
72 #define ltq_etop_w32(x, y) ltq_w32(x, ltq_etop_membase + (y))
73 #define ltq_etop_w32_mask(x, y, z) \
74 ltq_w32_mask(x, y, ltq_etop_membase + (z))
75
76 #define DRV_VERSION "1.0"
77
78 static void __iomem *ltq_etop_membase;
79
80 struct ltq_etop_chan {
81 int idx;
82 int tx_free;
83 struct net_device *netdev;
84 struct napi_struct napi;
85 struct ltq_dma_channel dma;
86 struct sk_buff *skb[LTQ_DESC_NUM];
87 };
88
89 struct ltq_etop_priv {
90 struct net_device *netdev;
91 struct platform_device *pdev;
92 struct ltq_eth_data *pldata;
93 struct resource *res;
94
95 struct mii_bus *mii_bus;
96
97 struct ltq_etop_chan ch[MAX_DMA_CHAN];
98 int tx_free[MAX_DMA_CHAN >> 1];
99
100 int tx_burst_len;
101 int rx_burst_len;
102
103 spinlock_t lock;
104 };
105
106 static int
ltq_etop_alloc_skb(struct ltq_etop_chan * ch)107 ltq_etop_alloc_skb(struct ltq_etop_chan *ch)
108 {
109 struct ltq_etop_priv *priv = netdev_priv(ch->netdev);
110
111 ch->skb[ch->dma.desc] = netdev_alloc_skb(ch->netdev, MAX_DMA_DATA_LEN);
112 if (!ch->skb[ch->dma.desc])
113 return -ENOMEM;
114 ch->dma.desc_base[ch->dma.desc].addr =
115 dma_map_single(&priv->pdev->dev, ch->skb[ch->dma.desc]->data,
116 MAX_DMA_DATA_LEN, DMA_FROM_DEVICE);
117 ch->dma.desc_base[ch->dma.desc].addr =
118 CPHYSADDR(ch->skb[ch->dma.desc]->data);
119 ch->dma.desc_base[ch->dma.desc].ctl =
120 LTQ_DMA_OWN | LTQ_DMA_RX_OFFSET(NET_IP_ALIGN) |
121 MAX_DMA_DATA_LEN;
122 skb_reserve(ch->skb[ch->dma.desc], NET_IP_ALIGN);
123 return 0;
124 }
125
126 static void
ltq_etop_hw_receive(struct ltq_etop_chan * ch)127 ltq_etop_hw_receive(struct ltq_etop_chan *ch)
128 {
129 struct ltq_etop_priv *priv = netdev_priv(ch->netdev);
130 struct ltq_dma_desc *desc = &ch->dma.desc_base[ch->dma.desc];
131 struct sk_buff *skb = ch->skb[ch->dma.desc];
132 int len = (desc->ctl & LTQ_DMA_SIZE_MASK) - MAX_DMA_CRC_LEN;
133 unsigned long flags;
134
135 spin_lock_irqsave(&priv->lock, flags);
136 if (ltq_etop_alloc_skb(ch)) {
137 netdev_err(ch->netdev,
138 "failed to allocate new rx buffer, stopping DMA\n");
139 ltq_dma_close(&ch->dma);
140 }
141 ch->dma.desc++;
142 ch->dma.desc %= LTQ_DESC_NUM;
143 spin_unlock_irqrestore(&priv->lock, flags);
144
145 skb_put(skb, len);
146 skb->protocol = eth_type_trans(skb, ch->netdev);
147 netif_receive_skb(skb);
148 }
149
150 static int
ltq_etop_poll_rx(struct napi_struct * napi,int budget)151 ltq_etop_poll_rx(struct napi_struct *napi, int budget)
152 {
153 struct ltq_etop_chan *ch = container_of(napi,
154 struct ltq_etop_chan, napi);
155 int work_done = 0;
156
157 while (work_done < budget) {
158 struct ltq_dma_desc *desc = &ch->dma.desc_base[ch->dma.desc];
159
160 if ((desc->ctl & (LTQ_DMA_OWN | LTQ_DMA_C)) != LTQ_DMA_C)
161 break;
162 ltq_etop_hw_receive(ch);
163 work_done++;
164 }
165 if (work_done < budget) {
166 napi_complete_done(&ch->napi, work_done);
167 ltq_dma_ack_irq(&ch->dma);
168 }
169 return work_done;
170 }
171
172 static int
ltq_etop_poll_tx(struct napi_struct * napi,int budget)173 ltq_etop_poll_tx(struct napi_struct *napi, int budget)
174 {
175 struct ltq_etop_chan *ch =
176 container_of(napi, struct ltq_etop_chan, napi);
177 struct ltq_etop_priv *priv = netdev_priv(ch->netdev);
178 struct netdev_queue *txq =
179 netdev_get_tx_queue(ch->netdev, ch->idx >> 1);
180 unsigned long flags;
181
182 spin_lock_irqsave(&priv->lock, flags);
183 while ((ch->dma.desc_base[ch->tx_free].ctl &
184 (LTQ_DMA_OWN | LTQ_DMA_C)) == LTQ_DMA_C) {
185 dev_kfree_skb_any(ch->skb[ch->tx_free]);
186 ch->skb[ch->tx_free] = NULL;
187 memset(&ch->dma.desc_base[ch->tx_free], 0,
188 sizeof(struct ltq_dma_desc));
189 ch->tx_free++;
190 ch->tx_free %= LTQ_DESC_NUM;
191 }
192 spin_unlock_irqrestore(&priv->lock, flags);
193
194 if (netif_tx_queue_stopped(txq))
195 netif_tx_start_queue(txq);
196 napi_complete(&ch->napi);
197 ltq_dma_ack_irq(&ch->dma);
198 return 1;
199 }
200
201 static irqreturn_t
ltq_etop_dma_irq(int irq,void * _priv)202 ltq_etop_dma_irq(int irq, void *_priv)
203 {
204 struct ltq_etop_priv *priv = _priv;
205 int ch = irq - LTQ_DMA_CH0_INT;
206
207 napi_schedule(&priv->ch[ch].napi);
208 return IRQ_HANDLED;
209 }
210
211 static void
ltq_etop_free_channel(struct net_device * dev,struct ltq_etop_chan * ch)212 ltq_etop_free_channel(struct net_device *dev, struct ltq_etop_chan *ch)
213 {
214 struct ltq_etop_priv *priv = netdev_priv(dev);
215
216 ltq_dma_free(&ch->dma);
217 if (ch->dma.irq)
218 free_irq(ch->dma.irq, priv);
219 if (IS_RX(ch->idx)) {
220 int desc;
221
222 for (desc = 0; desc < LTQ_DESC_NUM; desc++)
223 dev_kfree_skb_any(ch->skb[ch->dma.desc]);
224 }
225 }
226
227 static void
ltq_etop_hw_exit(struct net_device * dev)228 ltq_etop_hw_exit(struct net_device *dev)
229 {
230 struct ltq_etop_priv *priv = netdev_priv(dev);
231 int i;
232
233 ltq_pmu_disable(PMU_PPE);
234 for (i = 0; i < MAX_DMA_CHAN; i++)
235 if (IS_TX(i) || IS_RX(i))
236 ltq_etop_free_channel(dev, &priv->ch[i]);
237 }
238
239 static int
ltq_etop_hw_init(struct net_device * dev)240 ltq_etop_hw_init(struct net_device *dev)
241 {
242 struct ltq_etop_priv *priv = netdev_priv(dev);
243 int i;
244 int err;
245
246 ltq_pmu_enable(PMU_PPE);
247
248 switch (priv->pldata->mii_mode) {
249 case PHY_INTERFACE_MODE_RMII:
250 ltq_etop_w32_mask(ETOP_MII_MASK, ETOP_MII_REVERSE,
251 LTQ_ETOP_CFG);
252 break;
253
254 case PHY_INTERFACE_MODE_MII:
255 ltq_etop_w32_mask(ETOP_MII_MASK, ETOP_MII_NORMAL,
256 LTQ_ETOP_CFG);
257 break;
258
259 default:
260 netdev_err(dev, "unknown mii mode %d\n",
261 priv->pldata->mii_mode);
262 return -ENOTSUPP;
263 }
264
265 /* enable crc generation */
266 ltq_etop_w32(PPE32_CGEN, LQ_PPE32_ENET_MAC_CFG);
267
268 ltq_dma_init_port(DMA_PORT_ETOP, priv->tx_burst_len, priv->rx_burst_len);
269
270 for (i = 0; i < MAX_DMA_CHAN; i++) {
271 int irq = LTQ_DMA_CH0_INT + i;
272 struct ltq_etop_chan *ch = &priv->ch[i];
273
274 ch->dma.nr = i;
275 ch->idx = ch->dma.nr;
276 ch->dma.dev = &priv->pdev->dev;
277
278 if (IS_TX(i)) {
279 ltq_dma_alloc_tx(&ch->dma);
280 err = request_irq(irq, ltq_etop_dma_irq, 0, "etop_tx", priv);
281 if (err) {
282 netdev_err(dev,
283 "Unable to get Tx DMA IRQ %d\n",
284 irq);
285 return err;
286 }
287 } else if (IS_RX(i)) {
288 ltq_dma_alloc_rx(&ch->dma);
289 for (ch->dma.desc = 0; ch->dma.desc < LTQ_DESC_NUM;
290 ch->dma.desc++)
291 if (ltq_etop_alloc_skb(ch))
292 return -ENOMEM;
293 ch->dma.desc = 0;
294 err = request_irq(irq, ltq_etop_dma_irq, 0, "etop_rx", priv);
295 if (err) {
296 netdev_err(dev,
297 "Unable to get Rx DMA IRQ %d\n",
298 irq);
299 return err;
300 }
301 }
302 ch->dma.irq = irq;
303 }
304 return 0;
305 }
306
307 static void
ltq_etop_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)308 ltq_etop_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
309 {
310 strscpy(info->driver, "Lantiq ETOP", sizeof(info->driver));
311 strscpy(info->bus_info, "internal", sizeof(info->bus_info));
312 strscpy(info->version, DRV_VERSION, sizeof(info->version));
313 }
314
315 static const struct ethtool_ops ltq_etop_ethtool_ops = {
316 .get_drvinfo = ltq_etop_get_drvinfo,
317 .nway_reset = phy_ethtool_nway_reset,
318 .get_link_ksettings = phy_ethtool_get_link_ksettings,
319 .set_link_ksettings = phy_ethtool_set_link_ksettings,
320 };
321
322 static int
ltq_etop_mdio_wr(struct mii_bus * bus,int phy_addr,int phy_reg,u16 phy_data)323 ltq_etop_mdio_wr(struct mii_bus *bus, int phy_addr, int phy_reg, u16 phy_data)
324 {
325 u32 val = MDIO_REQUEST |
326 ((phy_addr & MDIO_ADDR_MASK) << MDIO_ADDR_OFFSET) |
327 ((phy_reg & MDIO_REG_MASK) << MDIO_REG_OFFSET) |
328 phy_data;
329
330 while (ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_REQUEST)
331 ;
332 ltq_etop_w32(val, LTQ_ETOP_MDIO);
333 return 0;
334 }
335
336 static int
ltq_etop_mdio_rd(struct mii_bus * bus,int phy_addr,int phy_reg)337 ltq_etop_mdio_rd(struct mii_bus *bus, int phy_addr, int phy_reg)
338 {
339 u32 val = MDIO_REQUEST | MDIO_READ |
340 ((phy_addr & MDIO_ADDR_MASK) << MDIO_ADDR_OFFSET) |
341 ((phy_reg & MDIO_REG_MASK) << MDIO_REG_OFFSET);
342
343 while (ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_REQUEST)
344 ;
345 ltq_etop_w32(val, LTQ_ETOP_MDIO);
346 while (ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_REQUEST)
347 ;
348 val = ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_VAL_MASK;
349 return val;
350 }
351
352 static void
ltq_etop_mdio_link(struct net_device * dev)353 ltq_etop_mdio_link(struct net_device *dev)
354 {
355 /* nothing to do */
356 }
357
358 static int
ltq_etop_mdio_probe(struct net_device * dev)359 ltq_etop_mdio_probe(struct net_device *dev)
360 {
361 struct ltq_etop_priv *priv = netdev_priv(dev);
362 struct phy_device *phydev;
363
364 phydev = phy_find_first(priv->mii_bus);
365
366 if (!phydev) {
367 netdev_err(dev, "no PHY found\n");
368 return -ENODEV;
369 }
370
371 phydev = phy_connect(dev, phydev_name(phydev),
372 <q_etop_mdio_link, priv->pldata->mii_mode);
373
374 if (IS_ERR(phydev)) {
375 netdev_err(dev, "Could not attach to PHY\n");
376 return PTR_ERR(phydev);
377 }
378
379 phy_set_max_speed(phydev, SPEED_100);
380
381 phy_attached_info(phydev);
382
383 return 0;
384 }
385
386 static int
ltq_etop_mdio_init(struct net_device * dev)387 ltq_etop_mdio_init(struct net_device *dev)
388 {
389 struct ltq_etop_priv *priv = netdev_priv(dev);
390 int err;
391
392 priv->mii_bus = mdiobus_alloc();
393 if (!priv->mii_bus) {
394 netdev_err(dev, "failed to allocate mii bus\n");
395 err = -ENOMEM;
396 goto err_out;
397 }
398
399 priv->mii_bus->priv = dev;
400 priv->mii_bus->read = ltq_etop_mdio_rd;
401 priv->mii_bus->write = ltq_etop_mdio_wr;
402 priv->mii_bus->name = "ltq_mii";
403 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
404 priv->pdev->name, priv->pdev->id);
405 if (mdiobus_register(priv->mii_bus)) {
406 err = -ENXIO;
407 goto err_out_free_mdiobus;
408 }
409
410 if (ltq_etop_mdio_probe(dev)) {
411 err = -ENXIO;
412 goto err_out_unregister_bus;
413 }
414 return 0;
415
416 err_out_unregister_bus:
417 mdiobus_unregister(priv->mii_bus);
418 err_out_free_mdiobus:
419 mdiobus_free(priv->mii_bus);
420 err_out:
421 return err;
422 }
423
424 static void
ltq_etop_mdio_cleanup(struct net_device * dev)425 ltq_etop_mdio_cleanup(struct net_device *dev)
426 {
427 struct ltq_etop_priv *priv = netdev_priv(dev);
428
429 phy_disconnect(dev->phydev);
430 mdiobus_unregister(priv->mii_bus);
431 mdiobus_free(priv->mii_bus);
432 }
433
434 static int
ltq_etop_open(struct net_device * dev)435 ltq_etop_open(struct net_device *dev)
436 {
437 struct ltq_etop_priv *priv = netdev_priv(dev);
438 int i;
439
440 for (i = 0; i < MAX_DMA_CHAN; i++) {
441 struct ltq_etop_chan *ch = &priv->ch[i];
442
443 if (!IS_TX(i) && (!IS_RX(i)))
444 continue;
445 ltq_dma_open(&ch->dma);
446 ltq_dma_enable_irq(&ch->dma);
447 napi_enable(&ch->napi);
448 }
449 phy_start(dev->phydev);
450 netif_tx_start_all_queues(dev);
451 return 0;
452 }
453
454 static int
ltq_etop_stop(struct net_device * dev)455 ltq_etop_stop(struct net_device *dev)
456 {
457 struct ltq_etop_priv *priv = netdev_priv(dev);
458 int i;
459
460 netif_tx_stop_all_queues(dev);
461 phy_stop(dev->phydev);
462 for (i = 0; i < MAX_DMA_CHAN; i++) {
463 struct ltq_etop_chan *ch = &priv->ch[i];
464
465 if (!IS_RX(i) && !IS_TX(i))
466 continue;
467 napi_disable(&ch->napi);
468 ltq_dma_close(&ch->dma);
469 }
470 return 0;
471 }
472
473 static netdev_tx_t
ltq_etop_tx(struct sk_buff * skb,struct net_device * dev)474 ltq_etop_tx(struct sk_buff *skb, struct net_device *dev)
475 {
476 int queue = skb_get_queue_mapping(skb);
477 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue);
478 struct ltq_etop_priv *priv = netdev_priv(dev);
479 struct ltq_etop_chan *ch = &priv->ch[(queue << 1) | 1];
480 struct ltq_dma_desc *desc = &ch->dma.desc_base[ch->dma.desc];
481 int len;
482 unsigned long flags;
483 u32 byte_offset;
484
485 len = skb->len < ETH_ZLEN ? ETH_ZLEN : skb->len;
486
487 if ((desc->ctl & (LTQ_DMA_OWN | LTQ_DMA_C)) || ch->skb[ch->dma.desc]) {
488 netdev_err(dev, "tx ring full\n");
489 netif_tx_stop_queue(txq);
490 return NETDEV_TX_BUSY;
491 }
492
493 /* dma needs to start on a burst length value aligned address */
494 byte_offset = CPHYSADDR(skb->data) % (priv->tx_burst_len * 4);
495 ch->skb[ch->dma.desc] = skb;
496
497 netif_trans_update(dev);
498
499 spin_lock_irqsave(&priv->lock, flags);
500 desc->addr = ((unsigned int)dma_map_single(&priv->pdev->dev, skb->data, len,
501 DMA_TO_DEVICE)) - byte_offset;
502 /* Make sure the address is written before we give it to HW */
503 wmb();
504 desc->ctl = LTQ_DMA_OWN | LTQ_DMA_SOP | LTQ_DMA_EOP |
505 LTQ_DMA_TX_OFFSET(byte_offset) | (len & LTQ_DMA_SIZE_MASK);
506 ch->dma.desc++;
507 ch->dma.desc %= LTQ_DESC_NUM;
508 spin_unlock_irqrestore(&priv->lock, flags);
509
510 if (ch->dma.desc_base[ch->dma.desc].ctl & LTQ_DMA_OWN)
511 netif_tx_stop_queue(txq);
512
513 return NETDEV_TX_OK;
514 }
515
516 static int
ltq_etop_change_mtu(struct net_device * dev,int new_mtu)517 ltq_etop_change_mtu(struct net_device *dev, int new_mtu)
518 {
519 struct ltq_etop_priv *priv = netdev_priv(dev);
520 unsigned long flags;
521
522 dev->mtu = new_mtu;
523
524 spin_lock_irqsave(&priv->lock, flags);
525 ltq_etop_w32((ETOP_PLEN_UNDER << 16) | new_mtu, LTQ_ETOP_IGPLEN);
526 spin_unlock_irqrestore(&priv->lock, flags);
527
528 return 0;
529 }
530
531 static int
ltq_etop_set_mac_address(struct net_device * dev,void * p)532 ltq_etop_set_mac_address(struct net_device *dev, void *p)
533 {
534 int ret = eth_mac_addr(dev, p);
535
536 if (!ret) {
537 struct ltq_etop_priv *priv = netdev_priv(dev);
538 unsigned long flags;
539
540 /* store the mac for the unicast filter */
541 spin_lock_irqsave(&priv->lock, flags);
542 ltq_etop_w32(*((u32 *)dev->dev_addr), LTQ_ETOP_MAC_DA0);
543 ltq_etop_w32(*((u16 *)&dev->dev_addr[4]) << 16,
544 LTQ_ETOP_MAC_DA1);
545 spin_unlock_irqrestore(&priv->lock, flags);
546 }
547 return ret;
548 }
549
550 static void
ltq_etop_set_multicast_list(struct net_device * dev)551 ltq_etop_set_multicast_list(struct net_device *dev)
552 {
553 struct ltq_etop_priv *priv = netdev_priv(dev);
554 unsigned long flags;
555
556 /* ensure that the unicast filter is not enabled in promiscious mode */
557 spin_lock_irqsave(&priv->lock, flags);
558 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI))
559 ltq_etop_w32_mask(ETOP_FTCU, 0, LTQ_ETOP_ENETS0);
560 else
561 ltq_etop_w32_mask(0, ETOP_FTCU, LTQ_ETOP_ENETS0);
562 spin_unlock_irqrestore(&priv->lock, flags);
563 }
564
565 static int
ltq_etop_init(struct net_device * dev)566 ltq_etop_init(struct net_device *dev)
567 {
568 struct ltq_etop_priv *priv = netdev_priv(dev);
569 struct sockaddr mac;
570 int err;
571 bool random_mac = false;
572
573 dev->watchdog_timeo = 10 * HZ;
574 err = ltq_etop_hw_init(dev);
575 if (err)
576 goto err_hw;
577 ltq_etop_change_mtu(dev, 1500);
578
579 memcpy(&mac, &priv->pldata->mac, sizeof(struct sockaddr));
580 if (!is_valid_ether_addr(mac.sa_data)) {
581 pr_warn("etop: invalid MAC, using random\n");
582 eth_random_addr(mac.sa_data);
583 random_mac = true;
584 }
585
586 err = ltq_etop_set_mac_address(dev, &mac);
587 if (err)
588 goto err_netdev;
589
590 /* Set addr_assign_type here, ltq_etop_set_mac_address would reset it. */
591 if (random_mac)
592 dev->addr_assign_type = NET_ADDR_RANDOM;
593
594 ltq_etop_set_multicast_list(dev);
595 err = ltq_etop_mdio_init(dev);
596 if (err)
597 goto err_netdev;
598 return 0;
599
600 err_netdev:
601 unregister_netdev(dev);
602 free_netdev(dev);
603 err_hw:
604 ltq_etop_hw_exit(dev);
605 return err;
606 }
607
608 static void
ltq_etop_tx_timeout(struct net_device * dev,unsigned int txqueue)609 ltq_etop_tx_timeout(struct net_device *dev, unsigned int txqueue)
610 {
611 int err;
612
613 ltq_etop_hw_exit(dev);
614 err = ltq_etop_hw_init(dev);
615 if (err)
616 goto err_hw;
617 netif_trans_update(dev);
618 netif_wake_queue(dev);
619 return;
620
621 err_hw:
622 ltq_etop_hw_exit(dev);
623 netdev_err(dev, "failed to restart etop after TX timeout\n");
624 }
625
626 static const struct net_device_ops ltq_eth_netdev_ops = {
627 .ndo_open = ltq_etop_open,
628 .ndo_stop = ltq_etop_stop,
629 .ndo_start_xmit = ltq_etop_tx,
630 .ndo_change_mtu = ltq_etop_change_mtu,
631 .ndo_eth_ioctl = phy_do_ioctl,
632 .ndo_set_mac_address = ltq_etop_set_mac_address,
633 .ndo_validate_addr = eth_validate_addr,
634 .ndo_set_rx_mode = ltq_etop_set_multicast_list,
635 .ndo_select_queue = dev_pick_tx_zero,
636 .ndo_init = ltq_etop_init,
637 .ndo_tx_timeout = ltq_etop_tx_timeout,
638 };
639
640 static int __init
ltq_etop_probe(struct platform_device * pdev)641 ltq_etop_probe(struct platform_device *pdev)
642 {
643 struct net_device *dev;
644 struct ltq_etop_priv *priv;
645 struct resource *res;
646 int err;
647 int i;
648
649 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
650 if (!res) {
651 dev_err(&pdev->dev, "failed to get etop resource\n");
652 err = -ENOENT;
653 goto err_out;
654 }
655
656 res = devm_request_mem_region(&pdev->dev, res->start,
657 resource_size(res), dev_name(&pdev->dev));
658 if (!res) {
659 dev_err(&pdev->dev, "failed to request etop resource\n");
660 err = -EBUSY;
661 goto err_out;
662 }
663
664 ltq_etop_membase = devm_ioremap(&pdev->dev, res->start,
665 resource_size(res));
666 if (!ltq_etop_membase) {
667 dev_err(&pdev->dev, "failed to remap etop engine %d\n",
668 pdev->id);
669 err = -ENOMEM;
670 goto err_out;
671 }
672
673 dev = alloc_etherdev_mq(sizeof(struct ltq_etop_priv), 4);
674 if (!dev) {
675 err = -ENOMEM;
676 goto err_out;
677 }
678 strcpy(dev->name, "eth%d");
679 dev->netdev_ops = <q_eth_netdev_ops;
680 dev->ethtool_ops = <q_etop_ethtool_ops;
681 priv = netdev_priv(dev);
682 priv->res = res;
683 priv->pdev = pdev;
684 priv->pldata = dev_get_platdata(&pdev->dev);
685 priv->netdev = dev;
686 spin_lock_init(&priv->lock);
687 SET_NETDEV_DEV(dev, &pdev->dev);
688
689 err = device_property_read_u32(&pdev->dev, "lantiq,tx-burst-length", &priv->tx_burst_len);
690 if (err < 0) {
691 dev_err(&pdev->dev, "unable to read tx-burst-length property\n");
692 goto err_free;
693 }
694
695 err = device_property_read_u32(&pdev->dev, "lantiq,rx-burst-length", &priv->rx_burst_len);
696 if (err < 0) {
697 dev_err(&pdev->dev, "unable to read rx-burst-length property\n");
698 goto err_free;
699 }
700
701 for (i = 0; i < MAX_DMA_CHAN; i++) {
702 if (IS_TX(i))
703 netif_napi_add_weight(dev, &priv->ch[i].napi,
704 ltq_etop_poll_tx, 8);
705 else if (IS_RX(i))
706 netif_napi_add_weight(dev, &priv->ch[i].napi,
707 ltq_etop_poll_rx, 32);
708 priv->ch[i].netdev = dev;
709 }
710
711 err = register_netdev(dev);
712 if (err)
713 goto err_free;
714
715 platform_set_drvdata(pdev, dev);
716 return 0;
717
718 err_free:
719 free_netdev(dev);
720 err_out:
721 return err;
722 }
723
724 static int
ltq_etop_remove(struct platform_device * pdev)725 ltq_etop_remove(struct platform_device *pdev)
726 {
727 struct net_device *dev = platform_get_drvdata(pdev);
728
729 if (dev) {
730 netif_tx_stop_all_queues(dev);
731 ltq_etop_hw_exit(dev);
732 ltq_etop_mdio_cleanup(dev);
733 unregister_netdev(dev);
734 }
735 return 0;
736 }
737
738 static struct platform_driver ltq_mii_driver = {
739 .remove = ltq_etop_remove,
740 .driver = {
741 .name = "ltq_etop",
742 },
743 };
744
745 static int __init
init_ltq_etop(void)746 init_ltq_etop(void)
747 {
748 int ret = platform_driver_probe(<q_mii_driver, ltq_etop_probe);
749
750 if (ret)
751 pr_err("ltq_etop: Error registering platform driver!");
752 return ret;
753 }
754
755 static void __exit
exit_ltq_etop(void)756 exit_ltq_etop(void)
757 {
758 platform_driver_unregister(<q_mii_driver);
759 }
760
761 module_init(init_ltq_etop);
762 module_exit(exit_ltq_etop);
763
764 MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
765 MODULE_DESCRIPTION("Lantiq SoC ETOP");
766 MODULE_LICENSE("GPL");
767