1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * ATI Mach64 CT/VT/GT/LT Support
5 */
6
7 #include <linux/fb.h>
8 #include <linux/delay.h>
9 #include <asm/io.h>
10 #include <video/mach64.h>
11 #include "atyfb.h"
12 #ifdef CONFIG_PPC
13 #include <asm/machdep.h>
14 #endif
15
16 #undef DEBUG
17
18 static int aty_valid_pll_ct (const struct fb_info *info, u32 vclk_per, struct pll_ct *pll);
19 static int aty_dsp_gt (const struct fb_info *info, u32 bpp, struct pll_ct *pll);
20 static int aty_var_to_pll_ct(const struct fb_info *info, u32 vclk_per, u32 bpp, union aty_pll *pll);
21 static u32 aty_pll_to_var_ct(const struct fb_info *info, const union aty_pll *pll);
22
aty_ld_pll_ct(int offset,const struct atyfb_par * par)23 u8 aty_ld_pll_ct(int offset, const struct atyfb_par *par)
24 {
25
26 /* write addr byte */
27 aty_st_8(CLOCK_CNTL_ADDR, (offset << 2) & PLL_ADDR, par);
28 /* read the register value */
29 return aty_ld_8(CLOCK_CNTL_DATA, par);
30 }
31
aty_st_pll_ct(int offset,u8 val,const struct atyfb_par * par)32 static void aty_st_pll_ct(int offset, u8 val, const struct atyfb_par *par)
33 {
34 /* write addr byte */
35 aty_st_8(CLOCK_CNTL_ADDR, ((offset << 2) & PLL_ADDR) | PLL_WR_EN, par);
36 /* write the register value */
37 aty_st_8(CLOCK_CNTL_DATA, val & PLL_DATA, par);
38 aty_st_8(CLOCK_CNTL_ADDR, ((offset << 2) & PLL_ADDR) & ~PLL_WR_EN, par);
39 }
40
41 /*
42 * by Daniel Mantione
43 * <daniel.mantione@freepascal.org>
44 *
45 *
46 * ATI Mach64 CT clock synthesis description.
47 *
48 * All clocks on the Mach64 can be calculated using the same principle:
49 *
50 * XTALIN * x * FB_DIV
51 * CLK = ----------------------
52 * PLL_REF_DIV * POST_DIV
53 *
54 * XTALIN is a fixed speed clock. Common speeds are 14.31 MHz and 29.50 MHz.
55 * PLL_REF_DIV can be set by the user, but is the same for all clocks.
56 * FB_DIV can be set by the user for each clock individually, it should be set
57 * between 128 and 255, the chip will generate a bad clock signal for too low
58 * values.
59 * x depends on the type of clock; usually it is 2, but for the MCLK it can also
60 * be set to 4.
61 * POST_DIV can be set by the user for each clock individually, Possible values
62 * are 1,2,4,8 and for some clocks other values are available too.
63 * CLK is of course the clock speed that is generated.
64 *
65 * The Mach64 has these clocks:
66 *
67 * MCLK The clock rate of the chip
68 * XCLK The clock rate of the on-chip memory
69 * VCLK0 First pixel clock of first CRT controller
70 * VCLK1 Second pixel clock of first CRT controller
71 * VCLK2 Third pixel clock of first CRT controller
72 * VCLK3 Fourth pixel clock of first CRT controller
73 * VCLK Selected pixel clock, one of VCLK0, VCLK1, VCLK2, VCLK3
74 * V2CLK Pixel clock of the second CRT controller.
75 * SCLK Multi-purpose clock
76 *
77 * - MCLK and XCLK use the same FB_DIV
78 * - VCLK0 .. VCLK3 use the same FB_DIV
79 * - V2CLK is needed when the second CRTC is used (can be used for dualhead);
80 * i.e. CRT monitor connected to laptop has different resolution than built
81 * in LCD monitor.
82 * - SCLK is not available on all cards; it is know to exist on the Rage LT-PRO,
83 * Rage XL and Rage Mobility. It is know not to exist on the Mach64 VT.
84 * - V2CLK is not available on all cards, most likely only the Rage LT-PRO,
85 * the Rage XL and the Rage Mobility
86 *
87 * SCLK can be used to:
88 * - Clock the chip instead of MCLK
89 * - Replace XTALIN with a user defined frequency
90 * - Generate the pixel clock for the LCD monitor (instead of VCLK)
91 */
92
93 /*
94 * It can be quite hard to calculate XCLK and MCLK if they don't run at the
95 * same frequency. Luckily, until now all cards that need asynchrone clock
96 * speeds seem to have SCLK.
97 * So this driver uses SCLK to clock the chip and XCLK to clock the memory.
98 */
99
100 /* ------------------------------------------------------------------------- */
101
102 /*
103 * PLL programming (Mach64 CT family)
104 *
105 *
106 * This procedure sets the display fifo. The display fifo is a buffer that
107 * contains data read from the video memory that waits to be processed by
108 * the CRT controller.
109 *
110 * On the more modern Mach64 variants, the chip doesn't calculate the
111 * interval after which the display fifo has to be reloaded from memory
112 * automatically, the driver has to do it instead.
113 */
114
115 #define Maximum_DSP_PRECISION 7
116 const u8 aty_postdividers[8] = {1,2,4,8,3,5,6,12};
117
aty_dsp_gt(const struct fb_info * info,u32 bpp,struct pll_ct * pll)118 static int aty_dsp_gt(const struct fb_info *info, u32 bpp, struct pll_ct *pll)
119 {
120 u32 dsp_off, dsp_on, dsp_xclks;
121 u32 multiplier, divider, ras_multiplier, ras_divider, tmp;
122 u8 vshift, xshift;
123 s8 dsp_precision;
124
125 multiplier = ((u32)pll->mclk_fb_div) * pll->vclk_post_div_real;
126 divider = ((u32)pll->vclk_fb_div) * pll->xclk_ref_div;
127
128 ras_multiplier = pll->xclkmaxrasdelay;
129 ras_divider = 1;
130
131 if (bpp>=8)
132 divider = divider * (bpp >> 2);
133
134 vshift = (6 - 2) - pll->xclk_post_div; /* FIFO is 64 bits wide in accelerator mode ... */
135
136 if (bpp == 0)
137 vshift--; /* ... but only 32 bits in VGA mode. */
138
139 #ifdef CONFIG_FB_ATY_GENERIC_LCD
140 if (pll->xres != 0) {
141 struct atyfb_par *par = (struct atyfb_par *) info->par;
142
143 multiplier = multiplier * par->lcd_width;
144 divider = divider * pll->xres & ~7;
145
146 ras_multiplier = ras_multiplier * par->lcd_width;
147 ras_divider = ras_divider * pll->xres & ~7;
148 }
149 #endif
150 /* If we don't do this, 32 bits for multiplier & divider won't be
151 enough in certain situations! */
152 while (((multiplier | divider) & 1) == 0) {
153 multiplier = multiplier >> 1;
154 divider = divider >> 1;
155 }
156
157 /* Determine DSP precision first */
158 tmp = ((multiplier * pll->fifo_size) << vshift) / divider;
159
160 for (dsp_precision = -5; tmp; dsp_precision++)
161 tmp >>= 1;
162 if (dsp_precision < 0)
163 dsp_precision = 0;
164 else if (dsp_precision > Maximum_DSP_PRECISION)
165 dsp_precision = Maximum_DSP_PRECISION;
166
167 xshift = 6 - dsp_precision;
168 vshift += xshift;
169
170 /* Move on to dsp_off */
171 dsp_off = ((multiplier * (pll->fifo_size - 1)) << vshift) / divider -
172 (1 << (vshift - xshift));
173
174 /* if (bpp == 0)
175 dsp_on = ((multiplier * 20 << vshift) + divider) / divider;
176 else */
177 {
178 dsp_on = ((multiplier << vshift) + divider) / divider;
179 tmp = ((ras_multiplier << xshift) + ras_divider) / ras_divider;
180 if (dsp_on < tmp)
181 dsp_on = tmp;
182 dsp_on = dsp_on + (tmp * 2) + (pll->xclkpagefaultdelay << xshift);
183 }
184
185 /* Calculate rounding factor and apply it to dsp_on */
186 tmp = ((1 << (Maximum_DSP_PRECISION - dsp_precision)) - 1) >> 1;
187 dsp_on = ((dsp_on + tmp) / (tmp + 1)) * (tmp + 1);
188
189 if (dsp_on >= ((dsp_off / (tmp + 1)) * (tmp + 1))) {
190 dsp_on = dsp_off - (multiplier << vshift) / divider;
191 dsp_on = (dsp_on / (tmp + 1)) * (tmp + 1);
192 }
193
194 /* Last but not least: dsp_xclks */
195 dsp_xclks = ((multiplier << (vshift + 5)) + divider) / divider;
196
197 /* Get register values. */
198 pll->dsp_on_off = (dsp_on << 16) + dsp_off;
199 pll->dsp_config = (dsp_precision << 20) | (pll->dsp_loop_latency << 16) | dsp_xclks;
200 #ifdef DEBUG
201 printk("atyfb(%s): dsp_config 0x%08x, dsp_on_off 0x%08x\n",
202 __func__, pll->dsp_config, pll->dsp_on_off);
203 #endif
204 return 0;
205 }
206
aty_valid_pll_ct(const struct fb_info * info,u32 vclk_per,struct pll_ct * pll)207 static int aty_valid_pll_ct(const struct fb_info *info, u32 vclk_per, struct pll_ct *pll)
208 {
209 u32 q;
210 struct atyfb_par *par = (struct atyfb_par *) info->par;
211 int pllvclk;
212
213 /* FIXME: use the VTB/GTB /{3,6,12} post dividers if they're better suited */
214 q = par->ref_clk_per * pll->pll_ref_div * 4 / vclk_per;
215 if (q < 16*8 || q > 255*8) {
216 printk(KERN_CRIT "atyfb: vclk out of range\n");
217 return -EINVAL;
218 } else {
219 pll->vclk_post_div = (q < 128*8);
220 pll->vclk_post_div += (q < 64*8);
221 pll->vclk_post_div += (q < 32*8);
222 }
223 pll->vclk_post_div_real = aty_postdividers[pll->vclk_post_div];
224 // pll->vclk_post_div <<= 6;
225 pll->vclk_fb_div = q * pll->vclk_post_div_real / 8;
226 pllvclk = (1000000 * 2 * pll->vclk_fb_div) /
227 (par->ref_clk_per * pll->pll_ref_div);
228 #ifdef DEBUG
229 printk("atyfb(%s): pllvclk=%d MHz, vclk=%d MHz\n",
230 __func__, pllvclk, pllvclk / pll->vclk_post_div_real);
231 #endif
232 pll->pll_vclk_cntl = 0x03; /* VCLK = PLL_VCLK/VCLKx_POST */
233
234 /* Set ECP (scaler/overlay clock) divider */
235 if (par->pll_limits.ecp_max) {
236 int ecp = pllvclk / pll->vclk_post_div_real;
237 int ecp_div = 0;
238
239 while (ecp > par->pll_limits.ecp_max && ecp_div < 2) {
240 ecp >>= 1;
241 ecp_div++;
242 }
243 pll->pll_vclk_cntl |= ecp_div << 4;
244 }
245
246 return 0;
247 }
248
aty_var_to_pll_ct(const struct fb_info * info,u32 vclk_per,u32 bpp,union aty_pll * pll)249 static int aty_var_to_pll_ct(const struct fb_info *info, u32 vclk_per, u32 bpp, union aty_pll *pll)
250 {
251 struct atyfb_par *par = (struct atyfb_par *) info->par;
252 int err;
253
254 if ((err = aty_valid_pll_ct(info, vclk_per, &pll->ct)))
255 return err;
256 if (M64_HAS(GTB_DSP) && (err = aty_dsp_gt(info, bpp, &pll->ct)))
257 return err;
258 /*aty_calc_pll_ct(info, &pll->ct);*/
259 return 0;
260 }
261
aty_pll_to_var_ct(const struct fb_info * info,const union aty_pll * pll)262 static u32 aty_pll_to_var_ct(const struct fb_info *info, const union aty_pll *pll)
263 {
264 struct atyfb_par *par = (struct atyfb_par *) info->par;
265 u32 ret;
266 ret = par->ref_clk_per * pll->ct.pll_ref_div * pll->ct.vclk_post_div_real / pll->ct.vclk_fb_div / 2;
267 #ifdef CONFIG_FB_ATY_GENERIC_LCD
268 if(pll->ct.xres > 0) {
269 ret *= par->lcd_width;
270 ret /= pll->ct.xres;
271 }
272 #endif
273 #ifdef DEBUG
274 printk("atyfb(%s): calculated 0x%08X(%i)\n", __func__, ret, ret);
275 #endif
276 return ret;
277 }
278
aty_set_pll_ct(const struct fb_info * info,const union aty_pll * pll)279 void aty_set_pll_ct(const struct fb_info *info, const union aty_pll *pll)
280 {
281 struct atyfb_par *par = (struct atyfb_par *) info->par;
282 u32 crtc_gen_cntl;
283 u8 tmp, tmp2;
284
285 #ifdef CONFIG_FB_ATY_GENERIC_LCD
286 u32 lcd_gen_cntrl = 0;
287 #endif
288
289 #ifdef DEBUG
290 printk("atyfb(%s): about to program:\n"
291 "pll_ext_cntl=0x%02x pll_gen_cntl=0x%02x pll_vclk_cntl=0x%02x\n",
292 __func__,
293 pll->ct.pll_ext_cntl, pll->ct.pll_gen_cntl, pll->ct.pll_vclk_cntl);
294
295 printk("atyfb(%s): setting clock %lu for FeedBackDivider %i, ReferenceDivider %i, PostDivider %i(%i)\n",
296 __func__,
297 par->clk_wr_offset, pll->ct.vclk_fb_div,
298 pll->ct.pll_ref_div, pll->ct.vclk_post_div, pll->ct.vclk_post_div_real);
299 #endif
300 #ifdef CONFIG_FB_ATY_GENERIC_LCD
301 if (par->lcd_table != 0) {
302 /* turn off LCD */
303 lcd_gen_cntrl = aty_ld_lcd(LCD_GEN_CNTL, par);
304 aty_st_lcd(LCD_GEN_CNTL, lcd_gen_cntrl & ~LCD_ON, par);
305 }
306 #endif
307 aty_st_8(CLOCK_CNTL, par->clk_wr_offset | CLOCK_STROBE, par);
308
309 /* Temporarily switch to accelerator mode */
310 crtc_gen_cntl = aty_ld_le32(CRTC_GEN_CNTL, par);
311 if (!(crtc_gen_cntl & CRTC_EXT_DISP_EN))
312 aty_st_le32(CRTC_GEN_CNTL, crtc_gen_cntl | CRTC_EXT_DISP_EN, par);
313
314 /* Reset VCLK generator */
315 aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl, par);
316
317 /* Set post-divider */
318 tmp2 = par->clk_wr_offset << 1;
319 tmp = aty_ld_pll_ct(VCLK_POST_DIV, par);
320 tmp &= ~(0x03U << tmp2);
321 tmp |= ((pll->ct.vclk_post_div & 0x03U) << tmp2);
322 aty_st_pll_ct(VCLK_POST_DIV, tmp, par);
323
324 /* Set extended post-divider */
325 tmp = aty_ld_pll_ct(PLL_EXT_CNTL, par);
326 tmp &= ~(0x10U << par->clk_wr_offset);
327 tmp &= 0xF0U;
328 tmp |= pll->ct.pll_ext_cntl;
329 aty_st_pll_ct(PLL_EXT_CNTL, tmp, par);
330
331 /* Set feedback divider */
332 tmp = VCLK0_FB_DIV + par->clk_wr_offset;
333 aty_st_pll_ct(tmp, (pll->ct.vclk_fb_div & 0xFFU), par);
334
335 aty_st_pll_ct(PLL_GEN_CNTL, (pll->ct.pll_gen_cntl & (~(PLL_OVERRIDE | PLL_MCLK_RST))) | OSC_EN, par);
336
337 /* End VCLK generator reset */
338 aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl & ~(PLL_VCLK_RST), par);
339 mdelay(5);
340
341 aty_st_pll_ct(PLL_GEN_CNTL, pll->ct.pll_gen_cntl, par);
342 aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl, par);
343 mdelay(1);
344
345 /* Restore mode register */
346 if (!(crtc_gen_cntl & CRTC_EXT_DISP_EN))
347 aty_st_le32(CRTC_GEN_CNTL, crtc_gen_cntl, par);
348
349 if (M64_HAS(GTB_DSP)) {
350 u8 dll_cntl;
351
352 if (M64_HAS(XL_DLL))
353 dll_cntl = 0x80;
354 else if (par->ram_type >= SDRAM)
355 dll_cntl = 0xa6;
356 else
357 dll_cntl = 0xa0;
358 aty_st_pll_ct(DLL_CNTL, dll_cntl, par);
359 aty_st_pll_ct(VFC_CNTL, 0x1b, par);
360 aty_st_le32(DSP_CONFIG, pll->ct.dsp_config, par);
361 aty_st_le32(DSP_ON_OFF, pll->ct.dsp_on_off, par);
362
363 mdelay(10);
364 aty_st_pll_ct(DLL_CNTL, dll_cntl, par);
365 mdelay(10);
366 aty_st_pll_ct(DLL_CNTL, dll_cntl | 0x40, par);
367 mdelay(10);
368 aty_st_pll_ct(DLL_CNTL, dll_cntl & ~0x40, par);
369 }
370 #ifdef CONFIG_FB_ATY_GENERIC_LCD
371 if (par->lcd_table != 0) {
372 /* restore LCD */
373 aty_st_lcd(LCD_GEN_CNTL, lcd_gen_cntrl, par);
374 }
375 #endif
376 }
377
aty_get_pll_ct(const struct fb_info * info,union aty_pll * pll)378 static void aty_get_pll_ct(const struct fb_info *info, union aty_pll *pll)
379 {
380 struct atyfb_par *par = (struct atyfb_par *) info->par;
381 u8 tmp, clock;
382
383 clock = aty_ld_8(CLOCK_CNTL, par) & 0x03U;
384 tmp = clock << 1;
385 pll->ct.vclk_post_div = (aty_ld_pll_ct(VCLK_POST_DIV, par) >> tmp) & 0x03U;
386
387 pll->ct.pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par) & 0x0FU;
388 pll->ct.vclk_fb_div = aty_ld_pll_ct(VCLK0_FB_DIV + clock, par) & 0xFFU;
389 pll->ct.pll_ref_div = aty_ld_pll_ct(PLL_REF_DIV, par);
390 pll->ct.mclk_fb_div = aty_ld_pll_ct(MCLK_FB_DIV, par);
391
392 pll->ct.pll_gen_cntl = aty_ld_pll_ct(PLL_GEN_CNTL, par);
393 pll->ct.pll_vclk_cntl = aty_ld_pll_ct(PLL_VCLK_CNTL, par);
394
395 if (M64_HAS(GTB_DSP)) {
396 pll->ct.dsp_config = aty_ld_le32(DSP_CONFIG, par);
397 pll->ct.dsp_on_off = aty_ld_le32(DSP_ON_OFF, par);
398 }
399 }
400
aty_init_pll_ct(const struct fb_info * info,union aty_pll * pll)401 static int aty_init_pll_ct(const struct fb_info *info, union aty_pll *pll)
402 {
403 struct atyfb_par *par = (struct atyfb_par *) info->par;
404 u8 mpost_div, xpost_div, sclk_post_div_real;
405 u32 q, memcntl, trp;
406 u32 dsp_config;
407 #ifdef DEBUG
408 int pllmclk, pllsclk;
409 #endif
410 pll->ct.pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par);
411 pll->ct.xclk_post_div = pll->ct.pll_ext_cntl & 0x07;
412 pll->ct.xclk_ref_div = 1;
413 switch (pll->ct.xclk_post_div) {
414 case 0: case 1: case 2: case 3:
415 break;
416
417 case 4:
418 pll->ct.xclk_ref_div = 3;
419 pll->ct.xclk_post_div = 0;
420 break;
421
422 default:
423 printk(KERN_CRIT "atyfb: Unsupported xclk source: %d.\n", pll->ct.xclk_post_div);
424 return -EINVAL;
425 }
426 pll->ct.mclk_fb_mult = 2;
427 if(pll->ct.pll_ext_cntl & PLL_MFB_TIMES_4_2B) {
428 pll->ct.mclk_fb_mult = 4;
429 pll->ct.xclk_post_div -= 1;
430 }
431
432 #ifdef DEBUG
433 printk("atyfb(%s): mclk_fb_mult=%d, xclk_post_div=%d\n",
434 __func__, pll->ct.mclk_fb_mult, pll->ct.xclk_post_div);
435 #endif
436
437 memcntl = aty_ld_le32(MEM_CNTL, par);
438 trp = (memcntl & 0x300) >> 8;
439
440 pll->ct.xclkpagefaultdelay = ((memcntl & 0xc00) >> 10) + ((memcntl & 0x1000) >> 12) + trp + 2;
441 pll->ct.xclkmaxrasdelay = ((memcntl & 0x70000) >> 16) + trp + 2;
442
443 if (M64_HAS(FIFO_32)) {
444 pll->ct.fifo_size = 32;
445 } else {
446 pll->ct.fifo_size = 24;
447 pll->ct.xclkpagefaultdelay += 2;
448 pll->ct.xclkmaxrasdelay += 3;
449 }
450
451 switch (par->ram_type) {
452 case DRAM:
453 if (info->fix.smem_len<=ONE_MB) {
454 pll->ct.dsp_loop_latency = 10;
455 } else {
456 pll->ct.dsp_loop_latency = 8;
457 pll->ct.xclkpagefaultdelay += 2;
458 }
459 break;
460 case EDO:
461 case PSEUDO_EDO:
462 if (info->fix.smem_len<=ONE_MB) {
463 pll->ct.dsp_loop_latency = 9;
464 } else {
465 pll->ct.dsp_loop_latency = 8;
466 pll->ct.xclkpagefaultdelay += 1;
467 }
468 break;
469 case SDRAM:
470 if (info->fix.smem_len<=ONE_MB) {
471 pll->ct.dsp_loop_latency = 11;
472 } else {
473 pll->ct.dsp_loop_latency = 10;
474 pll->ct.xclkpagefaultdelay += 1;
475 }
476 break;
477 case SGRAM:
478 pll->ct.dsp_loop_latency = 8;
479 pll->ct.xclkpagefaultdelay += 3;
480 break;
481 default:
482 pll->ct.dsp_loop_latency = 11;
483 pll->ct.xclkpagefaultdelay += 3;
484 break;
485 }
486
487 if (pll->ct.xclkmaxrasdelay <= pll->ct.xclkpagefaultdelay)
488 pll->ct.xclkmaxrasdelay = pll->ct.xclkpagefaultdelay + 1;
489
490 /* Allow BIOS to override */
491 dsp_config = aty_ld_le32(DSP_CONFIG, par);
492 aty_ld_le32(DSP_ON_OFF, par);
493 aty_ld_le32(VGA_DSP_CONFIG, par);
494 aty_ld_le32(VGA_DSP_ON_OFF, par);
495
496 if (dsp_config)
497 pll->ct.dsp_loop_latency = (dsp_config & DSP_LOOP_LATENCY) >> 16;
498 #if 0
499 FIXME: is it relevant for us?
500 if ((!dsp_on_off && !M64_HAS(RESET_3D)) ||
501 ((dsp_on_off == vga_dsp_on_off) &&
502 (!dsp_config || !((dsp_config ^ vga_dsp_config) & DSP_XCLKS_PER_QW)))) {
503 vga_dsp_on_off &= VGA_DSP_OFF;
504 vga_dsp_config &= VGA_DSP_XCLKS_PER_QW;
505 if (ATIDivide(vga_dsp_on_off, vga_dsp_config, 5, 1) > 24)
506 pll->ct.fifo_size = 32;
507 else
508 pll->ct.fifo_size = 24;
509 }
510 #endif
511 /* Exit if the user does not want us to tamper with the clock
512 rates of her chip. */
513 if (par->mclk_per == 0) {
514 u8 mclk_fb_div, pll_ext_cntl;
515 pll->ct.pll_ref_div = aty_ld_pll_ct(PLL_REF_DIV, par);
516 pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par);
517 pll->ct.xclk_post_div_real = aty_postdividers[pll_ext_cntl & 0x07];
518 mclk_fb_div = aty_ld_pll_ct(MCLK_FB_DIV, par);
519 if (pll_ext_cntl & PLL_MFB_TIMES_4_2B)
520 mclk_fb_div <<= 1;
521 pll->ct.mclk_fb_div = mclk_fb_div;
522 return 0;
523 }
524
525 pll->ct.pll_ref_div = par->pll_per * 2 * 255 / par->ref_clk_per;
526
527 /* FIXME: use the VTB/GTB /3 post divider if it's better suited */
528 q = par->ref_clk_per * pll->ct.pll_ref_div * 8 /
529 (pll->ct.mclk_fb_mult * par->xclk_per);
530
531 if (q < 16*8 || q > 255*8) {
532 printk(KERN_CRIT "atxfb: xclk out of range\n");
533 return -EINVAL;
534 } else {
535 xpost_div = (q < 128*8);
536 xpost_div += (q < 64*8);
537 xpost_div += (q < 32*8);
538 }
539 pll->ct.xclk_post_div_real = aty_postdividers[xpost_div];
540 pll->ct.mclk_fb_div = q * pll->ct.xclk_post_div_real / 8;
541
542 #ifdef CONFIG_PPC
543 if (machine_is(powermac)) {
544 /* Override PLL_EXT_CNTL & 0x07. */
545 pll->ct.xclk_post_div = xpost_div;
546 pll->ct.xclk_ref_div = 1;
547 }
548 #endif
549
550 #ifdef DEBUG
551 pllmclk = (1000000 * pll->ct.mclk_fb_mult * pll->ct.mclk_fb_div) /
552 (par->ref_clk_per * pll->ct.pll_ref_div);
553 printk("atyfb(%s): pllmclk=%d MHz, xclk=%d MHz\n",
554 __func__, pllmclk, pllmclk / pll->ct.xclk_post_div_real);
555 #endif
556
557 if (M64_HAS(SDRAM_MAGIC_PLL) && (par->ram_type >= SDRAM))
558 pll->ct.pll_gen_cntl = OSC_EN;
559 else
560 pll->ct.pll_gen_cntl = OSC_EN | DLL_PWDN /* | FORCE_DCLK_TRI_STATE */;
561
562 if (M64_HAS(MAGIC_POSTDIV))
563 pll->ct.pll_ext_cntl = 0;
564 else
565 pll->ct.pll_ext_cntl = xpost_div;
566
567 if (pll->ct.mclk_fb_mult == 4)
568 pll->ct.pll_ext_cntl |= PLL_MFB_TIMES_4_2B;
569
570 if (par->mclk_per == par->xclk_per) {
571 pll->ct.pll_gen_cntl |= (xpost_div << 4); /* mclk == xclk */
572 } else {
573 /*
574 * The chip clock is not equal to the memory clock.
575 * Therefore we will use sclk to clock the chip.
576 */
577 pll->ct.pll_gen_cntl |= (6 << 4); /* mclk == sclk */
578
579 q = par->ref_clk_per * pll->ct.pll_ref_div * 4 / par->mclk_per;
580 if (q < 16*8 || q > 255*8) {
581 printk(KERN_CRIT "atyfb: mclk out of range\n");
582 return -EINVAL;
583 } else {
584 mpost_div = (q < 128*8);
585 mpost_div += (q < 64*8);
586 mpost_div += (q < 32*8);
587 }
588 sclk_post_div_real = aty_postdividers[mpost_div];
589 pll->ct.sclk_fb_div = q * sclk_post_div_real / 8;
590 pll->ct.spll_cntl2 = mpost_div << 4;
591 #ifdef DEBUG
592 pllsclk = (1000000 * 2 * pll->ct.sclk_fb_div) /
593 (par->ref_clk_per * pll->ct.pll_ref_div);
594 printk("atyfb(%s): use sclk, pllsclk=%d MHz, sclk=mclk=%d MHz\n",
595 __func__, pllsclk, pllsclk / sclk_post_div_real);
596 #endif
597 }
598
599 /* Disable the extra precision pixel clock controls since we do not use them. */
600 pll->ct.ext_vpll_cntl = aty_ld_pll_ct(EXT_VPLL_CNTL, par);
601 pll->ct.ext_vpll_cntl &= ~(EXT_VPLL_EN | EXT_VPLL_VGA_EN | EXT_VPLL_INSYNC);
602
603 return 0;
604 }
605
aty_resume_pll_ct(const struct fb_info * info,union aty_pll * pll)606 static void aty_resume_pll_ct(const struct fb_info *info,
607 union aty_pll *pll)
608 {
609 struct atyfb_par *par = info->par;
610
611 if (par->mclk_per != par->xclk_per) {
612 /*
613 * This disables the sclk, crashes the computer as reported:
614 * aty_st_pll_ct(SPLL_CNTL2, 3, info);
615 *
616 * So it seems the sclk must be enabled before it is used;
617 * so PLL_GEN_CNTL must be programmed *after* the sclk.
618 */
619 aty_st_pll_ct(SCLK_FB_DIV, pll->ct.sclk_fb_div, par);
620 aty_st_pll_ct(SPLL_CNTL2, pll->ct.spll_cntl2, par);
621 /*
622 * SCLK has been started. Wait for the PLL to lock. 5 ms
623 * should be enough according to mach64 programmer's guide.
624 */
625 mdelay(5);
626 }
627
628 aty_st_pll_ct(PLL_REF_DIV, pll->ct.pll_ref_div, par);
629 aty_st_pll_ct(PLL_GEN_CNTL, pll->ct.pll_gen_cntl, par);
630 aty_st_pll_ct(MCLK_FB_DIV, pll->ct.mclk_fb_div, par);
631 aty_st_pll_ct(PLL_EXT_CNTL, pll->ct.pll_ext_cntl, par);
632 aty_st_pll_ct(EXT_VPLL_CNTL, pll->ct.ext_vpll_cntl, par);
633 }
634
dummy(void)635 static int dummy(void)
636 {
637 return 0;
638 }
639
640 const struct aty_dac_ops aty_dac_ct = {
641 .set_dac = (void *) dummy,
642 };
643
644 const struct aty_pll_ops aty_pll_ct = {
645 .var_to_pll = aty_var_to_pll_ct,
646 .pll_to_var = aty_pll_to_var_ct,
647 .set_pll = aty_set_pll_ct,
648 .get_pll = aty_get_pll_ct,
649 .init_pll = aty_init_pll_ct,
650 .resume_pll = aty_resume_pll_ct,
651 };
652