1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
3
4 Copyright(c) 2006 Tundra Semiconductor Corporation.
5
6
7 *******************************************************************************/
8
9 /* This driver is based on the driver code originally developed
10 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
11 * scott.wood@timesys.com * Copyright (C) 2003 TimeSys Corporation
12 *
13 * Currently changes from original version are:
14 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
15 * - modifications to handle two ports independently and support for
16 * additional PHY devices (alexandre.bounine@tundra.com)
17 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
18 *
19 */
20
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/interrupt.h>
24 #include <linux/net.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/ethtool.h>
28 #include <linux/skbuff.h>
29 #include <linux/spinlock.h>
30 #include <linux/delay.h>
31 #include <linux/crc32.h>
32 #include <linux/mii.h>
33 #include <linux/device.h>
34 #include <linux/pci.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/timer.h>
37 #include <linux/platform_device.h>
38 #include <linux/gfp.h>
39
40 #include <asm/io.h>
41 #include <asm/tsi108.h>
42
43 #include "tsi108_eth.h"
44
45 #define MII_READ_DELAY 10000 /* max link wait time in msec */
46
47 #define TSI108_RXRING_LEN 256
48
49 /* NOTE: The driver currently does not support receiving packets
50 * larger than the buffer size, so don't decrease this (unless you
51 * want to add such support).
52 */
53 #define TSI108_RXBUF_SIZE 1536
54
55 #define TSI108_TXRING_LEN 256
56
57 #define TSI108_TX_INT_FREQ 64
58
59 /* Check the phy status every half a second. */
60 #define CHECK_PHY_INTERVAL (HZ/2)
61
62 struct tsi108_prv_data {
63 void __iomem *regs; /* Base of normal regs */
64 void __iomem *phyregs; /* Base of register bank used for PHY access */
65
66 struct net_device *dev;
67 struct napi_struct napi;
68
69 unsigned int phy; /* Index of PHY for this interface */
70 unsigned int irq_num;
71 unsigned int id;
72 unsigned int phy_type;
73
74 struct timer_list timer;/* Timer that triggers the check phy function */
75 unsigned int rxtail; /* Next entry in rxring to read */
76 unsigned int rxhead; /* Next entry in rxring to give a new buffer */
77 unsigned int rxfree; /* Number of free, allocated RX buffers */
78
79 unsigned int rxpending; /* Non-zero if there are still descriptors
80 * to be processed from a previous descriptor
81 * interrupt condition that has been cleared */
82
83 unsigned int txtail; /* Next TX descriptor to check status on */
84 unsigned int txhead; /* Next TX descriptor to use */
85
86 /* Number of free TX descriptors. This could be calculated from
87 * rxhead and rxtail if one descriptor were left unused to disambiguate
88 * full and empty conditions, but it's simpler to just keep track
89 * explicitly. */
90
91 unsigned int txfree;
92
93 unsigned int phy_ok; /* The PHY is currently powered on. */
94
95 /* PHY status (duplex is 1 for half, 2 for full,
96 * so that the default 0 indicates that neither has
97 * yet been configured). */
98
99 unsigned int link_up;
100 unsigned int speed;
101 unsigned int duplex;
102
103 tx_desc *txring;
104 rx_desc *rxring;
105 struct sk_buff *txskbs[TSI108_TXRING_LEN];
106 struct sk_buff *rxskbs[TSI108_RXRING_LEN];
107
108 dma_addr_t txdma, rxdma;
109
110 /* txlock nests in misclock and phy_lock */
111
112 spinlock_t txlock, misclock;
113
114 /* stats is used to hold the upper bits of each hardware counter,
115 * and tmpstats is used to hold the full values for returning
116 * to the caller of get_stats(). They must be separate in case
117 * an overflow interrupt occurs before the stats are consumed.
118 */
119
120 struct net_device_stats stats;
121 struct net_device_stats tmpstats;
122
123 /* These stats are kept separate in hardware, thus require individual
124 * fields for handling carry. They are combined in get_stats.
125 */
126
127 unsigned long rx_fcs; /* Add to rx_frame_errors */
128 unsigned long rx_short_fcs; /* Add to rx_frame_errors */
129 unsigned long rx_long_fcs; /* Add to rx_frame_errors */
130 unsigned long rx_underruns; /* Add to rx_length_errors */
131 unsigned long rx_overruns; /* Add to rx_length_errors */
132
133 unsigned long tx_coll_abort; /* Add to tx_aborted_errors/collisions */
134 unsigned long tx_pause_drop; /* Add to tx_aborted_errors */
135
136 unsigned long mc_hash[16];
137 u32 msg_enable; /* debug message level */
138 struct mii_if_info mii_if;
139 unsigned int init_media;
140
141 struct platform_device *pdev;
142 };
143
144 static void tsi108_timed_checker(struct timer_list *t);
145
146 #ifdef DEBUG
dump_eth_one(struct net_device * dev)147 static void dump_eth_one(struct net_device *dev)
148 {
149 struct tsi108_prv_data *data = netdev_priv(dev);
150
151 printk("Dumping %s...\n", dev->name);
152 printk("intstat %x intmask %x phy_ok %d"
153 " link %d speed %d duplex %d\n",
154 TSI_READ(TSI108_EC_INTSTAT),
155 TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
156 data->link_up, data->speed, data->duplex);
157
158 printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
159 data->txhead, data->txtail, data->txfree,
160 TSI_READ(TSI108_EC_TXSTAT),
161 TSI_READ(TSI108_EC_TXESTAT),
162 TSI_READ(TSI108_EC_TXERR));
163
164 printk("RX: head %d, tail %d, free %d, stat %x,"
165 " estat %x, err %x, pending %d\n\n",
166 data->rxhead, data->rxtail, data->rxfree,
167 TSI_READ(TSI108_EC_RXSTAT),
168 TSI_READ(TSI108_EC_RXESTAT),
169 TSI_READ(TSI108_EC_RXERR), data->rxpending);
170 }
171 #endif
172
173 /* Synchronization is needed between the thread and up/down events.
174 * Note that the PHY is accessed through the same registers for both
175 * interfaces, so this can't be made interface-specific.
176 */
177
178 static DEFINE_SPINLOCK(phy_lock);
179
tsi108_read_mii(struct tsi108_prv_data * data,int reg)180 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
181 {
182 unsigned i;
183
184 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
185 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
186 (reg << TSI108_MAC_MII_ADDR_REG));
187 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
188 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
189 for (i = 0; i < 100; i++) {
190 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
191 (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
192 break;
193 udelay(10);
194 }
195
196 if (i == 100)
197 return 0xffff;
198 else
199 return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
200 }
201
tsi108_write_mii(struct tsi108_prv_data * data,int reg,u16 val)202 static void tsi108_write_mii(struct tsi108_prv_data *data,
203 int reg, u16 val)
204 {
205 unsigned i = 100;
206 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
207 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
208 (reg << TSI108_MAC_MII_ADDR_REG));
209 TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
210 while (i--) {
211 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
212 TSI108_MAC_MII_IND_BUSY))
213 break;
214 udelay(10);
215 }
216 }
217
tsi108_mdio_read(struct net_device * dev,int addr,int reg)218 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
219 {
220 struct tsi108_prv_data *data = netdev_priv(dev);
221 return tsi108_read_mii(data, reg);
222 }
223
tsi108_mdio_write(struct net_device * dev,int addr,int reg,int val)224 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
225 {
226 struct tsi108_prv_data *data = netdev_priv(dev);
227 tsi108_write_mii(data, reg, val);
228 }
229
tsi108_write_tbi(struct tsi108_prv_data * data,int reg,u16 val)230 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
231 int reg, u16 val)
232 {
233 unsigned i = 1000;
234 TSI_WRITE(TSI108_MAC_MII_ADDR,
235 (0x1e << TSI108_MAC_MII_ADDR_PHY)
236 | (reg << TSI108_MAC_MII_ADDR_REG));
237 TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
238 while(i--) {
239 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
240 return;
241 udelay(10);
242 }
243 printk(KERN_ERR "%s function time out\n", __func__);
244 }
245
mii_speed(struct mii_if_info * mii)246 static int mii_speed(struct mii_if_info *mii)
247 {
248 int advert, lpa, val, media;
249 int lpa2 = 0;
250 int speed;
251
252 if (!mii_link_ok(mii))
253 return 0;
254
255 val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
256 if ((val & BMSR_ANEGCOMPLETE) == 0)
257 return 0;
258
259 advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
260 lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
261 media = mii_nway_result(advert & lpa);
262
263 if (mii->supports_gmii)
264 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
265
266 speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
267 (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
268 return speed;
269 }
270
tsi108_check_phy(struct net_device * dev)271 static void tsi108_check_phy(struct net_device *dev)
272 {
273 struct tsi108_prv_data *data = netdev_priv(dev);
274 u32 mac_cfg2_reg, portctrl_reg;
275 u32 duplex;
276 u32 speed;
277 unsigned long flags;
278
279 spin_lock_irqsave(&phy_lock, flags);
280
281 if (!data->phy_ok)
282 goto out;
283
284 duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
285 data->init_media = 0;
286
287 if (netif_carrier_ok(dev)) {
288
289 speed = mii_speed(&data->mii_if);
290
291 if ((speed != data->speed) || duplex) {
292
293 mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
294 portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
295
296 mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
297
298 if (speed == 1000) {
299 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
300 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
301 } else {
302 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
303 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
304 }
305
306 data->speed = speed;
307
308 if (data->mii_if.full_duplex) {
309 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
310 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
311 data->duplex = 2;
312 } else {
313 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
314 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
315 data->duplex = 1;
316 }
317
318 TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
319 TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
320 }
321
322 if (data->link_up == 0) {
323 /* The manual says it can take 3-4 usecs for the speed change
324 * to take effect.
325 */
326 udelay(5);
327
328 spin_lock(&data->txlock);
329 if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
330 netif_wake_queue(dev);
331
332 data->link_up = 1;
333 spin_unlock(&data->txlock);
334 }
335 } else {
336 if (data->link_up == 1) {
337 netif_stop_queue(dev);
338 data->link_up = 0;
339 printk(KERN_NOTICE "%s : link is down\n", dev->name);
340 }
341
342 goto out;
343 }
344
345
346 out:
347 spin_unlock_irqrestore(&phy_lock, flags);
348 }
349
350 static inline void
tsi108_stat_carry_one(int carry,int carry_bit,int carry_shift,unsigned long * upper)351 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
352 unsigned long *upper)
353 {
354 if (carry & carry_bit)
355 *upper += carry_shift;
356 }
357
tsi108_stat_carry(struct net_device * dev)358 static void tsi108_stat_carry(struct net_device *dev)
359 {
360 struct tsi108_prv_data *data = netdev_priv(dev);
361 unsigned long flags;
362 u32 carry1, carry2;
363
364 spin_lock_irqsave(&data->misclock, flags);
365
366 carry1 = TSI_READ(TSI108_STAT_CARRY1);
367 carry2 = TSI_READ(TSI108_STAT_CARRY2);
368
369 TSI_WRITE(TSI108_STAT_CARRY1, carry1);
370 TSI_WRITE(TSI108_STAT_CARRY2, carry2);
371
372 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
373 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
374
375 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
376 TSI108_STAT_RXPKTS_CARRY,
377 &data->stats.rx_packets);
378
379 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
380 TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
381
382 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
383 TSI108_STAT_RXMCAST_CARRY,
384 &data->stats.multicast);
385
386 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
387 TSI108_STAT_RXALIGN_CARRY,
388 &data->stats.rx_frame_errors);
389
390 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
391 TSI108_STAT_RXLENGTH_CARRY,
392 &data->stats.rx_length_errors);
393
394 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
395 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
396
397 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
398 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
399
400 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
401 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
402
403 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
404 TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
405
406 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
407 TSI108_STAT_RXDROP_CARRY,
408 &data->stats.rx_missed_errors);
409
410 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
411 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
412
413 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
414 TSI108_STAT_TXPKTS_CARRY,
415 &data->stats.tx_packets);
416
417 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
418 TSI108_STAT_TXEXDEF_CARRY,
419 &data->stats.tx_aborted_errors);
420
421 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
422 TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
423
424 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
425 TSI108_STAT_TXTCOL_CARRY,
426 &data->stats.collisions);
427
428 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
429 TSI108_STAT_TXPAUSEDROP_CARRY,
430 &data->tx_pause_drop);
431
432 spin_unlock_irqrestore(&data->misclock, flags);
433 }
434
435 /* Read a stat counter atomically with respect to carries.
436 * data->misclock must be held.
437 */
438 static inline unsigned long
tsi108_read_stat(struct tsi108_prv_data * data,int reg,int carry_bit,int carry_shift,unsigned long * upper)439 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
440 int carry_shift, unsigned long *upper)
441 {
442 int carryreg;
443 unsigned long val;
444
445 if (reg < 0xb0)
446 carryreg = TSI108_STAT_CARRY1;
447 else
448 carryreg = TSI108_STAT_CARRY2;
449
450 again:
451 val = TSI_READ(reg) | *upper;
452
453 /* Check to see if it overflowed, but the interrupt hasn't
454 * been serviced yet. If so, handle the carry here, and
455 * try again.
456 */
457
458 if (unlikely(TSI_READ(carryreg) & carry_bit)) {
459 *upper += carry_shift;
460 TSI_WRITE(carryreg, carry_bit);
461 goto again;
462 }
463
464 return val;
465 }
466
tsi108_get_stats(struct net_device * dev)467 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
468 {
469 unsigned long excol;
470
471 struct tsi108_prv_data *data = netdev_priv(dev);
472 spin_lock_irq(&data->misclock);
473
474 data->tmpstats.rx_packets =
475 tsi108_read_stat(data, TSI108_STAT_RXPKTS,
476 TSI108_STAT_CARRY1_RXPKTS,
477 TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
478
479 data->tmpstats.tx_packets =
480 tsi108_read_stat(data, TSI108_STAT_TXPKTS,
481 TSI108_STAT_CARRY2_TXPKTS,
482 TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
483
484 data->tmpstats.rx_bytes =
485 tsi108_read_stat(data, TSI108_STAT_RXBYTES,
486 TSI108_STAT_CARRY1_RXBYTES,
487 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
488
489 data->tmpstats.tx_bytes =
490 tsi108_read_stat(data, TSI108_STAT_TXBYTES,
491 TSI108_STAT_CARRY2_TXBYTES,
492 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
493
494 data->tmpstats.multicast =
495 tsi108_read_stat(data, TSI108_STAT_RXMCAST,
496 TSI108_STAT_CARRY1_RXMCAST,
497 TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
498
499 excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
500 TSI108_STAT_CARRY2_TXEXCOL,
501 TSI108_STAT_TXEXCOL_CARRY,
502 &data->tx_coll_abort);
503
504 data->tmpstats.collisions =
505 tsi108_read_stat(data, TSI108_STAT_TXTCOL,
506 TSI108_STAT_CARRY2_TXTCOL,
507 TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
508
509 data->tmpstats.collisions += excol;
510
511 data->tmpstats.rx_length_errors =
512 tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
513 TSI108_STAT_CARRY1_RXLENGTH,
514 TSI108_STAT_RXLENGTH_CARRY,
515 &data->stats.rx_length_errors);
516
517 data->tmpstats.rx_length_errors +=
518 tsi108_read_stat(data, TSI108_STAT_RXRUNT,
519 TSI108_STAT_CARRY1_RXRUNT,
520 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
521
522 data->tmpstats.rx_length_errors +=
523 tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
524 TSI108_STAT_CARRY1_RXJUMBO,
525 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
526
527 data->tmpstats.rx_frame_errors =
528 tsi108_read_stat(data, TSI108_STAT_RXALIGN,
529 TSI108_STAT_CARRY1_RXALIGN,
530 TSI108_STAT_RXALIGN_CARRY,
531 &data->stats.rx_frame_errors);
532
533 data->tmpstats.rx_frame_errors +=
534 tsi108_read_stat(data, TSI108_STAT_RXFCS,
535 TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
536 &data->rx_fcs);
537
538 data->tmpstats.rx_frame_errors +=
539 tsi108_read_stat(data, TSI108_STAT_RXFRAG,
540 TSI108_STAT_CARRY1_RXFRAG,
541 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
542
543 data->tmpstats.rx_missed_errors =
544 tsi108_read_stat(data, TSI108_STAT_RXDROP,
545 TSI108_STAT_CARRY1_RXDROP,
546 TSI108_STAT_RXDROP_CARRY,
547 &data->stats.rx_missed_errors);
548
549 /* These three are maintained by software. */
550 data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
551 data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
552
553 data->tmpstats.tx_aborted_errors =
554 tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
555 TSI108_STAT_CARRY2_TXEXDEF,
556 TSI108_STAT_TXEXDEF_CARRY,
557 &data->stats.tx_aborted_errors);
558
559 data->tmpstats.tx_aborted_errors +=
560 tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
561 TSI108_STAT_CARRY2_TXPAUSE,
562 TSI108_STAT_TXPAUSEDROP_CARRY,
563 &data->tx_pause_drop);
564
565 data->tmpstats.tx_aborted_errors += excol;
566
567 data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
568 data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
569 data->tmpstats.rx_crc_errors +
570 data->tmpstats.rx_frame_errors +
571 data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
572
573 spin_unlock_irq(&data->misclock);
574 return &data->tmpstats;
575 }
576
tsi108_restart_rx(struct tsi108_prv_data * data,struct net_device * dev)577 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
578 {
579 TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
580 TSI108_EC_RXQ_PTRHIGH_VALID);
581
582 TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
583 | TSI108_EC_RXCTRL_QUEUE0);
584 }
585
tsi108_restart_tx(struct tsi108_prv_data * data)586 static void tsi108_restart_tx(struct tsi108_prv_data * data)
587 {
588 TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
589 TSI108_EC_TXQ_PTRHIGH_VALID);
590
591 TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
592 TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
593 }
594
595 /* txlock must be held by caller, with IRQs disabled, and
596 * with permission to re-enable them when the lock is dropped.
597 */
tsi108_complete_tx(struct net_device * dev)598 static void tsi108_complete_tx(struct net_device *dev)
599 {
600 struct tsi108_prv_data *data = netdev_priv(dev);
601 int tx;
602 struct sk_buff *skb;
603 int release = 0;
604
605 while (!data->txfree || data->txhead != data->txtail) {
606 tx = data->txtail;
607
608 if (data->txring[tx].misc & TSI108_TX_OWN)
609 break;
610
611 skb = data->txskbs[tx];
612
613 if (!(data->txring[tx].misc & TSI108_TX_OK))
614 printk("%s: bad tx packet, misc %x\n",
615 dev->name, data->txring[tx].misc);
616
617 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
618 data->txfree++;
619
620 if (data->txring[tx].misc & TSI108_TX_EOF) {
621 dev_kfree_skb_any(skb);
622 release++;
623 }
624 }
625
626 if (release) {
627 if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
628 netif_wake_queue(dev);
629 }
630 }
631
tsi108_send_packet(struct sk_buff * skb,struct net_device * dev)632 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
633 {
634 struct tsi108_prv_data *data = netdev_priv(dev);
635 int frags = skb_shinfo(skb)->nr_frags + 1;
636 int i;
637
638 if (!data->phy_ok && net_ratelimit())
639 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
640
641 if (!data->link_up) {
642 printk(KERN_ERR "%s: Transmit while link is down!\n",
643 dev->name);
644 netif_stop_queue(dev);
645 return NETDEV_TX_BUSY;
646 }
647
648 if (data->txfree < MAX_SKB_FRAGS + 1) {
649 netif_stop_queue(dev);
650
651 if (net_ratelimit())
652 printk(KERN_ERR "%s: Transmit with full tx ring!\n",
653 dev->name);
654 return NETDEV_TX_BUSY;
655 }
656
657 if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
658 netif_stop_queue(dev);
659 }
660
661 spin_lock_irq(&data->txlock);
662
663 for (i = 0; i < frags; i++) {
664 int misc = 0;
665 int tx = data->txhead;
666
667 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
668 * the interrupt bit. TX descriptor-complete interrupts are
669 * enabled when the queue fills up, and masked when there is
670 * still free space. This way, when saturating the outbound
671 * link, the tx interrupts are kept to a reasonable level.
672 * When the queue is not full, reclamation of skbs still occurs
673 * as new packets are transmitted, or on a queue-empty
674 * interrupt.
675 */
676
677 if ((tx % TSI108_TX_INT_FREQ == 0) &&
678 ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
679 misc = TSI108_TX_INT;
680
681 data->txskbs[tx] = skb;
682
683 if (i == 0) {
684 data->txring[tx].buf0 = dma_map_single(&data->pdev->dev,
685 skb->data, skb_headlen(skb),
686 DMA_TO_DEVICE);
687 data->txring[tx].len = skb_headlen(skb);
688 misc |= TSI108_TX_SOF;
689 } else {
690 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
691
692 data->txring[tx].buf0 =
693 skb_frag_dma_map(&data->pdev->dev, frag,
694 0, skb_frag_size(frag),
695 DMA_TO_DEVICE);
696 data->txring[tx].len = skb_frag_size(frag);
697 }
698
699 if (i == frags - 1)
700 misc |= TSI108_TX_EOF;
701
702 if (netif_msg_pktdata(data)) {
703 int i;
704 printk("%s: Tx Frame contents (%d)\n", dev->name,
705 skb->len);
706 for (i = 0; i < skb->len; i++)
707 printk(" %2.2x", skb->data[i]);
708 printk(".\n");
709 }
710 data->txring[tx].misc = misc | TSI108_TX_OWN;
711
712 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
713 data->txfree--;
714 }
715
716 tsi108_complete_tx(dev);
717
718 /* This must be done after the check for completed tx descriptors,
719 * so that the tail pointer is correct.
720 */
721
722 if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
723 tsi108_restart_tx(data);
724
725 spin_unlock_irq(&data->txlock);
726 return NETDEV_TX_OK;
727 }
728
tsi108_complete_rx(struct net_device * dev,int budget)729 static int tsi108_complete_rx(struct net_device *dev, int budget)
730 {
731 struct tsi108_prv_data *data = netdev_priv(dev);
732 int done = 0;
733
734 while (data->rxfree && done != budget) {
735 int rx = data->rxtail;
736 struct sk_buff *skb;
737
738 if (data->rxring[rx].misc & TSI108_RX_OWN)
739 break;
740
741 skb = data->rxskbs[rx];
742 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
743 data->rxfree--;
744 done++;
745
746 if (data->rxring[rx].misc & TSI108_RX_BAD) {
747 spin_lock_irq(&data->misclock);
748
749 if (data->rxring[rx].misc & TSI108_RX_CRC)
750 data->stats.rx_crc_errors++;
751 if (data->rxring[rx].misc & TSI108_RX_OVER)
752 data->stats.rx_fifo_errors++;
753
754 spin_unlock_irq(&data->misclock);
755
756 dev_kfree_skb_any(skb);
757 continue;
758 }
759 if (netif_msg_pktdata(data)) {
760 int i;
761 printk("%s: Rx Frame contents (%d)\n",
762 dev->name, data->rxring[rx].len);
763 for (i = 0; i < data->rxring[rx].len; i++)
764 printk(" %2.2x", skb->data[i]);
765 printk(".\n");
766 }
767
768 skb_put(skb, data->rxring[rx].len);
769 skb->protocol = eth_type_trans(skb, dev);
770 netif_receive_skb(skb);
771 }
772
773 return done;
774 }
775
tsi108_refill_rx(struct net_device * dev,int budget)776 static int tsi108_refill_rx(struct net_device *dev, int budget)
777 {
778 struct tsi108_prv_data *data = netdev_priv(dev);
779 int done = 0;
780
781 while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
782 int rx = data->rxhead;
783 struct sk_buff *skb;
784
785 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
786 data->rxskbs[rx] = skb;
787 if (!skb)
788 break;
789
790 data->rxring[rx].buf0 = dma_map_single(&data->pdev->dev,
791 skb->data, TSI108_RX_SKB_SIZE,
792 DMA_FROM_DEVICE);
793
794 /* Sometimes the hardware sets blen to zero after packet
795 * reception, even though the manual says that it's only ever
796 * modified by the driver.
797 */
798
799 data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
800 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
801
802 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
803 data->rxfree++;
804 done++;
805 }
806
807 if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
808 TSI108_EC_RXSTAT_QUEUE0))
809 tsi108_restart_rx(data, dev);
810
811 return done;
812 }
813
tsi108_poll(struct napi_struct * napi,int budget)814 static int tsi108_poll(struct napi_struct *napi, int budget)
815 {
816 struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
817 struct net_device *dev = data->dev;
818 u32 estat = TSI_READ(TSI108_EC_RXESTAT);
819 u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
820 int num_received = 0, num_filled = 0;
821
822 intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
823 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
824
825 TSI_WRITE(TSI108_EC_RXESTAT, estat);
826 TSI_WRITE(TSI108_EC_INTSTAT, intstat);
827
828 if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
829 num_received = tsi108_complete_rx(dev, budget);
830
831 /* This should normally fill no more slots than the number of
832 * packets received in tsi108_complete_rx(). The exception
833 * is when we previously ran out of memory for RX SKBs. In that
834 * case, it's helpful to obey the budget, not only so that the
835 * CPU isn't hogged, but so that memory (which may still be low)
836 * is not hogged by one device.
837 *
838 * A work unit is considered to be two SKBs to allow us to catch
839 * up when the ring has shrunk due to out-of-memory but we're
840 * still removing the full budget's worth of packets each time.
841 */
842
843 if (data->rxfree < TSI108_RXRING_LEN)
844 num_filled = tsi108_refill_rx(dev, budget * 2);
845
846 if (intstat & TSI108_INT_RXERROR) {
847 u32 err = TSI_READ(TSI108_EC_RXERR);
848 TSI_WRITE(TSI108_EC_RXERR, err);
849
850 if (err) {
851 if (net_ratelimit())
852 printk(KERN_DEBUG "%s: RX error %x\n",
853 dev->name, err);
854
855 if (!(TSI_READ(TSI108_EC_RXSTAT) &
856 TSI108_EC_RXSTAT_QUEUE0))
857 tsi108_restart_rx(data, dev);
858 }
859 }
860
861 if (intstat & TSI108_INT_RXOVERRUN) {
862 spin_lock_irq(&data->misclock);
863 data->stats.rx_fifo_errors++;
864 spin_unlock_irq(&data->misclock);
865 }
866
867 if (num_received < budget) {
868 data->rxpending = 0;
869 napi_complete_done(napi, num_received);
870
871 TSI_WRITE(TSI108_EC_INTMASK,
872 TSI_READ(TSI108_EC_INTMASK)
873 & ~(TSI108_INT_RXQUEUE0
874 | TSI108_INT_RXTHRESH |
875 TSI108_INT_RXOVERRUN |
876 TSI108_INT_RXERROR |
877 TSI108_INT_RXWAIT));
878 } else {
879 data->rxpending = 1;
880 }
881
882 return num_received;
883 }
884
tsi108_rx_int(struct net_device * dev)885 static void tsi108_rx_int(struct net_device *dev)
886 {
887 struct tsi108_prv_data *data = netdev_priv(dev);
888
889 /* A race could cause dev to already be scheduled, so it's not an
890 * error if that happens (and interrupts shouldn't be re-masked,
891 * because that can cause harmful races, if poll has already
892 * unmasked them but not cleared LINK_STATE_SCHED).
893 *
894 * This can happen if this code races with tsi108_poll(), which masks
895 * the interrupts after tsi108_irq_one() read the mask, but before
896 * napi_schedule is called. It could also happen due to calls
897 * from tsi108_check_rxring().
898 */
899
900 if (napi_schedule_prep(&data->napi)) {
901 /* Mask, rather than ack, the receive interrupts. The ack
902 * will happen in tsi108_poll().
903 */
904
905 TSI_WRITE(TSI108_EC_INTMASK,
906 TSI_READ(TSI108_EC_INTMASK) |
907 TSI108_INT_RXQUEUE0
908 | TSI108_INT_RXTHRESH |
909 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
910 TSI108_INT_RXWAIT);
911 __napi_schedule(&data->napi);
912 } else {
913 if (!netif_running(dev)) {
914 /* This can happen if an interrupt occurs while the
915 * interface is being brought down, as the START
916 * bit is cleared before the stop function is called.
917 *
918 * In this case, the interrupts must be masked, or
919 * they will continue indefinitely.
920 *
921 * There's a race here if the interface is brought down
922 * and then up in rapid succession, as the device could
923 * be made running after the above check and before
924 * the masking below. This will only happen if the IRQ
925 * thread has a lower priority than the task brining
926 * up the interface. Fixing this race would likely
927 * require changes in generic code.
928 */
929
930 TSI_WRITE(TSI108_EC_INTMASK,
931 TSI_READ
932 (TSI108_EC_INTMASK) |
933 TSI108_INT_RXQUEUE0 |
934 TSI108_INT_RXTHRESH |
935 TSI108_INT_RXOVERRUN |
936 TSI108_INT_RXERROR |
937 TSI108_INT_RXWAIT);
938 }
939 }
940 }
941
942 /* If the RX ring has run out of memory, try periodically
943 * to allocate some more, as otherwise poll would never
944 * get called (apart from the initial end-of-queue condition).
945 *
946 * This is called once per second (by default) from the thread.
947 */
948
tsi108_check_rxring(struct net_device * dev)949 static void tsi108_check_rxring(struct net_device *dev)
950 {
951 struct tsi108_prv_data *data = netdev_priv(dev);
952
953 /* A poll is scheduled, as opposed to caling tsi108_refill_rx
954 * directly, so as to keep the receive path single-threaded
955 * (and thus not needing a lock).
956 */
957
958 if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
959 tsi108_rx_int(dev);
960 }
961
tsi108_tx_int(struct net_device * dev)962 static void tsi108_tx_int(struct net_device *dev)
963 {
964 struct tsi108_prv_data *data = netdev_priv(dev);
965 u32 estat = TSI_READ(TSI108_EC_TXESTAT);
966
967 TSI_WRITE(TSI108_EC_TXESTAT, estat);
968 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
969 TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
970 if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
971 u32 err = TSI_READ(TSI108_EC_TXERR);
972 TSI_WRITE(TSI108_EC_TXERR, err);
973
974 if (err && net_ratelimit())
975 printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
976 }
977
978 if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
979 spin_lock(&data->txlock);
980 tsi108_complete_tx(dev);
981 spin_unlock(&data->txlock);
982 }
983 }
984
985
tsi108_irq(int irq,void * dev_id)986 static irqreturn_t tsi108_irq(int irq, void *dev_id)
987 {
988 struct net_device *dev = dev_id;
989 struct tsi108_prv_data *data = netdev_priv(dev);
990 u32 stat = TSI_READ(TSI108_EC_INTSTAT);
991
992 if (!(stat & TSI108_INT_ANY))
993 return IRQ_NONE; /* Not our interrupt */
994
995 stat &= ~TSI_READ(TSI108_EC_INTMASK);
996
997 if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
998 TSI108_INT_TXERROR))
999 tsi108_tx_int(dev);
1000 if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1001 TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1002 TSI108_INT_RXERROR))
1003 tsi108_rx_int(dev);
1004
1005 if (stat & TSI108_INT_SFN) {
1006 if (net_ratelimit())
1007 printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1008 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1009 }
1010
1011 if (stat & TSI108_INT_STATCARRY) {
1012 tsi108_stat_carry(dev);
1013 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1014 }
1015
1016 return IRQ_HANDLED;
1017 }
1018
tsi108_stop_ethernet(struct net_device * dev)1019 static void tsi108_stop_ethernet(struct net_device *dev)
1020 {
1021 struct tsi108_prv_data *data = netdev_priv(dev);
1022 int i = 1000;
1023 /* Disable all TX and RX queues ... */
1024 TSI_WRITE(TSI108_EC_TXCTRL, 0);
1025 TSI_WRITE(TSI108_EC_RXCTRL, 0);
1026
1027 /* ...and wait for them to become idle */
1028 while(i--) {
1029 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1030 break;
1031 udelay(10);
1032 }
1033 i = 1000;
1034 while(i--){
1035 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1036 return;
1037 udelay(10);
1038 }
1039 printk(KERN_ERR "%s function time out\n", __func__);
1040 }
1041
tsi108_reset_ether(struct tsi108_prv_data * data)1042 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1043 {
1044 TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1045 udelay(100);
1046 TSI_WRITE(TSI108_MAC_CFG1, 0);
1047
1048 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1049 udelay(100);
1050 TSI_WRITE(TSI108_EC_PORTCTRL,
1051 TSI_READ(TSI108_EC_PORTCTRL) &
1052 ~TSI108_EC_PORTCTRL_STATRST);
1053
1054 TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1055 udelay(100);
1056 TSI_WRITE(TSI108_EC_TXCFG,
1057 TSI_READ(TSI108_EC_TXCFG) &
1058 ~TSI108_EC_TXCFG_RST);
1059
1060 TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1061 udelay(100);
1062 TSI_WRITE(TSI108_EC_RXCFG,
1063 TSI_READ(TSI108_EC_RXCFG) &
1064 ~TSI108_EC_RXCFG_RST);
1065
1066 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1067 TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1068 TSI108_MAC_MII_MGMT_RST);
1069 udelay(100);
1070 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1071 (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1072 ~(TSI108_MAC_MII_MGMT_RST |
1073 TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1074 }
1075
tsi108_get_mac(struct net_device * dev)1076 static int tsi108_get_mac(struct net_device *dev)
1077 {
1078 struct tsi108_prv_data *data = netdev_priv(dev);
1079 u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1080 u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1081 u8 addr[ETH_ALEN];
1082
1083 /* Note that the octets are reversed from what the manual says,
1084 * producing an even weirder ordering...
1085 */
1086 if (word2 == 0 && word1 == 0) {
1087 addr[0] = 0x00;
1088 addr[1] = 0x06;
1089 addr[2] = 0xd2;
1090 addr[3] = 0x00;
1091 addr[4] = 0x00;
1092 if (0x8 == data->phy)
1093 addr[5] = 0x01;
1094 else
1095 addr[5] = 0x02;
1096 eth_hw_addr_set(dev, addr);
1097
1098 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1099
1100 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1101 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1102
1103 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1104 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1105 } else {
1106 addr[0] = (word2 >> 16) & 0xff;
1107 addr[1] = (word2 >> 24) & 0xff;
1108 addr[2] = (word1 >> 0) & 0xff;
1109 addr[3] = (word1 >> 8) & 0xff;
1110 addr[4] = (word1 >> 16) & 0xff;
1111 addr[5] = (word1 >> 24) & 0xff;
1112 eth_hw_addr_set(dev, addr);
1113 }
1114
1115 if (!is_valid_ether_addr(dev->dev_addr)) {
1116 printk(KERN_ERR
1117 "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1118 dev->name, word1, word2);
1119 return -EINVAL;
1120 }
1121
1122 return 0;
1123 }
1124
tsi108_set_mac(struct net_device * dev,void * addr)1125 static int tsi108_set_mac(struct net_device *dev, void *addr)
1126 {
1127 struct tsi108_prv_data *data = netdev_priv(dev);
1128 u32 word1, word2;
1129
1130 if (!is_valid_ether_addr(addr))
1131 return -EADDRNOTAVAIL;
1132
1133 /* +2 is for the offset of the HW addr type */
1134 eth_hw_addr_set(dev, ((unsigned char *)addr) + 2);
1135
1136 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1137
1138 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1139 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1140
1141 spin_lock_irq(&data->misclock);
1142 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1143 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1144 spin_lock(&data->txlock);
1145
1146 if (data->txfree && data->link_up)
1147 netif_wake_queue(dev);
1148
1149 spin_unlock(&data->txlock);
1150 spin_unlock_irq(&data->misclock);
1151 return 0;
1152 }
1153
1154 /* Protected by dev->xmit_lock. */
tsi108_set_rx_mode(struct net_device * dev)1155 static void tsi108_set_rx_mode(struct net_device *dev)
1156 {
1157 struct tsi108_prv_data *data = netdev_priv(dev);
1158 u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1159
1160 if (dev->flags & IFF_PROMISC) {
1161 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1162 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1163 goto out;
1164 }
1165
1166 rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1167
1168 if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1169 int i;
1170 struct netdev_hw_addr *ha;
1171 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1172
1173 memset(data->mc_hash, 0, sizeof(data->mc_hash));
1174
1175 netdev_for_each_mc_addr(ha, dev) {
1176 u32 hash, crc;
1177
1178 crc = ether_crc(6, ha->addr);
1179 hash = crc >> 23;
1180 __set_bit(hash, &data->mc_hash[0]);
1181 }
1182
1183 TSI_WRITE(TSI108_EC_HASHADDR,
1184 TSI108_EC_HASHADDR_AUTOINC |
1185 TSI108_EC_HASHADDR_MCAST);
1186
1187 for (i = 0; i < 16; i++) {
1188 /* The manual says that the hardware may drop
1189 * back-to-back writes to the data register.
1190 */
1191 udelay(1);
1192 TSI_WRITE(TSI108_EC_HASHDATA,
1193 data->mc_hash[i]);
1194 }
1195 }
1196
1197 out:
1198 TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1199 }
1200
tsi108_init_phy(struct net_device * dev)1201 static void tsi108_init_phy(struct net_device *dev)
1202 {
1203 struct tsi108_prv_data *data = netdev_priv(dev);
1204 u32 i = 0;
1205 u16 phyval = 0;
1206 unsigned long flags;
1207
1208 spin_lock_irqsave(&phy_lock, flags);
1209
1210 tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1211 while (--i) {
1212 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1213 break;
1214 udelay(10);
1215 }
1216 if (i == 0)
1217 printk(KERN_ERR "%s function time out\n", __func__);
1218
1219 if (data->phy_type == TSI108_PHY_BCM54XX) {
1220 tsi108_write_mii(data, 0x09, 0x0300);
1221 tsi108_write_mii(data, 0x10, 0x1020);
1222 tsi108_write_mii(data, 0x1c, 0x8c00);
1223 }
1224
1225 tsi108_write_mii(data,
1226 MII_BMCR,
1227 BMCR_ANENABLE | BMCR_ANRESTART);
1228 while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1229 cpu_relax();
1230
1231 /* Set G/MII mode and receive clock select in TBI control #2. The
1232 * second port won't work if this isn't done, even though we don't
1233 * use TBI mode.
1234 */
1235
1236 tsi108_write_tbi(data, 0x11, 0x30);
1237
1238 /* FIXME: It seems to take more than 2 back-to-back reads to the
1239 * PHY_STAT register before the link up status bit is set.
1240 */
1241
1242 data->link_up = 0;
1243
1244 while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1245 BMSR_LSTATUS)) {
1246 if (i++ > (MII_READ_DELAY / 10)) {
1247 break;
1248 }
1249 spin_unlock_irqrestore(&phy_lock, flags);
1250 msleep(10);
1251 spin_lock_irqsave(&phy_lock, flags);
1252 }
1253
1254 data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1255 printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1256 data->phy_ok = 1;
1257 data->init_media = 1;
1258 spin_unlock_irqrestore(&phy_lock, flags);
1259 }
1260
tsi108_kill_phy(struct net_device * dev)1261 static void tsi108_kill_phy(struct net_device *dev)
1262 {
1263 struct tsi108_prv_data *data = netdev_priv(dev);
1264 unsigned long flags;
1265
1266 spin_lock_irqsave(&phy_lock, flags);
1267 tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1268 data->phy_ok = 0;
1269 spin_unlock_irqrestore(&phy_lock, flags);
1270 }
1271
tsi108_open(struct net_device * dev)1272 static int tsi108_open(struct net_device *dev)
1273 {
1274 int i;
1275 struct tsi108_prv_data *data = netdev_priv(dev);
1276 unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1277 unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1278
1279 i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1280 if (i != 0) {
1281 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1282 data->id, data->irq_num);
1283 return i;
1284 } else {
1285 dev->irq = data->irq_num;
1286 printk(KERN_NOTICE
1287 "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1288 data->id, dev->irq, dev->name);
1289 }
1290
1291 data->rxring = dma_alloc_coherent(&data->pdev->dev, rxring_size,
1292 &data->rxdma, GFP_KERNEL);
1293 if (!data->rxring) {
1294 free_irq(data->irq_num, dev);
1295 return -ENOMEM;
1296 }
1297
1298 data->txring = dma_alloc_coherent(&data->pdev->dev, txring_size,
1299 &data->txdma, GFP_KERNEL);
1300 if (!data->txring) {
1301 free_irq(data->irq_num, dev);
1302 dma_free_coherent(&data->pdev->dev, rxring_size, data->rxring,
1303 data->rxdma);
1304 return -ENOMEM;
1305 }
1306
1307 for (i = 0; i < TSI108_RXRING_LEN; i++) {
1308 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1309 data->rxring[i].blen = TSI108_RXBUF_SIZE;
1310 data->rxring[i].vlan = 0;
1311 }
1312
1313 data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1314
1315 data->rxtail = 0;
1316 data->rxhead = 0;
1317
1318 for (i = 0; i < TSI108_RXRING_LEN; i++) {
1319 struct sk_buff *skb;
1320
1321 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1322 if (!skb) {
1323 /* Bah. No memory for now, but maybe we'll get
1324 * some more later.
1325 * For now, we'll live with the smaller ring.
1326 */
1327 printk(KERN_WARNING
1328 "%s: Could only allocate %d receive skb(s).\n",
1329 dev->name, i);
1330 data->rxhead = i;
1331 break;
1332 }
1333
1334 data->rxskbs[i] = skb;
1335 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1336 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1337 }
1338
1339 data->rxfree = i;
1340 TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1341
1342 for (i = 0; i < TSI108_TXRING_LEN; i++) {
1343 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1344 data->txring[i].misc = 0;
1345 }
1346
1347 data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1348 data->txtail = 0;
1349 data->txhead = 0;
1350 data->txfree = TSI108_TXRING_LEN;
1351 TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1352 tsi108_init_phy(dev);
1353
1354 napi_enable(&data->napi);
1355
1356 timer_setup(&data->timer, tsi108_timed_checker, 0);
1357 mod_timer(&data->timer, jiffies + 1);
1358
1359 tsi108_restart_rx(data, dev);
1360
1361 TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1362
1363 TSI_WRITE(TSI108_EC_INTMASK,
1364 ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1365 TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1366 TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1367 TSI108_INT_SFN | TSI108_INT_STATCARRY));
1368
1369 TSI_WRITE(TSI108_MAC_CFG1,
1370 TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1371 netif_start_queue(dev);
1372 return 0;
1373 }
1374
tsi108_close(struct net_device * dev)1375 static int tsi108_close(struct net_device *dev)
1376 {
1377 struct tsi108_prv_data *data = netdev_priv(dev);
1378
1379 netif_stop_queue(dev);
1380 napi_disable(&data->napi);
1381
1382 del_timer_sync(&data->timer);
1383
1384 tsi108_stop_ethernet(dev);
1385 tsi108_kill_phy(dev);
1386 TSI_WRITE(TSI108_EC_INTMASK, ~0);
1387 TSI_WRITE(TSI108_MAC_CFG1, 0);
1388
1389 /* Check for any pending TX packets, and drop them. */
1390
1391 while (!data->txfree || data->txhead != data->txtail) {
1392 int tx = data->txtail;
1393 struct sk_buff *skb;
1394 skb = data->txskbs[tx];
1395 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1396 data->txfree++;
1397 dev_kfree_skb(skb);
1398 }
1399
1400 free_irq(data->irq_num, dev);
1401
1402 /* Discard the RX ring. */
1403
1404 while (data->rxfree) {
1405 int rx = data->rxtail;
1406 struct sk_buff *skb;
1407
1408 skb = data->rxskbs[rx];
1409 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1410 data->rxfree--;
1411 dev_kfree_skb(skb);
1412 }
1413
1414 dma_free_coherent(&data->pdev->dev,
1415 TSI108_RXRING_LEN * sizeof(rx_desc),
1416 data->rxring, data->rxdma);
1417 dma_free_coherent(&data->pdev->dev,
1418 TSI108_TXRING_LEN * sizeof(tx_desc),
1419 data->txring, data->txdma);
1420
1421 return 0;
1422 }
1423
tsi108_init_mac(struct net_device * dev)1424 static void tsi108_init_mac(struct net_device *dev)
1425 {
1426 struct tsi108_prv_data *data = netdev_priv(dev);
1427
1428 TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1429 TSI108_MAC_CFG2_PADCRC);
1430
1431 TSI_WRITE(TSI108_EC_TXTHRESH,
1432 (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1433 (192 << TSI108_EC_TXTHRESH_STOPFILL));
1434
1435 TSI_WRITE(TSI108_STAT_CARRYMASK1,
1436 ~(TSI108_STAT_CARRY1_RXBYTES |
1437 TSI108_STAT_CARRY1_RXPKTS |
1438 TSI108_STAT_CARRY1_RXFCS |
1439 TSI108_STAT_CARRY1_RXMCAST |
1440 TSI108_STAT_CARRY1_RXALIGN |
1441 TSI108_STAT_CARRY1_RXLENGTH |
1442 TSI108_STAT_CARRY1_RXRUNT |
1443 TSI108_STAT_CARRY1_RXJUMBO |
1444 TSI108_STAT_CARRY1_RXFRAG |
1445 TSI108_STAT_CARRY1_RXJABBER |
1446 TSI108_STAT_CARRY1_RXDROP));
1447
1448 TSI_WRITE(TSI108_STAT_CARRYMASK2,
1449 ~(TSI108_STAT_CARRY2_TXBYTES |
1450 TSI108_STAT_CARRY2_TXPKTS |
1451 TSI108_STAT_CARRY2_TXEXDEF |
1452 TSI108_STAT_CARRY2_TXEXCOL |
1453 TSI108_STAT_CARRY2_TXTCOL |
1454 TSI108_STAT_CARRY2_TXPAUSE));
1455
1456 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1457 TSI_WRITE(TSI108_MAC_CFG1, 0);
1458
1459 TSI_WRITE(TSI108_EC_RXCFG,
1460 TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1461
1462 TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1463 TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1464 TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1465 TSI108_EC_TXQ_CFG_SFNPORT));
1466
1467 TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1468 TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1469 TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1470 TSI108_EC_RXQ_CFG_SFNPORT));
1471
1472 TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1473 TSI108_EC_TXQ_BUFCFG_BURST256 |
1474 TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1475 TSI108_EC_TXQ_BUFCFG_SFNPORT));
1476
1477 TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1478 TSI108_EC_RXQ_BUFCFG_BURST256 |
1479 TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1480 TSI108_EC_RXQ_BUFCFG_SFNPORT));
1481
1482 TSI_WRITE(TSI108_EC_INTMASK, ~0);
1483 }
1484
tsi108_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1485 static int tsi108_get_link_ksettings(struct net_device *dev,
1486 struct ethtool_link_ksettings *cmd)
1487 {
1488 struct tsi108_prv_data *data = netdev_priv(dev);
1489 unsigned long flags;
1490
1491 spin_lock_irqsave(&data->txlock, flags);
1492 mii_ethtool_get_link_ksettings(&data->mii_if, cmd);
1493 spin_unlock_irqrestore(&data->txlock, flags);
1494
1495 return 0;
1496 }
1497
tsi108_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1498 static int tsi108_set_link_ksettings(struct net_device *dev,
1499 const struct ethtool_link_ksettings *cmd)
1500 {
1501 struct tsi108_prv_data *data = netdev_priv(dev);
1502 unsigned long flags;
1503 int rc;
1504
1505 spin_lock_irqsave(&data->txlock, flags);
1506 rc = mii_ethtool_set_link_ksettings(&data->mii_if, cmd);
1507 spin_unlock_irqrestore(&data->txlock, flags);
1508
1509 return rc;
1510 }
1511
tsi108_do_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1512 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1513 {
1514 struct tsi108_prv_data *data = netdev_priv(dev);
1515 if (!netif_running(dev))
1516 return -EINVAL;
1517 return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1518 }
1519
1520 static const struct ethtool_ops tsi108_ethtool_ops = {
1521 .get_link = ethtool_op_get_link,
1522 .get_link_ksettings = tsi108_get_link_ksettings,
1523 .set_link_ksettings = tsi108_set_link_ksettings,
1524 };
1525
1526 static const struct net_device_ops tsi108_netdev_ops = {
1527 .ndo_open = tsi108_open,
1528 .ndo_stop = tsi108_close,
1529 .ndo_start_xmit = tsi108_send_packet,
1530 .ndo_set_rx_mode = tsi108_set_rx_mode,
1531 .ndo_get_stats = tsi108_get_stats,
1532 .ndo_eth_ioctl = tsi108_do_ioctl,
1533 .ndo_set_mac_address = tsi108_set_mac,
1534 .ndo_validate_addr = eth_validate_addr,
1535 };
1536
1537 static int
tsi108_init_one(struct platform_device * pdev)1538 tsi108_init_one(struct platform_device *pdev)
1539 {
1540 struct net_device *dev = NULL;
1541 struct tsi108_prv_data *data = NULL;
1542 hw_info *einfo;
1543 int err = 0;
1544
1545 einfo = dev_get_platdata(&pdev->dev);
1546
1547 if (NULL == einfo) {
1548 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1549 pdev->id);
1550 return -ENODEV;
1551 }
1552
1553 /* Create an ethernet device instance */
1554
1555 dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1556 if (!dev)
1557 return -ENOMEM;
1558
1559 printk("tsi108_eth%d: probe...\n", pdev->id);
1560 data = netdev_priv(dev);
1561 data->dev = dev;
1562 data->pdev = pdev;
1563
1564 pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1565 pdev->id, einfo->regs, einfo->phyregs,
1566 einfo->phy, einfo->irq_num);
1567
1568 data->regs = ioremap(einfo->regs, 0x400);
1569 if (NULL == data->regs) {
1570 err = -ENOMEM;
1571 goto regs_fail;
1572 }
1573
1574 data->phyregs = ioremap(einfo->phyregs, 0x400);
1575 if (NULL == data->phyregs) {
1576 err = -ENOMEM;
1577 goto phyregs_fail;
1578 }
1579 /* MII setup */
1580 data->mii_if.dev = dev;
1581 data->mii_if.mdio_read = tsi108_mdio_read;
1582 data->mii_if.mdio_write = tsi108_mdio_write;
1583 data->mii_if.phy_id = einfo->phy;
1584 data->mii_if.phy_id_mask = 0x1f;
1585 data->mii_if.reg_num_mask = 0x1f;
1586
1587 data->phy = einfo->phy;
1588 data->phy_type = einfo->phy_type;
1589 data->irq_num = einfo->irq_num;
1590 data->id = pdev->id;
1591 netif_napi_add(dev, &data->napi, tsi108_poll);
1592 dev->netdev_ops = &tsi108_netdev_ops;
1593 dev->ethtool_ops = &tsi108_ethtool_ops;
1594
1595 /* Apparently, the Linux networking code won't use scatter-gather
1596 * if the hardware doesn't do checksums. However, it's faster
1597 * to checksum in place and use SG, as (among other reasons)
1598 * the cache won't be dirtied (which then has to be flushed
1599 * before DMA). The checksumming is done by the driver (via
1600 * a new function skb_csum_dev() in net/core/skbuff.c).
1601 */
1602
1603 dev->features = NETIF_F_HIGHDMA;
1604
1605 spin_lock_init(&data->txlock);
1606 spin_lock_init(&data->misclock);
1607
1608 tsi108_reset_ether(data);
1609 tsi108_kill_phy(dev);
1610
1611 if ((err = tsi108_get_mac(dev)) != 0) {
1612 printk(KERN_ERR "%s: Invalid MAC address. Please correct.\n",
1613 dev->name);
1614 goto register_fail;
1615 }
1616
1617 tsi108_init_mac(dev);
1618 err = register_netdev(dev);
1619 if (err) {
1620 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1621 dev->name);
1622 goto register_fail;
1623 }
1624
1625 platform_set_drvdata(pdev, dev);
1626 printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1627 dev->name, dev->dev_addr);
1628 #ifdef DEBUG
1629 data->msg_enable = DEBUG;
1630 dump_eth_one(dev);
1631 #endif
1632
1633 return 0;
1634
1635 register_fail:
1636 iounmap(data->phyregs);
1637
1638 phyregs_fail:
1639 iounmap(data->regs);
1640
1641 regs_fail:
1642 free_netdev(dev);
1643 return err;
1644 }
1645
1646 /* There's no way to either get interrupts from the PHY when
1647 * something changes, or to have the Tsi108 automatically communicate
1648 * with the PHY to reconfigure itself.
1649 *
1650 * Thus, we have to do it using a timer.
1651 */
1652
tsi108_timed_checker(struct timer_list * t)1653 static void tsi108_timed_checker(struct timer_list *t)
1654 {
1655 struct tsi108_prv_data *data = from_timer(data, t, timer);
1656 struct net_device *dev = data->dev;
1657
1658 tsi108_check_phy(dev);
1659 tsi108_check_rxring(dev);
1660 mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1661 }
1662
tsi108_ether_remove(struct platform_device * pdev)1663 static int tsi108_ether_remove(struct platform_device *pdev)
1664 {
1665 struct net_device *dev = platform_get_drvdata(pdev);
1666 struct tsi108_prv_data *priv = netdev_priv(dev);
1667
1668 unregister_netdev(dev);
1669 tsi108_stop_ethernet(dev);
1670 iounmap(priv->regs);
1671 iounmap(priv->phyregs);
1672 free_netdev(dev);
1673
1674 return 0;
1675 }
1676
1677 /* Structure for a device driver */
1678
1679 static struct platform_driver tsi_eth_driver = {
1680 .probe = tsi108_init_one,
1681 .remove = tsi108_ether_remove,
1682 .driver = {
1683 .name = "tsi-ethernet",
1684 },
1685 };
1686 module_platform_driver(tsi_eth_driver);
1687
1688 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1689 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1690 MODULE_LICENSE("GPL");
1691 MODULE_ALIAS("platform:tsi-ethernet");
1692