1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (C) 2007 Oracle.  All rights reserved.
4   */
5  
6  #include <linux/err.h>
7  #include <linux/uuid.h>
8  #include "ctree.h"
9  #include "fs.h"
10  #include "messages.h"
11  #include "transaction.h"
12  #include "disk-io.h"
13  #include "print-tree.h"
14  #include "qgroup.h"
15  #include "space-info.h"
16  #include "accessors.h"
17  #include "root-tree.h"
18  #include "orphan.h"
19  
20  /*
21   * Read a root item from the tree. In case we detect a root item smaller then
22   * sizeof(root_item), we know it's an old version of the root structure and
23   * initialize all new fields to zero. The same happens if we detect mismatching
24   * generation numbers as then we know the root was once mounted with an older
25   * kernel that was not aware of the root item structure change.
26   */
btrfs_read_root_item(struct extent_buffer * eb,int slot,struct btrfs_root_item * item)27  static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
28  				struct btrfs_root_item *item)
29  {
30  	u32 len;
31  	int need_reset = 0;
32  
33  	len = btrfs_item_size(eb, slot);
34  	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
35  			   min_t(u32, len, sizeof(*item)));
36  	if (len < sizeof(*item))
37  		need_reset = 1;
38  	if (!need_reset && btrfs_root_generation(item)
39  		!= btrfs_root_generation_v2(item)) {
40  		if (btrfs_root_generation_v2(item) != 0) {
41  			btrfs_warn(eb->fs_info,
42  					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
43  		}
44  		need_reset = 1;
45  	}
46  	if (need_reset) {
47  		/* Clear all members from generation_v2 onwards. */
48  		memset_startat(item, 0, generation_v2);
49  		generate_random_guid(item->uuid);
50  	}
51  }
52  
53  /*
54   * btrfs_find_root - lookup the root by the key.
55   * root: the root of the root tree
56   * search_key: the key to search
57   * path: the path we search
58   * root_item: the root item of the tree we look for
59   * root_key: the root key of the tree we look for
60   *
61   * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
62   * of the search key, just lookup the root with the highest offset for a
63   * given objectid.
64   *
65   * If we find something return 0, otherwise > 0, < 0 on error.
66   */
btrfs_find_root(struct btrfs_root * root,const struct btrfs_key * search_key,struct btrfs_path * path,struct btrfs_root_item * root_item,struct btrfs_key * root_key)67  int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
68  		    struct btrfs_path *path, struct btrfs_root_item *root_item,
69  		    struct btrfs_key *root_key)
70  {
71  	struct btrfs_key found_key;
72  	struct extent_buffer *l;
73  	int ret;
74  	int slot;
75  
76  	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
77  	if (ret < 0)
78  		return ret;
79  
80  	if (search_key->offset != -1ULL) {	/* the search key is exact */
81  		if (ret > 0)
82  			goto out;
83  	} else {
84  		BUG_ON(ret == 0);		/* Logical error */
85  		if (path->slots[0] == 0)
86  			goto out;
87  		path->slots[0]--;
88  		ret = 0;
89  	}
90  
91  	l = path->nodes[0];
92  	slot = path->slots[0];
93  
94  	btrfs_item_key_to_cpu(l, &found_key, slot);
95  	if (found_key.objectid != search_key->objectid ||
96  	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
97  		ret = 1;
98  		goto out;
99  	}
100  
101  	if (root_item)
102  		btrfs_read_root_item(l, slot, root_item);
103  	if (root_key)
104  		memcpy(root_key, &found_key, sizeof(found_key));
105  out:
106  	btrfs_release_path(path);
107  	return ret;
108  }
109  
btrfs_set_root_node(struct btrfs_root_item * item,struct extent_buffer * node)110  void btrfs_set_root_node(struct btrfs_root_item *item,
111  			 struct extent_buffer *node)
112  {
113  	btrfs_set_root_bytenr(item, node->start);
114  	btrfs_set_root_level(item, btrfs_header_level(node));
115  	btrfs_set_root_generation(item, btrfs_header_generation(node));
116  }
117  
118  /*
119   * copy the data in 'item' into the btree
120   */
btrfs_update_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_key * key,struct btrfs_root_item * item)121  int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
122  		      *root, struct btrfs_key *key, struct btrfs_root_item
123  		      *item)
124  {
125  	struct btrfs_fs_info *fs_info = root->fs_info;
126  	struct btrfs_path *path;
127  	struct extent_buffer *l;
128  	int ret;
129  	int slot;
130  	unsigned long ptr;
131  	u32 old_len;
132  
133  	path = btrfs_alloc_path();
134  	if (!path)
135  		return -ENOMEM;
136  
137  	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
138  	if (ret < 0)
139  		goto out;
140  
141  	if (ret > 0) {
142  		btrfs_crit(fs_info,
143  			"unable to find root key (%llu %u %llu) in tree %llu",
144  			key->objectid, key->type, key->offset,
145  			root->root_key.objectid);
146  		ret = -EUCLEAN;
147  		btrfs_abort_transaction(trans, ret);
148  		goto out;
149  	}
150  
151  	l = path->nodes[0];
152  	slot = path->slots[0];
153  	ptr = btrfs_item_ptr_offset(l, slot);
154  	old_len = btrfs_item_size(l, slot);
155  
156  	/*
157  	 * If this is the first time we update the root item which originated
158  	 * from an older kernel, we need to enlarge the item size to make room
159  	 * for the added fields.
160  	 */
161  	if (old_len < sizeof(*item)) {
162  		btrfs_release_path(path);
163  		ret = btrfs_search_slot(trans, root, key, path,
164  				-1, 1);
165  		if (ret < 0) {
166  			btrfs_abort_transaction(trans, ret);
167  			goto out;
168  		}
169  
170  		ret = btrfs_del_item(trans, root, path);
171  		if (ret < 0) {
172  			btrfs_abort_transaction(trans, ret);
173  			goto out;
174  		}
175  		btrfs_release_path(path);
176  		ret = btrfs_insert_empty_item(trans, root, path,
177  				key, sizeof(*item));
178  		if (ret < 0) {
179  			btrfs_abort_transaction(trans, ret);
180  			goto out;
181  		}
182  		l = path->nodes[0];
183  		slot = path->slots[0];
184  		ptr = btrfs_item_ptr_offset(l, slot);
185  	}
186  
187  	/*
188  	 * Update generation_v2 so at the next mount we know the new root
189  	 * fields are valid.
190  	 */
191  	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
192  
193  	write_extent_buffer(l, item, ptr, sizeof(*item));
194  	btrfs_mark_buffer_dirty(path->nodes[0]);
195  out:
196  	btrfs_free_path(path);
197  	return ret;
198  }
199  
btrfs_insert_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_root_item * item)200  int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
201  		      const struct btrfs_key *key, struct btrfs_root_item *item)
202  {
203  	/*
204  	 * Make sure generation v1 and v2 match. See update_root for details.
205  	 */
206  	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
207  	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
208  }
209  
btrfs_find_orphan_roots(struct btrfs_fs_info * fs_info)210  int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
211  {
212  	struct btrfs_root *tree_root = fs_info->tree_root;
213  	struct extent_buffer *leaf;
214  	struct btrfs_path *path;
215  	struct btrfs_key key;
216  	struct btrfs_root *root;
217  	int err = 0;
218  	int ret;
219  
220  	path = btrfs_alloc_path();
221  	if (!path)
222  		return -ENOMEM;
223  
224  	key.objectid = BTRFS_ORPHAN_OBJECTID;
225  	key.type = BTRFS_ORPHAN_ITEM_KEY;
226  	key.offset = 0;
227  
228  	while (1) {
229  		u64 root_objectid;
230  
231  		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
232  		if (ret < 0) {
233  			err = ret;
234  			break;
235  		}
236  
237  		leaf = path->nodes[0];
238  		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
239  			ret = btrfs_next_leaf(tree_root, path);
240  			if (ret < 0)
241  				err = ret;
242  			if (ret != 0)
243  				break;
244  			leaf = path->nodes[0];
245  		}
246  
247  		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
248  		btrfs_release_path(path);
249  
250  		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
251  		    key.type != BTRFS_ORPHAN_ITEM_KEY)
252  			break;
253  
254  		root_objectid = key.offset;
255  		key.offset++;
256  
257  		root = btrfs_get_fs_root(fs_info, root_objectid, false);
258  		err = PTR_ERR_OR_ZERO(root);
259  		if (err && err != -ENOENT) {
260  			break;
261  		} else if (err == -ENOENT) {
262  			struct btrfs_trans_handle *trans;
263  
264  			btrfs_release_path(path);
265  
266  			trans = btrfs_join_transaction(tree_root);
267  			if (IS_ERR(trans)) {
268  				err = PTR_ERR(trans);
269  				btrfs_handle_fs_error(fs_info, err,
270  					    "Failed to start trans to delete orphan item");
271  				break;
272  			}
273  			err = btrfs_del_orphan_item(trans, tree_root,
274  						    root_objectid);
275  			btrfs_end_transaction(trans);
276  			if (err) {
277  				btrfs_handle_fs_error(fs_info, err,
278  					    "Failed to delete root orphan item");
279  				break;
280  			}
281  			continue;
282  		}
283  
284  		WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state));
285  		if (btrfs_root_refs(&root->root_item) == 0) {
286  			struct btrfs_key drop_key;
287  
288  			btrfs_disk_key_to_cpu(&drop_key, &root->root_item.drop_progress);
289  			/*
290  			 * If we have a non-zero drop_progress then we know we
291  			 * made it partly through deleting this snapshot, and
292  			 * thus we need to make sure we block any balance from
293  			 * happening until this snapshot is completely dropped.
294  			 */
295  			if (drop_key.objectid != 0 || drop_key.type != 0 ||
296  			    drop_key.offset != 0) {
297  				set_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
298  				set_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
299  			}
300  
301  			set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
302  			btrfs_add_dead_root(root);
303  		}
304  		btrfs_put_root(root);
305  	}
306  
307  	btrfs_free_path(path);
308  	return err;
309  }
310  
311  /* drop the root item for 'key' from the tree root */
btrfs_del_root(struct btrfs_trans_handle * trans,const struct btrfs_key * key)312  int btrfs_del_root(struct btrfs_trans_handle *trans,
313  		   const struct btrfs_key *key)
314  {
315  	struct btrfs_root *root = trans->fs_info->tree_root;
316  	struct btrfs_path *path;
317  	int ret;
318  
319  	path = btrfs_alloc_path();
320  	if (!path)
321  		return -ENOMEM;
322  	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
323  	if (ret < 0)
324  		goto out;
325  
326  	BUG_ON(ret != 0);
327  
328  	ret = btrfs_del_item(trans, root, path);
329  out:
330  	btrfs_free_path(path);
331  	return ret;
332  }
333  
btrfs_del_root_ref(struct btrfs_trans_handle * trans,u64 root_id,u64 ref_id,u64 dirid,u64 * sequence,const struct fscrypt_str * name)334  int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
335  		       u64 ref_id, u64 dirid, u64 *sequence,
336  		       const struct fscrypt_str *name)
337  {
338  	struct btrfs_root *tree_root = trans->fs_info->tree_root;
339  	struct btrfs_path *path;
340  	struct btrfs_root_ref *ref;
341  	struct extent_buffer *leaf;
342  	struct btrfs_key key;
343  	unsigned long ptr;
344  	int ret;
345  
346  	path = btrfs_alloc_path();
347  	if (!path)
348  		return -ENOMEM;
349  
350  	key.objectid = root_id;
351  	key.type = BTRFS_ROOT_BACKREF_KEY;
352  	key.offset = ref_id;
353  again:
354  	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
355  	if (ret < 0) {
356  		goto out;
357  	} else if (ret == 0) {
358  		leaf = path->nodes[0];
359  		ref = btrfs_item_ptr(leaf, path->slots[0],
360  				     struct btrfs_root_ref);
361  		ptr = (unsigned long)(ref + 1);
362  		if ((btrfs_root_ref_dirid(leaf, ref) != dirid) ||
363  		    (btrfs_root_ref_name_len(leaf, ref) != name->len) ||
364  		    memcmp_extent_buffer(leaf, name->name, ptr, name->len)) {
365  			ret = -ENOENT;
366  			goto out;
367  		}
368  		*sequence = btrfs_root_ref_sequence(leaf, ref);
369  
370  		ret = btrfs_del_item(trans, tree_root, path);
371  		if (ret)
372  			goto out;
373  	} else {
374  		ret = -ENOENT;
375  		goto out;
376  	}
377  
378  	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
379  		btrfs_release_path(path);
380  		key.objectid = ref_id;
381  		key.type = BTRFS_ROOT_REF_KEY;
382  		key.offset = root_id;
383  		goto again;
384  	}
385  
386  out:
387  	btrfs_free_path(path);
388  	return ret;
389  }
390  
391  /*
392   * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
393   * or BTRFS_ROOT_BACKREF_KEY.
394   *
395   * The dirid, sequence, name and name_len refer to the directory entry
396   * that is referencing the root.
397   *
398   * For a forward ref, the root_id is the id of the tree referencing
399   * the root and ref_id is the id of the subvol  or snapshot.
400   *
401   * For a back ref the root_id is the id of the subvol or snapshot and
402   * ref_id is the id of the tree referencing it.
403   *
404   * Will return 0, -ENOMEM, or anything from the CoW path
405   */
btrfs_add_root_ref(struct btrfs_trans_handle * trans,u64 root_id,u64 ref_id,u64 dirid,u64 sequence,const struct fscrypt_str * name)406  int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
407  		       u64 ref_id, u64 dirid, u64 sequence,
408  		       const struct fscrypt_str *name)
409  {
410  	struct btrfs_root *tree_root = trans->fs_info->tree_root;
411  	struct btrfs_key key;
412  	int ret;
413  	struct btrfs_path *path;
414  	struct btrfs_root_ref *ref;
415  	struct extent_buffer *leaf;
416  	unsigned long ptr;
417  
418  	path = btrfs_alloc_path();
419  	if (!path)
420  		return -ENOMEM;
421  
422  	key.objectid = root_id;
423  	key.type = BTRFS_ROOT_BACKREF_KEY;
424  	key.offset = ref_id;
425  again:
426  	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
427  				      sizeof(*ref) + name->len);
428  	if (ret) {
429  		btrfs_abort_transaction(trans, ret);
430  		btrfs_free_path(path);
431  		return ret;
432  	}
433  
434  	leaf = path->nodes[0];
435  	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
436  	btrfs_set_root_ref_dirid(leaf, ref, dirid);
437  	btrfs_set_root_ref_sequence(leaf, ref, sequence);
438  	btrfs_set_root_ref_name_len(leaf, ref, name->len);
439  	ptr = (unsigned long)(ref + 1);
440  	write_extent_buffer(leaf, name->name, ptr, name->len);
441  	btrfs_mark_buffer_dirty(leaf);
442  
443  	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
444  		btrfs_release_path(path);
445  		key.objectid = ref_id;
446  		key.type = BTRFS_ROOT_REF_KEY;
447  		key.offset = root_id;
448  		goto again;
449  	}
450  
451  	btrfs_free_path(path);
452  	return 0;
453  }
454  
455  /*
456   * Old btrfs forgets to init root_item->flags and root_item->byte_limit
457   * for subvolumes. To work around this problem, we steal a bit from
458   * root_item->inode_item->flags, and use it to indicate if those fields
459   * have been properly initialized.
460   */
btrfs_check_and_init_root_item(struct btrfs_root_item * root_item)461  void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
462  {
463  	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
464  
465  	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
466  		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
467  		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
468  		btrfs_set_root_flags(root_item, 0);
469  		btrfs_set_root_limit(root_item, 0);
470  	}
471  }
472  
btrfs_update_root_times(struct btrfs_trans_handle * trans,struct btrfs_root * root)473  void btrfs_update_root_times(struct btrfs_trans_handle *trans,
474  			     struct btrfs_root *root)
475  {
476  	struct btrfs_root_item *item = &root->root_item;
477  	struct timespec64 ct;
478  
479  	ktime_get_real_ts64(&ct);
480  	spin_lock(&root->root_item_lock);
481  	btrfs_set_root_ctransid(item, trans->transid);
482  	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
483  	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
484  	spin_unlock(&root->root_item_lock);
485  }
486  
487  /*
488   * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
489   * root: the root of the parent directory
490   * rsv: block reservation
491   * items: the number of items that we need do reservation
492   * use_global_rsv: allow fallback to the global block reservation
493   *
494   * This function is used to reserve the space for snapshot/subvolume
495   * creation and deletion. Those operations are different with the
496   * common file/directory operations, they change two fs/file trees
497   * and root tree, the number of items that the qgroup reserves is
498   * different with the free space reservation. So we can not use
499   * the space reservation mechanism in start_transaction().
500   */
btrfs_subvolume_reserve_metadata(struct btrfs_root * root,struct btrfs_block_rsv * rsv,int items,bool use_global_rsv)501  int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
502  				     struct btrfs_block_rsv *rsv, int items,
503  				     bool use_global_rsv)
504  {
505  	u64 qgroup_num_bytes = 0;
506  	u64 num_bytes;
507  	int ret;
508  	struct btrfs_fs_info *fs_info = root->fs_info;
509  	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
510  
511  	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
512  		/* One for parent inode, two for dir entries */
513  		qgroup_num_bytes = 3 * fs_info->nodesize;
514  		ret = btrfs_qgroup_reserve_meta_prealloc(root,
515  							 qgroup_num_bytes, true,
516  							 false);
517  		if (ret)
518  			return ret;
519  	}
520  
521  	num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
522  	rsv->space_info = btrfs_find_space_info(fs_info,
523  					    BTRFS_BLOCK_GROUP_METADATA);
524  	ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes,
525  				  BTRFS_RESERVE_FLUSH_ALL);
526  
527  	if (ret == -ENOSPC && use_global_rsv)
528  		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
529  
530  	if (ret && qgroup_num_bytes)
531  		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
532  
533  	if (!ret) {
534  		spin_lock(&rsv->lock);
535  		rsv->qgroup_rsv_reserved += qgroup_num_bytes;
536  		spin_unlock(&rsv->lock);
537  	}
538  	return ret;
539  }
540  
btrfs_subvolume_release_metadata(struct btrfs_root * root,struct btrfs_block_rsv * rsv)541  void btrfs_subvolume_release_metadata(struct btrfs_root *root,
542  				      struct btrfs_block_rsv *rsv)
543  {
544  	struct btrfs_fs_info *fs_info = root->fs_info;
545  	u64 qgroup_to_release;
546  
547  	btrfs_block_rsv_release(fs_info, rsv, (u64)-1, &qgroup_to_release);
548  	btrfs_qgroup_convert_reserved_meta(root, qgroup_to_release);
549  }
550