1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 #include "zoned.h"
13 #include "fs.h"
14 #include "accessors.h"
15 #include "extent-tree.h"
16 
17 /*
18  * HOW DOES SPACE RESERVATION WORK
19  *
20  * If you want to know about delalloc specifically, there is a separate comment
21  * for that with the delalloc code.  This comment is about how the whole system
22  * works generally.
23  *
24  * BASIC CONCEPTS
25  *
26  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
27  *   There's a description of the bytes_ fields with the struct declaration,
28  *   refer to that for specifics on each field.  Suffice it to say that for
29  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
30  *   determining if there is space to make an allocation.  There is a space_info
31  *   for METADATA, SYSTEM, and DATA areas.
32  *
33  *   2) block_rsv's.  These are basically buckets for every different type of
34  *   metadata reservation we have.  You can see the comment in the block_rsv
35  *   code on the rules for each type, but generally block_rsv->reserved is how
36  *   much space is accounted for in space_info->bytes_may_use.
37  *
38  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
39  *   on the number of items we will want to modify.  We have one for changing
40  *   items, and one for inserting new items.  Generally we use these helpers to
41  *   determine the size of the block reserves, and then use the actual bytes
42  *   values to adjust the space_info counters.
43  *
44  * MAKING RESERVATIONS, THE NORMAL CASE
45  *
46  *   We call into either btrfs_reserve_data_bytes() or
47  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
48  *   num_bytes we want to reserve.
49  *
50  *   ->reserve
51  *     space_info->bytes_may_reserve += num_bytes
52  *
53  *   ->extent allocation
54  *     Call btrfs_add_reserved_bytes() which does
55  *     space_info->bytes_may_reserve -= num_bytes
56  *     space_info->bytes_reserved += extent_bytes
57  *
58  *   ->insert reference
59  *     Call btrfs_update_block_group() which does
60  *     space_info->bytes_reserved -= extent_bytes
61  *     space_info->bytes_used += extent_bytes
62  *
63  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
64  *
65  *   Assume we are unable to simply make the reservation because we do not have
66  *   enough space
67  *
68  *   -> __reserve_bytes
69  *     create a reserve_ticket with ->bytes set to our reservation, add it to
70  *     the tail of space_info->tickets, kick async flush thread
71  *
72  *   ->handle_reserve_ticket
73  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
74  *     on the ticket.
75  *
76  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
77  *     Flushes various things attempting to free up space.
78  *
79  *   -> btrfs_try_granting_tickets()
80  *     This is called by anything that either subtracts space from
81  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
82  *     space_info->total_bytes.  This loops through the ->priority_tickets and
83  *     then the ->tickets list checking to see if the reservation can be
84  *     completed.  If it can the space is added to space_info->bytes_may_use and
85  *     the ticket is woken up.
86  *
87  *   -> ticket wakeup
88  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
89  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
90  *     were interrupted.)
91  *
92  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
93  *
94  *   Same as the above, except we add ourselves to the
95  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
96  *   call flush_space() ourselves for the states that are safe for us to call
97  *   without deadlocking and hope for the best.
98  *
99  * THE FLUSHING STATES
100  *
101  *   Generally speaking we will have two cases for each state, a "nice" state
102  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
103  *   reduce the locking over head on the various trees, and even to keep from
104  *   doing any work at all in the case of delayed refs.  Each of these delayed
105  *   things however hold reservations, and so letting them run allows us to
106  *   reclaim space so we can make new reservations.
107  *
108  *   FLUSH_DELAYED_ITEMS
109  *     Every inode has a delayed item to update the inode.  Take a simple write
110  *     for example, we would update the inode item at write time to update the
111  *     mtime, and then again at finish_ordered_io() time in order to update the
112  *     isize or bytes.  We keep these delayed items to coalesce these operations
113  *     into a single operation done on demand.  These are an easy way to reclaim
114  *     metadata space.
115  *
116  *   FLUSH_DELALLOC
117  *     Look at the delalloc comment to get an idea of how much space is reserved
118  *     for delayed allocation.  We can reclaim some of this space simply by
119  *     running delalloc, but usually we need to wait for ordered extents to
120  *     reclaim the bulk of this space.
121  *
122  *   FLUSH_DELAYED_REFS
123  *     We have a block reserve for the outstanding delayed refs space, and every
124  *     delayed ref operation holds a reservation.  Running these is a quick way
125  *     to reclaim space, but we want to hold this until the end because COW can
126  *     churn a lot and we can avoid making some extent tree modifications if we
127  *     are able to delay for as long as possible.
128  *
129  *   ALLOC_CHUNK
130  *     We will skip this the first time through space reservation, because of
131  *     overcommit and we don't want to have a lot of useless metadata space when
132  *     our worst case reservations will likely never come true.
133  *
134  *   RUN_DELAYED_IPUTS
135  *     If we're freeing inodes we're likely freeing checksums, file extent
136  *     items, and extent tree items.  Loads of space could be freed up by these
137  *     operations, however they won't be usable until the transaction commits.
138  *
139  *   COMMIT_TRANS
140  *     This will commit the transaction.  Historically we had a lot of logic
141  *     surrounding whether or not we'd commit the transaction, but this waits born
142  *     out of a pre-tickets era where we could end up committing the transaction
143  *     thousands of times in a row without making progress.  Now thanks to our
144  *     ticketing system we know if we're not making progress and can error
145  *     everybody out after a few commits rather than burning the disk hoping for
146  *     a different answer.
147  *
148  * OVERCOMMIT
149  *
150  *   Because we hold so many reservations for metadata we will allow you to
151  *   reserve more space than is currently free in the currently allocate
152  *   metadata space.  This only happens with metadata, data does not allow
153  *   overcommitting.
154  *
155  *   You can see the current logic for when we allow overcommit in
156  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
157  *   is no unallocated space to be had, all reservations are kept within the
158  *   free space in the allocated metadata chunks.
159  *
160  *   Because of overcommitting, you generally want to use the
161  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
162  *   thing with or without extra unallocated space.
163  */
164 
btrfs_space_info_used(struct btrfs_space_info * s_info,bool may_use_included)165 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
166 			  bool may_use_included)
167 {
168 	ASSERT(s_info);
169 	return s_info->bytes_used + s_info->bytes_reserved +
170 		s_info->bytes_pinned + s_info->bytes_readonly +
171 		s_info->bytes_zone_unusable +
172 		(may_use_included ? s_info->bytes_may_use : 0);
173 }
174 
175 /*
176  * after adding space to the filesystem, we need to clear the full flags
177  * on all the space infos.
178  */
btrfs_clear_space_info_full(struct btrfs_fs_info * info)179 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
180 {
181 	struct list_head *head = &info->space_info;
182 	struct btrfs_space_info *found;
183 
184 	list_for_each_entry(found, head, list)
185 		found->full = 0;
186 }
187 
188 /*
189  * Block groups with more than this value (percents) of unusable space will be
190  * scheduled for background reclaim.
191  */
192 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH			(75)
193 
194 /*
195  * Calculate chunk size depending on volume type (regular or zoned).
196  */
calc_chunk_size(const struct btrfs_fs_info * fs_info,u64 flags)197 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
198 {
199 	if (btrfs_is_zoned(fs_info))
200 		return fs_info->zone_size;
201 
202 	ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
203 
204 	if (flags & BTRFS_BLOCK_GROUP_DATA)
205 		return BTRFS_MAX_DATA_CHUNK_SIZE;
206 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
207 		return SZ_32M;
208 
209 	/* Handle BTRFS_BLOCK_GROUP_METADATA */
210 	if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
211 		return SZ_1G;
212 
213 	return SZ_256M;
214 }
215 
216 /*
217  * Update default chunk size.
218  */
btrfs_update_space_info_chunk_size(struct btrfs_space_info * space_info,u64 chunk_size)219 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
220 					u64 chunk_size)
221 {
222 	WRITE_ONCE(space_info->chunk_size, chunk_size);
223 }
224 
create_space_info(struct btrfs_fs_info * info,u64 flags)225 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
226 {
227 
228 	struct btrfs_space_info *space_info;
229 	int i;
230 	int ret;
231 
232 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
233 	if (!space_info)
234 		return -ENOMEM;
235 
236 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
237 		INIT_LIST_HEAD(&space_info->block_groups[i]);
238 	init_rwsem(&space_info->groups_sem);
239 	spin_lock_init(&space_info->lock);
240 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
241 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
242 	INIT_LIST_HEAD(&space_info->ro_bgs);
243 	INIT_LIST_HEAD(&space_info->tickets);
244 	INIT_LIST_HEAD(&space_info->priority_tickets);
245 	space_info->clamp = 1;
246 	btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
247 
248 	if (btrfs_is_zoned(info))
249 		space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
250 
251 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
252 	if (ret)
253 		return ret;
254 
255 	list_add(&space_info->list, &info->space_info);
256 	if (flags & BTRFS_BLOCK_GROUP_DATA)
257 		info->data_sinfo = space_info;
258 
259 	return ret;
260 }
261 
btrfs_init_space_info(struct btrfs_fs_info * fs_info)262 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
263 {
264 	struct btrfs_super_block *disk_super;
265 	u64 features;
266 	u64 flags;
267 	int mixed = 0;
268 	int ret;
269 
270 	disk_super = fs_info->super_copy;
271 	if (!btrfs_super_root(disk_super))
272 		return -EINVAL;
273 
274 	features = btrfs_super_incompat_flags(disk_super);
275 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
276 		mixed = 1;
277 
278 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
279 	ret = create_space_info(fs_info, flags);
280 	if (ret)
281 		goto out;
282 
283 	if (mixed) {
284 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
285 		ret = create_space_info(fs_info, flags);
286 	} else {
287 		flags = BTRFS_BLOCK_GROUP_METADATA;
288 		ret = create_space_info(fs_info, flags);
289 		if (ret)
290 			goto out;
291 
292 		flags = BTRFS_BLOCK_GROUP_DATA;
293 		ret = create_space_info(fs_info, flags);
294 	}
295 out:
296 	return ret;
297 }
298 
btrfs_add_bg_to_space_info(struct btrfs_fs_info * info,struct btrfs_block_group * block_group)299 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
300 				struct btrfs_block_group *block_group)
301 {
302 	struct btrfs_space_info *found;
303 	int factor, index;
304 
305 	factor = btrfs_bg_type_to_factor(block_group->flags);
306 
307 	found = btrfs_find_space_info(info, block_group->flags);
308 	ASSERT(found);
309 	spin_lock(&found->lock);
310 	found->total_bytes += block_group->length;
311 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
312 		found->active_total_bytes += block_group->length;
313 	found->disk_total += block_group->length * factor;
314 	found->bytes_used += block_group->used;
315 	found->disk_used += block_group->used * factor;
316 	found->bytes_readonly += block_group->bytes_super;
317 	found->bytes_zone_unusable += block_group->zone_unusable;
318 	if (block_group->length > 0)
319 		found->full = 0;
320 	btrfs_try_granting_tickets(info, found);
321 	spin_unlock(&found->lock);
322 
323 	block_group->space_info = found;
324 
325 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
326 	down_write(&found->groups_sem);
327 	list_add_tail(&block_group->list, &found->block_groups[index]);
328 	up_write(&found->groups_sem);
329 }
330 
btrfs_find_space_info(struct btrfs_fs_info * info,u64 flags)331 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
332 					       u64 flags)
333 {
334 	struct list_head *head = &info->space_info;
335 	struct btrfs_space_info *found;
336 
337 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
338 
339 	list_for_each_entry(found, head, list) {
340 		if (found->flags & flags)
341 			return found;
342 	}
343 	return NULL;
344 }
345 
calc_available_free_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,enum btrfs_reserve_flush_enum flush)346 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
347 			  struct btrfs_space_info *space_info,
348 			  enum btrfs_reserve_flush_enum flush)
349 {
350 	u64 profile;
351 	u64 avail;
352 	int factor;
353 
354 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
355 		profile = btrfs_system_alloc_profile(fs_info);
356 	else
357 		profile = btrfs_metadata_alloc_profile(fs_info);
358 
359 	avail = atomic64_read(&fs_info->free_chunk_space);
360 
361 	/*
362 	 * If we have dup, raid1 or raid10 then only half of the free
363 	 * space is actually usable.  For raid56, the space info used
364 	 * doesn't include the parity drive, so we don't have to
365 	 * change the math
366 	 */
367 	factor = btrfs_bg_type_to_factor(profile);
368 	avail = div_u64(avail, factor);
369 
370 	/*
371 	 * If we aren't flushing all things, let us overcommit up to
372 	 * 1/2th of the space. If we can flush, don't let us overcommit
373 	 * too much, let it overcommit up to 1/8 of the space.
374 	 */
375 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
376 		avail >>= 3;
377 	else
378 		avail >>= 1;
379 	return avail;
380 }
381 
writable_total_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)382 static inline u64 writable_total_bytes(struct btrfs_fs_info *fs_info,
383 				       struct btrfs_space_info *space_info)
384 {
385 	/*
386 	 * On regular filesystem, all total_bytes are always writable. On zoned
387 	 * filesystem, there may be a limitation imposed by max_active_zones.
388 	 * For metadata allocation, we cannot finish an existing active block
389 	 * group to avoid a deadlock. Thus, we need to consider only the active
390 	 * groups to be writable for metadata space.
391 	 */
392 	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
393 		return space_info->total_bytes;
394 
395 	return space_info->active_total_bytes;
396 }
397 
btrfs_can_overcommit(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 bytes,enum btrfs_reserve_flush_enum flush)398 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
399 			 struct btrfs_space_info *space_info, u64 bytes,
400 			 enum btrfs_reserve_flush_enum flush)
401 {
402 	u64 avail;
403 	u64 used;
404 
405 	/* Don't overcommit when in mixed mode */
406 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
407 		return 0;
408 
409 	used = btrfs_space_info_used(space_info, true);
410 	if (test_bit(BTRFS_FS_NO_OVERCOMMIT, &fs_info->flags) &&
411 	    (space_info->flags & BTRFS_BLOCK_GROUP_METADATA))
412 		avail = 0;
413 	else
414 		avail = calc_available_free_space(fs_info, space_info, flush);
415 
416 	if (used + bytes < writable_total_bytes(fs_info, space_info) + avail)
417 		return 1;
418 	return 0;
419 }
420 
remove_ticket(struct btrfs_space_info * space_info,struct reserve_ticket * ticket)421 static void remove_ticket(struct btrfs_space_info *space_info,
422 			  struct reserve_ticket *ticket)
423 {
424 	if (!list_empty(&ticket->list)) {
425 		list_del_init(&ticket->list);
426 		ASSERT(space_info->reclaim_size >= ticket->bytes);
427 		space_info->reclaim_size -= ticket->bytes;
428 	}
429 }
430 
431 /*
432  * This is for space we already have accounted in space_info->bytes_may_use, so
433  * basically when we're returning space from block_rsv's.
434  */
btrfs_try_granting_tickets(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)435 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
436 				struct btrfs_space_info *space_info)
437 {
438 	struct list_head *head;
439 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
440 
441 	lockdep_assert_held(&space_info->lock);
442 
443 	head = &space_info->priority_tickets;
444 again:
445 	while (!list_empty(head)) {
446 		struct reserve_ticket *ticket;
447 		u64 used = btrfs_space_info_used(space_info, true);
448 
449 		ticket = list_first_entry(head, struct reserve_ticket, list);
450 
451 		/* Check and see if our ticket can be satisfied now. */
452 		if ((used + ticket->bytes <= writable_total_bytes(fs_info, space_info)) ||
453 		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
454 					 flush)) {
455 			btrfs_space_info_update_bytes_may_use(fs_info,
456 							      space_info,
457 							      ticket->bytes);
458 			remove_ticket(space_info, ticket);
459 			ticket->bytes = 0;
460 			space_info->tickets_id++;
461 			wake_up(&ticket->wait);
462 		} else {
463 			break;
464 		}
465 	}
466 
467 	if (head == &space_info->priority_tickets) {
468 		head = &space_info->tickets;
469 		flush = BTRFS_RESERVE_FLUSH_ALL;
470 		goto again;
471 	}
472 }
473 
474 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
475 do {									\
476 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
477 	spin_lock(&__rsv->lock);					\
478 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
479 		   __rsv->size, __rsv->reserved);			\
480 	spin_unlock(&__rsv->lock);					\
481 } while (0)
482 
space_info_flag_to_str(const struct btrfs_space_info * space_info)483 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
484 {
485 	switch (space_info->flags) {
486 	case BTRFS_BLOCK_GROUP_SYSTEM:
487 		return "SYSTEM";
488 	case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
489 		return "DATA+METADATA";
490 	case BTRFS_BLOCK_GROUP_DATA:
491 		return "DATA";
492 	case BTRFS_BLOCK_GROUP_METADATA:
493 		return "METADATA";
494 	default:
495 		return "UNKNOWN";
496 	}
497 }
498 
dump_global_block_rsv(struct btrfs_fs_info * fs_info)499 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
500 {
501 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
502 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
503 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
504 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
505 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
506 }
507 
__btrfs_dump_space_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * info)508 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
509 				    struct btrfs_space_info *info)
510 {
511 	const char *flag_str = space_info_flag_to_str(info);
512 	lockdep_assert_held(&info->lock);
513 
514 	/* The free space could be negative in case of overcommit */
515 	btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
516 		   flag_str,
517 		   (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
518 		   info->full ? "" : "not ");
519 	btrfs_info(fs_info,
520 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
521 		info->total_bytes, info->bytes_used, info->bytes_pinned,
522 		info->bytes_reserved, info->bytes_may_use,
523 		info->bytes_readonly, info->bytes_zone_unusable);
524 }
525 
btrfs_dump_space_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * info,u64 bytes,int dump_block_groups)526 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
527 			   struct btrfs_space_info *info, u64 bytes,
528 			   int dump_block_groups)
529 {
530 	struct btrfs_block_group *cache;
531 	int index = 0;
532 
533 	spin_lock(&info->lock);
534 	__btrfs_dump_space_info(fs_info, info);
535 	dump_global_block_rsv(fs_info);
536 	spin_unlock(&info->lock);
537 
538 	if (!dump_block_groups)
539 		return;
540 
541 	down_read(&info->groups_sem);
542 again:
543 	list_for_each_entry(cache, &info->block_groups[index], list) {
544 		spin_lock(&cache->lock);
545 		btrfs_info(fs_info,
546 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s",
547 			cache->start, cache->length, cache->used, cache->pinned,
548 			cache->reserved, cache->zone_unusable,
549 			cache->ro ? "[readonly]" : "");
550 		spin_unlock(&cache->lock);
551 		btrfs_dump_free_space(cache, bytes);
552 	}
553 	if (++index < BTRFS_NR_RAID_TYPES)
554 		goto again;
555 	up_read(&info->groups_sem);
556 }
557 
calc_reclaim_items_nr(struct btrfs_fs_info * fs_info,u64 to_reclaim)558 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
559 					u64 to_reclaim)
560 {
561 	u64 bytes;
562 	u64 nr;
563 
564 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
565 	nr = div64_u64(to_reclaim, bytes);
566 	if (!nr)
567 		nr = 1;
568 	return nr;
569 }
570 
571 #define EXTENT_SIZE_PER_ITEM	SZ_256K
572 
573 /*
574  * shrink metadata reservation for delalloc
575  */
shrink_delalloc(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 to_reclaim,bool wait_ordered,bool for_preempt)576 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
577 			    struct btrfs_space_info *space_info,
578 			    u64 to_reclaim, bool wait_ordered,
579 			    bool for_preempt)
580 {
581 	struct btrfs_trans_handle *trans;
582 	u64 delalloc_bytes;
583 	u64 ordered_bytes;
584 	u64 items;
585 	long time_left;
586 	int loops;
587 
588 	delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
589 	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
590 	if (delalloc_bytes == 0 && ordered_bytes == 0)
591 		return;
592 
593 	/* Calc the number of the pages we need flush for space reservation */
594 	if (to_reclaim == U64_MAX) {
595 		items = U64_MAX;
596 	} else {
597 		/*
598 		 * to_reclaim is set to however much metadata we need to
599 		 * reclaim, but reclaiming that much data doesn't really track
600 		 * exactly.  What we really want to do is reclaim full inode's
601 		 * worth of reservations, however that's not available to us
602 		 * here.  We will take a fraction of the delalloc bytes for our
603 		 * flushing loops and hope for the best.  Delalloc will expand
604 		 * the amount we write to cover an entire dirty extent, which
605 		 * will reclaim the metadata reservation for that range.  If
606 		 * it's not enough subsequent flush stages will be more
607 		 * aggressive.
608 		 */
609 		to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
610 		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
611 	}
612 
613 	trans = current->journal_info;
614 
615 	/*
616 	 * If we are doing more ordered than delalloc we need to just wait on
617 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
618 	 * that likely won't give us the space back we need.
619 	 */
620 	if (ordered_bytes > delalloc_bytes && !for_preempt)
621 		wait_ordered = true;
622 
623 	loops = 0;
624 	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
625 		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
626 		long nr_pages = min_t(u64, temp, LONG_MAX);
627 		int async_pages;
628 
629 		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
630 
631 		/*
632 		 * We need to make sure any outstanding async pages are now
633 		 * processed before we continue.  This is because things like
634 		 * sync_inode() try to be smart and skip writing if the inode is
635 		 * marked clean.  We don't use filemap_fwrite for flushing
636 		 * because we want to control how many pages we write out at a
637 		 * time, thus this is the only safe way to make sure we've
638 		 * waited for outstanding compressed workers to have started
639 		 * their jobs and thus have ordered extents set up properly.
640 		 *
641 		 * This exists because we do not want to wait for each
642 		 * individual inode to finish its async work, we simply want to
643 		 * start the IO on everybody, and then come back here and wait
644 		 * for all of the async work to catch up.  Once we're done with
645 		 * that we know we'll have ordered extents for everything and we
646 		 * can decide if we wait for that or not.
647 		 *
648 		 * If we choose to replace this in the future, make absolutely
649 		 * sure that the proper waiting is being done in the async case,
650 		 * as there have been bugs in that area before.
651 		 */
652 		async_pages = atomic_read(&fs_info->async_delalloc_pages);
653 		if (!async_pages)
654 			goto skip_async;
655 
656 		/*
657 		 * We don't want to wait forever, if we wrote less pages in this
658 		 * loop than we have outstanding, only wait for that number of
659 		 * pages, otherwise we can wait for all async pages to finish
660 		 * before continuing.
661 		 */
662 		if (async_pages > nr_pages)
663 			async_pages -= nr_pages;
664 		else
665 			async_pages = 0;
666 		wait_event(fs_info->async_submit_wait,
667 			   atomic_read(&fs_info->async_delalloc_pages) <=
668 			   async_pages);
669 skip_async:
670 		loops++;
671 		if (wait_ordered && !trans) {
672 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
673 		} else {
674 			time_left = schedule_timeout_killable(1);
675 			if (time_left)
676 				break;
677 		}
678 
679 		/*
680 		 * If we are for preemption we just want a one-shot of delalloc
681 		 * flushing so we can stop flushing if we decide we don't need
682 		 * to anymore.
683 		 */
684 		if (for_preempt)
685 			break;
686 
687 		spin_lock(&space_info->lock);
688 		if (list_empty(&space_info->tickets) &&
689 		    list_empty(&space_info->priority_tickets)) {
690 			spin_unlock(&space_info->lock);
691 			break;
692 		}
693 		spin_unlock(&space_info->lock);
694 
695 		delalloc_bytes = percpu_counter_sum_positive(
696 						&fs_info->delalloc_bytes);
697 		ordered_bytes = percpu_counter_sum_positive(
698 						&fs_info->ordered_bytes);
699 	}
700 }
701 
702 /*
703  * Try to flush some data based on policy set by @state. This is only advisory
704  * and may fail for various reasons. The caller is supposed to examine the
705  * state of @space_info to detect the outcome.
706  */
flush_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes,enum btrfs_flush_state state,bool for_preempt)707 static void flush_space(struct btrfs_fs_info *fs_info,
708 		       struct btrfs_space_info *space_info, u64 num_bytes,
709 		       enum btrfs_flush_state state, bool for_preempt)
710 {
711 	struct btrfs_root *root = fs_info->tree_root;
712 	struct btrfs_trans_handle *trans;
713 	int nr;
714 	int ret = 0;
715 
716 	switch (state) {
717 	case FLUSH_DELAYED_ITEMS_NR:
718 	case FLUSH_DELAYED_ITEMS:
719 		if (state == FLUSH_DELAYED_ITEMS_NR)
720 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
721 		else
722 			nr = -1;
723 
724 		trans = btrfs_join_transaction(root);
725 		if (IS_ERR(trans)) {
726 			ret = PTR_ERR(trans);
727 			break;
728 		}
729 		ret = btrfs_run_delayed_items_nr(trans, nr);
730 		btrfs_end_transaction(trans);
731 		break;
732 	case FLUSH_DELALLOC:
733 	case FLUSH_DELALLOC_WAIT:
734 	case FLUSH_DELALLOC_FULL:
735 		if (state == FLUSH_DELALLOC_FULL)
736 			num_bytes = U64_MAX;
737 		shrink_delalloc(fs_info, space_info, num_bytes,
738 				state != FLUSH_DELALLOC, for_preempt);
739 		break;
740 	case FLUSH_DELAYED_REFS_NR:
741 	case FLUSH_DELAYED_REFS:
742 		trans = btrfs_join_transaction(root);
743 		if (IS_ERR(trans)) {
744 			ret = PTR_ERR(trans);
745 			break;
746 		}
747 		if (state == FLUSH_DELAYED_REFS_NR)
748 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
749 		else
750 			nr = 0;
751 		btrfs_run_delayed_refs(trans, nr);
752 		btrfs_end_transaction(trans);
753 		break;
754 	case ALLOC_CHUNK:
755 	case ALLOC_CHUNK_FORCE:
756 		/*
757 		 * For metadata space on zoned filesystem, reaching here means we
758 		 * don't have enough space left in active_total_bytes. Try to
759 		 * activate a block group first, because we may have inactive
760 		 * block group already allocated.
761 		 */
762 		ret = btrfs_zoned_activate_one_bg(fs_info, space_info, false);
763 		if (ret < 0)
764 			break;
765 		else if (ret == 1)
766 			break;
767 
768 		trans = btrfs_join_transaction(root);
769 		if (IS_ERR(trans)) {
770 			ret = PTR_ERR(trans);
771 			break;
772 		}
773 		ret = btrfs_chunk_alloc(trans,
774 				btrfs_get_alloc_profile(fs_info, space_info->flags),
775 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
776 					CHUNK_ALLOC_FORCE);
777 		btrfs_end_transaction(trans);
778 
779 		/*
780 		 * For metadata space on zoned filesystem, allocating a new chunk
781 		 * is not enough. We still need to activate the block * group.
782 		 * Active the newly allocated block group by (maybe) finishing
783 		 * a block group.
784 		 */
785 		if (ret == 1) {
786 			ret = btrfs_zoned_activate_one_bg(fs_info, space_info, true);
787 			/*
788 			 * Revert to the original ret regardless we could finish
789 			 * one block group or not.
790 			 */
791 			if (ret >= 0)
792 				ret = 1;
793 		}
794 
795 		if (ret > 0 || ret == -ENOSPC)
796 			ret = 0;
797 		break;
798 	case RUN_DELAYED_IPUTS:
799 		/*
800 		 * If we have pending delayed iputs then we could free up a
801 		 * bunch of pinned space, so make sure we run the iputs before
802 		 * we do our pinned bytes check below.
803 		 */
804 		btrfs_run_delayed_iputs(fs_info);
805 		btrfs_wait_on_delayed_iputs(fs_info);
806 		break;
807 	case COMMIT_TRANS:
808 		ASSERT(current->journal_info == NULL);
809 		trans = btrfs_join_transaction(root);
810 		if (IS_ERR(trans)) {
811 			ret = PTR_ERR(trans);
812 			break;
813 		}
814 		ret = btrfs_commit_transaction(trans);
815 		break;
816 	default:
817 		ret = -ENOSPC;
818 		break;
819 	}
820 
821 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
822 				ret, for_preempt);
823 	return;
824 }
825 
826 static inline u64
btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)827 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
828 				 struct btrfs_space_info *space_info)
829 {
830 	u64 used;
831 	u64 avail;
832 	u64 total;
833 	u64 to_reclaim = space_info->reclaim_size;
834 
835 	lockdep_assert_held(&space_info->lock);
836 
837 	avail = calc_available_free_space(fs_info, space_info,
838 					  BTRFS_RESERVE_FLUSH_ALL);
839 	used = btrfs_space_info_used(space_info, true);
840 
841 	/*
842 	 * We may be flushing because suddenly we have less space than we had
843 	 * before, and now we're well over-committed based on our current free
844 	 * space.  If that's the case add in our overage so we make sure to put
845 	 * appropriate pressure on the flushing state machine.
846 	 */
847 	total = writable_total_bytes(fs_info, space_info);
848 	if (total + avail < used)
849 		to_reclaim += used - (total + avail);
850 
851 	return to_reclaim;
852 }
853 
need_preemptive_reclaim(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)854 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
855 				    struct btrfs_space_info *space_info)
856 {
857 	u64 global_rsv_size = fs_info->global_block_rsv.reserved;
858 	u64 ordered, delalloc;
859 	u64 total = writable_total_bytes(fs_info, space_info);
860 	u64 thresh;
861 	u64 used;
862 
863 	thresh = mult_perc(total, 90);
864 
865 	lockdep_assert_held(&space_info->lock);
866 
867 	/* If we're just plain full then async reclaim just slows us down. */
868 	if ((space_info->bytes_used + space_info->bytes_reserved +
869 	     global_rsv_size) >= thresh)
870 		return false;
871 
872 	used = space_info->bytes_may_use + space_info->bytes_pinned;
873 
874 	/* The total flushable belongs to the global rsv, don't flush. */
875 	if (global_rsv_size >= used)
876 		return false;
877 
878 	/*
879 	 * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
880 	 * that devoted to other reservations then there's no sense in flushing,
881 	 * we don't have a lot of things that need flushing.
882 	 */
883 	if (used - global_rsv_size <= SZ_128M)
884 		return false;
885 
886 	/*
887 	 * We have tickets queued, bail so we don't compete with the async
888 	 * flushers.
889 	 */
890 	if (space_info->reclaim_size)
891 		return false;
892 
893 	/*
894 	 * If we have over half of the free space occupied by reservations or
895 	 * pinned then we want to start flushing.
896 	 *
897 	 * We do not do the traditional thing here, which is to say
898 	 *
899 	 *   if (used >= ((total_bytes + avail) / 2))
900 	 *     return 1;
901 	 *
902 	 * because this doesn't quite work how we want.  If we had more than 50%
903 	 * of the space_info used by bytes_used and we had 0 available we'd just
904 	 * constantly run the background flusher.  Instead we want it to kick in
905 	 * if our reclaimable space exceeds our clamped free space.
906 	 *
907 	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
908 	 * the following:
909 	 *
910 	 * Amount of RAM        Minimum threshold       Maximum threshold
911 	 *
912 	 *        256GiB                     1GiB                  128GiB
913 	 *        128GiB                   512MiB                   64GiB
914 	 *         64GiB                   256MiB                   32GiB
915 	 *         32GiB                   128MiB                   16GiB
916 	 *         16GiB                    64MiB                    8GiB
917 	 *
918 	 * These are the range our thresholds will fall in, corresponding to how
919 	 * much delalloc we need for the background flusher to kick in.
920 	 */
921 
922 	thresh = calc_available_free_space(fs_info, space_info,
923 					   BTRFS_RESERVE_FLUSH_ALL);
924 	used = space_info->bytes_used + space_info->bytes_reserved +
925 	       space_info->bytes_readonly + global_rsv_size;
926 	if (used < total)
927 		thresh += total - used;
928 	thresh >>= space_info->clamp;
929 
930 	used = space_info->bytes_pinned;
931 
932 	/*
933 	 * If we have more ordered bytes than delalloc bytes then we're either
934 	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
935 	 * around.  Preemptive flushing is only useful in that it can free up
936 	 * space before tickets need to wait for things to finish.  In the case
937 	 * of ordered extents, preemptively waiting on ordered extents gets us
938 	 * nothing, if our reservations are tied up in ordered extents we'll
939 	 * simply have to slow down writers by forcing them to wait on ordered
940 	 * extents.
941 	 *
942 	 * In the case that ordered is larger than delalloc, only include the
943 	 * block reserves that we would actually be able to directly reclaim
944 	 * from.  In this case if we're heavy on metadata operations this will
945 	 * clearly be heavy enough to warrant preemptive flushing.  In the case
946 	 * of heavy DIO or ordered reservations, preemptive flushing will just
947 	 * waste time and cause us to slow down.
948 	 *
949 	 * We want to make sure we truly are maxed out on ordered however, so
950 	 * cut ordered in half, and if it's still higher than delalloc then we
951 	 * can keep flushing.  This is to avoid the case where we start
952 	 * flushing, and now delalloc == ordered and we stop preemptively
953 	 * flushing when we could still have several gigs of delalloc to flush.
954 	 */
955 	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
956 	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
957 	if (ordered >= delalloc)
958 		used += fs_info->delayed_refs_rsv.reserved +
959 			fs_info->delayed_block_rsv.reserved;
960 	else
961 		used += space_info->bytes_may_use - global_rsv_size;
962 
963 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
964 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
965 }
966 
steal_from_global_rsv(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)967 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
968 				  struct btrfs_space_info *space_info,
969 				  struct reserve_ticket *ticket)
970 {
971 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
972 	u64 min_bytes;
973 
974 	if (!ticket->steal)
975 		return false;
976 
977 	if (global_rsv->space_info != space_info)
978 		return false;
979 
980 	spin_lock(&global_rsv->lock);
981 	min_bytes = mult_perc(global_rsv->size, 10);
982 	if (global_rsv->reserved < min_bytes + ticket->bytes) {
983 		spin_unlock(&global_rsv->lock);
984 		return false;
985 	}
986 	global_rsv->reserved -= ticket->bytes;
987 	remove_ticket(space_info, ticket);
988 	ticket->bytes = 0;
989 	wake_up(&ticket->wait);
990 	space_info->tickets_id++;
991 	if (global_rsv->reserved < global_rsv->size)
992 		global_rsv->full = 0;
993 	spin_unlock(&global_rsv->lock);
994 
995 	return true;
996 }
997 
998 /*
999  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
1000  * @fs_info - fs_info for this fs
1001  * @space_info - the space info we were flushing
1002  *
1003  * We call this when we've exhausted our flushing ability and haven't made
1004  * progress in satisfying tickets.  The reservation code handles tickets in
1005  * order, so if there is a large ticket first and then smaller ones we could
1006  * very well satisfy the smaller tickets.  This will attempt to wake up any
1007  * tickets in the list to catch this case.
1008  *
1009  * This function returns true if it was able to make progress by clearing out
1010  * other tickets, or if it stumbles across a ticket that was smaller than the
1011  * first ticket.
1012  */
maybe_fail_all_tickets(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)1013 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
1014 				   struct btrfs_space_info *space_info)
1015 {
1016 	struct reserve_ticket *ticket;
1017 	u64 tickets_id = space_info->tickets_id;
1018 	const bool aborted = BTRFS_FS_ERROR(fs_info);
1019 
1020 	trace_btrfs_fail_all_tickets(fs_info, space_info);
1021 
1022 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1023 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1024 		__btrfs_dump_space_info(fs_info, space_info);
1025 	}
1026 
1027 	while (!list_empty(&space_info->tickets) &&
1028 	       tickets_id == space_info->tickets_id) {
1029 		ticket = list_first_entry(&space_info->tickets,
1030 					  struct reserve_ticket, list);
1031 
1032 		if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1033 			return true;
1034 
1035 		if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1036 			btrfs_info(fs_info, "failing ticket with %llu bytes",
1037 				   ticket->bytes);
1038 
1039 		remove_ticket(space_info, ticket);
1040 		if (aborted)
1041 			ticket->error = -EIO;
1042 		else
1043 			ticket->error = -ENOSPC;
1044 		wake_up(&ticket->wait);
1045 
1046 		/*
1047 		 * We're just throwing tickets away, so more flushing may not
1048 		 * trip over btrfs_try_granting_tickets, so we need to call it
1049 		 * here to see if we can make progress with the next ticket in
1050 		 * the list.
1051 		 */
1052 		if (!aborted)
1053 			btrfs_try_granting_tickets(fs_info, space_info);
1054 	}
1055 	return (tickets_id != space_info->tickets_id);
1056 }
1057 
1058 /*
1059  * This is for normal flushers, we can wait all goddamned day if we want to.  We
1060  * will loop and continuously try to flush as long as we are making progress.
1061  * We count progress as clearing off tickets each time we have to loop.
1062  */
btrfs_async_reclaim_metadata_space(struct work_struct * work)1063 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1064 {
1065 	struct btrfs_fs_info *fs_info;
1066 	struct btrfs_space_info *space_info;
1067 	u64 to_reclaim;
1068 	enum btrfs_flush_state flush_state;
1069 	int commit_cycles = 0;
1070 	u64 last_tickets_id;
1071 
1072 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1073 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1074 
1075 	spin_lock(&space_info->lock);
1076 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1077 	if (!to_reclaim) {
1078 		space_info->flush = 0;
1079 		spin_unlock(&space_info->lock);
1080 		return;
1081 	}
1082 	last_tickets_id = space_info->tickets_id;
1083 	spin_unlock(&space_info->lock);
1084 
1085 	flush_state = FLUSH_DELAYED_ITEMS_NR;
1086 	do {
1087 		flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1088 		spin_lock(&space_info->lock);
1089 		if (list_empty(&space_info->tickets)) {
1090 			space_info->flush = 0;
1091 			spin_unlock(&space_info->lock);
1092 			return;
1093 		}
1094 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1095 							      space_info);
1096 		if (last_tickets_id == space_info->tickets_id) {
1097 			flush_state++;
1098 		} else {
1099 			last_tickets_id = space_info->tickets_id;
1100 			flush_state = FLUSH_DELAYED_ITEMS_NR;
1101 			if (commit_cycles)
1102 				commit_cycles--;
1103 		}
1104 
1105 		/*
1106 		 * We do not want to empty the system of delalloc unless we're
1107 		 * under heavy pressure, so allow one trip through the flushing
1108 		 * logic before we start doing a FLUSH_DELALLOC_FULL.
1109 		 */
1110 		if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1111 			flush_state++;
1112 
1113 		/*
1114 		 * We don't want to force a chunk allocation until we've tried
1115 		 * pretty hard to reclaim space.  Think of the case where we
1116 		 * freed up a bunch of space and so have a lot of pinned space
1117 		 * to reclaim.  We would rather use that than possibly create a
1118 		 * underutilized metadata chunk.  So if this is our first run
1119 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1120 		 * commit the transaction.  If nothing has changed the next go
1121 		 * around then we can force a chunk allocation.
1122 		 */
1123 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1124 			flush_state++;
1125 
1126 		if (flush_state > COMMIT_TRANS) {
1127 			commit_cycles++;
1128 			if (commit_cycles > 2) {
1129 				if (maybe_fail_all_tickets(fs_info, space_info)) {
1130 					flush_state = FLUSH_DELAYED_ITEMS_NR;
1131 					commit_cycles--;
1132 				} else {
1133 					space_info->flush = 0;
1134 				}
1135 			} else {
1136 				flush_state = FLUSH_DELAYED_ITEMS_NR;
1137 			}
1138 		}
1139 		spin_unlock(&space_info->lock);
1140 	} while (flush_state <= COMMIT_TRANS);
1141 }
1142 
1143 /*
1144  * This handles pre-flushing of metadata space before we get to the point that
1145  * we need to start blocking threads on tickets.  The logic here is different
1146  * from the other flush paths because it doesn't rely on tickets to tell us how
1147  * much we need to flush, instead it attempts to keep us below the 80% full
1148  * watermark of space by flushing whichever reservation pool is currently the
1149  * largest.
1150  */
btrfs_preempt_reclaim_metadata_space(struct work_struct * work)1151 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1152 {
1153 	struct btrfs_fs_info *fs_info;
1154 	struct btrfs_space_info *space_info;
1155 	struct btrfs_block_rsv *delayed_block_rsv;
1156 	struct btrfs_block_rsv *delayed_refs_rsv;
1157 	struct btrfs_block_rsv *global_rsv;
1158 	struct btrfs_block_rsv *trans_rsv;
1159 	int loops = 0;
1160 
1161 	fs_info = container_of(work, struct btrfs_fs_info,
1162 			       preempt_reclaim_work);
1163 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1164 	delayed_block_rsv = &fs_info->delayed_block_rsv;
1165 	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1166 	global_rsv = &fs_info->global_block_rsv;
1167 	trans_rsv = &fs_info->trans_block_rsv;
1168 
1169 	spin_lock(&space_info->lock);
1170 	while (need_preemptive_reclaim(fs_info, space_info)) {
1171 		enum btrfs_flush_state flush;
1172 		u64 delalloc_size = 0;
1173 		u64 to_reclaim, block_rsv_size;
1174 		u64 global_rsv_size = global_rsv->reserved;
1175 
1176 		loops++;
1177 
1178 		/*
1179 		 * We don't have a precise counter for the metadata being
1180 		 * reserved for delalloc, so we'll approximate it by subtracting
1181 		 * out the block rsv's space from the bytes_may_use.  If that
1182 		 * amount is higher than the individual reserves, then we can
1183 		 * assume it's tied up in delalloc reservations.
1184 		 */
1185 		block_rsv_size = global_rsv_size +
1186 			delayed_block_rsv->reserved +
1187 			delayed_refs_rsv->reserved +
1188 			trans_rsv->reserved;
1189 		if (block_rsv_size < space_info->bytes_may_use)
1190 			delalloc_size = space_info->bytes_may_use - block_rsv_size;
1191 
1192 		/*
1193 		 * We don't want to include the global_rsv in our calculation,
1194 		 * because that's space we can't touch.  Subtract it from the
1195 		 * block_rsv_size for the next checks.
1196 		 */
1197 		block_rsv_size -= global_rsv_size;
1198 
1199 		/*
1200 		 * We really want to avoid flushing delalloc too much, as it
1201 		 * could result in poor allocation patterns, so only flush it if
1202 		 * it's larger than the rest of the pools combined.
1203 		 */
1204 		if (delalloc_size > block_rsv_size) {
1205 			to_reclaim = delalloc_size;
1206 			flush = FLUSH_DELALLOC;
1207 		} else if (space_info->bytes_pinned >
1208 			   (delayed_block_rsv->reserved +
1209 			    delayed_refs_rsv->reserved)) {
1210 			to_reclaim = space_info->bytes_pinned;
1211 			flush = COMMIT_TRANS;
1212 		} else if (delayed_block_rsv->reserved >
1213 			   delayed_refs_rsv->reserved) {
1214 			to_reclaim = delayed_block_rsv->reserved;
1215 			flush = FLUSH_DELAYED_ITEMS_NR;
1216 		} else {
1217 			to_reclaim = delayed_refs_rsv->reserved;
1218 			flush = FLUSH_DELAYED_REFS_NR;
1219 		}
1220 
1221 		spin_unlock(&space_info->lock);
1222 
1223 		/*
1224 		 * We don't want to reclaim everything, just a portion, so scale
1225 		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1226 		 * reclaim 1 items worth.
1227 		 */
1228 		to_reclaim >>= 2;
1229 		if (!to_reclaim)
1230 			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1231 		flush_space(fs_info, space_info, to_reclaim, flush, true);
1232 		cond_resched();
1233 		spin_lock(&space_info->lock);
1234 	}
1235 
1236 	/* We only went through once, back off our clamping. */
1237 	if (loops == 1 && !space_info->reclaim_size)
1238 		space_info->clamp = max(1, space_info->clamp - 1);
1239 	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1240 	spin_unlock(&space_info->lock);
1241 }
1242 
1243 /*
1244  * FLUSH_DELALLOC_WAIT:
1245  *   Space is freed from flushing delalloc in one of two ways.
1246  *
1247  *   1) compression is on and we allocate less space than we reserved
1248  *   2) we are overwriting existing space
1249  *
1250  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1251  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1252  *   length to ->bytes_reserved, and subtracts the reserved space from
1253  *   ->bytes_may_use.
1254  *
1255  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1256  *   extent in the range we are overwriting, which creates a delayed ref for
1257  *   that freed extent.  This however is not reclaimed until the transaction
1258  *   commits, thus the next stages.
1259  *
1260  * RUN_DELAYED_IPUTS
1261  *   If we are freeing inodes, we want to make sure all delayed iputs have
1262  *   completed, because they could have been on an inode with i_nlink == 0, and
1263  *   thus have been truncated and freed up space.  But again this space is not
1264  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1265  *   run and then the transaction must be committed.
1266  *
1267  * COMMIT_TRANS
1268  *   This is where we reclaim all of the pinned space generated by running the
1269  *   iputs
1270  *
1271  * ALLOC_CHUNK_FORCE
1272  *   For data we start with alloc chunk force, however we could have been full
1273  *   before, and then the transaction commit could have freed new block groups,
1274  *   so if we now have space to allocate do the force chunk allocation.
1275  */
1276 static const enum btrfs_flush_state data_flush_states[] = {
1277 	FLUSH_DELALLOC_FULL,
1278 	RUN_DELAYED_IPUTS,
1279 	COMMIT_TRANS,
1280 	ALLOC_CHUNK_FORCE,
1281 };
1282 
btrfs_async_reclaim_data_space(struct work_struct * work)1283 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1284 {
1285 	struct btrfs_fs_info *fs_info;
1286 	struct btrfs_space_info *space_info;
1287 	u64 last_tickets_id;
1288 	enum btrfs_flush_state flush_state = 0;
1289 
1290 	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1291 	space_info = fs_info->data_sinfo;
1292 
1293 	spin_lock(&space_info->lock);
1294 	if (list_empty(&space_info->tickets)) {
1295 		space_info->flush = 0;
1296 		spin_unlock(&space_info->lock);
1297 		return;
1298 	}
1299 	last_tickets_id = space_info->tickets_id;
1300 	spin_unlock(&space_info->lock);
1301 
1302 	while (!space_info->full) {
1303 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1304 		spin_lock(&space_info->lock);
1305 		if (list_empty(&space_info->tickets)) {
1306 			space_info->flush = 0;
1307 			spin_unlock(&space_info->lock);
1308 			return;
1309 		}
1310 
1311 		/* Something happened, fail everything and bail. */
1312 		if (BTRFS_FS_ERROR(fs_info))
1313 			goto aborted_fs;
1314 		last_tickets_id = space_info->tickets_id;
1315 		spin_unlock(&space_info->lock);
1316 	}
1317 
1318 	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1319 		flush_space(fs_info, space_info, U64_MAX,
1320 			    data_flush_states[flush_state], false);
1321 		spin_lock(&space_info->lock);
1322 		if (list_empty(&space_info->tickets)) {
1323 			space_info->flush = 0;
1324 			spin_unlock(&space_info->lock);
1325 			return;
1326 		}
1327 
1328 		if (last_tickets_id == space_info->tickets_id) {
1329 			flush_state++;
1330 		} else {
1331 			last_tickets_id = space_info->tickets_id;
1332 			flush_state = 0;
1333 		}
1334 
1335 		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1336 			if (space_info->full) {
1337 				if (maybe_fail_all_tickets(fs_info, space_info))
1338 					flush_state = 0;
1339 				else
1340 					space_info->flush = 0;
1341 			} else {
1342 				flush_state = 0;
1343 			}
1344 
1345 			/* Something happened, fail everything and bail. */
1346 			if (BTRFS_FS_ERROR(fs_info))
1347 				goto aborted_fs;
1348 
1349 		}
1350 		spin_unlock(&space_info->lock);
1351 	}
1352 	return;
1353 
1354 aborted_fs:
1355 	maybe_fail_all_tickets(fs_info, space_info);
1356 	space_info->flush = 0;
1357 	spin_unlock(&space_info->lock);
1358 }
1359 
btrfs_init_async_reclaim_work(struct btrfs_fs_info * fs_info)1360 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1361 {
1362 	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1363 	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1364 	INIT_WORK(&fs_info->preempt_reclaim_work,
1365 		  btrfs_preempt_reclaim_metadata_space);
1366 }
1367 
1368 static const enum btrfs_flush_state priority_flush_states[] = {
1369 	FLUSH_DELAYED_ITEMS_NR,
1370 	FLUSH_DELAYED_ITEMS,
1371 	ALLOC_CHUNK,
1372 };
1373 
1374 static const enum btrfs_flush_state evict_flush_states[] = {
1375 	FLUSH_DELAYED_ITEMS_NR,
1376 	FLUSH_DELAYED_ITEMS,
1377 	FLUSH_DELAYED_REFS_NR,
1378 	FLUSH_DELAYED_REFS,
1379 	FLUSH_DELALLOC,
1380 	FLUSH_DELALLOC_WAIT,
1381 	FLUSH_DELALLOC_FULL,
1382 	ALLOC_CHUNK,
1383 	COMMIT_TRANS,
1384 };
1385 
priority_reclaim_metadata_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket,const enum btrfs_flush_state * states,int states_nr)1386 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1387 				struct btrfs_space_info *space_info,
1388 				struct reserve_ticket *ticket,
1389 				const enum btrfs_flush_state *states,
1390 				int states_nr)
1391 {
1392 	u64 to_reclaim;
1393 	int flush_state = 0;
1394 
1395 	spin_lock(&space_info->lock);
1396 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1397 	/*
1398 	 * This is the priority reclaim path, so to_reclaim could be >0 still
1399 	 * because we may have only satisfied the priority tickets and still
1400 	 * left non priority tickets on the list.  We would then have
1401 	 * to_reclaim but ->bytes == 0.
1402 	 */
1403 	if (ticket->bytes == 0) {
1404 		spin_unlock(&space_info->lock);
1405 		return;
1406 	}
1407 
1408 	while (flush_state < states_nr) {
1409 		spin_unlock(&space_info->lock);
1410 		flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1411 			    false);
1412 		flush_state++;
1413 		spin_lock(&space_info->lock);
1414 		if (ticket->bytes == 0) {
1415 			spin_unlock(&space_info->lock);
1416 			return;
1417 		}
1418 	}
1419 
1420 	/* Attempt to steal from the global rsv if we can. */
1421 	if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1422 		ticket->error = -ENOSPC;
1423 		remove_ticket(space_info, ticket);
1424 	}
1425 
1426 	/*
1427 	 * We must run try_granting_tickets here because we could be a large
1428 	 * ticket in front of a smaller ticket that can now be satisfied with
1429 	 * the available space.
1430 	 */
1431 	btrfs_try_granting_tickets(fs_info, space_info);
1432 	spin_unlock(&space_info->lock);
1433 }
1434 
priority_reclaim_data_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)1435 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1436 					struct btrfs_space_info *space_info,
1437 					struct reserve_ticket *ticket)
1438 {
1439 	spin_lock(&space_info->lock);
1440 
1441 	/* We could have been granted before we got here. */
1442 	if (ticket->bytes == 0) {
1443 		spin_unlock(&space_info->lock);
1444 		return;
1445 	}
1446 
1447 	while (!space_info->full) {
1448 		spin_unlock(&space_info->lock);
1449 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1450 		spin_lock(&space_info->lock);
1451 		if (ticket->bytes == 0) {
1452 			spin_unlock(&space_info->lock);
1453 			return;
1454 		}
1455 	}
1456 
1457 	ticket->error = -ENOSPC;
1458 	remove_ticket(space_info, ticket);
1459 	btrfs_try_granting_tickets(fs_info, space_info);
1460 	spin_unlock(&space_info->lock);
1461 }
1462 
wait_reserve_ticket(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)1463 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1464 				struct btrfs_space_info *space_info,
1465 				struct reserve_ticket *ticket)
1466 
1467 {
1468 	DEFINE_WAIT(wait);
1469 	int ret = 0;
1470 
1471 	spin_lock(&space_info->lock);
1472 	while (ticket->bytes > 0 && ticket->error == 0) {
1473 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1474 		if (ret) {
1475 			/*
1476 			 * Delete us from the list. After we unlock the space
1477 			 * info, we don't want the async reclaim job to reserve
1478 			 * space for this ticket. If that would happen, then the
1479 			 * ticket's task would not known that space was reserved
1480 			 * despite getting an error, resulting in a space leak
1481 			 * (bytes_may_use counter of our space_info).
1482 			 */
1483 			remove_ticket(space_info, ticket);
1484 			ticket->error = -EINTR;
1485 			break;
1486 		}
1487 		spin_unlock(&space_info->lock);
1488 
1489 		schedule();
1490 
1491 		finish_wait(&ticket->wait, &wait);
1492 		spin_lock(&space_info->lock);
1493 	}
1494 	spin_unlock(&space_info->lock);
1495 }
1496 
1497 /*
1498  * Do the appropriate flushing and waiting for a ticket.
1499  *
1500  * @fs_info:    the filesystem
1501  * @space_info: space info for the reservation
1502  * @ticket:     ticket for the reservation
1503  * @start_ns:   timestamp when the reservation started
1504  * @orig_bytes: amount of bytes originally reserved
1505  * @flush:      how much we can flush
1506  *
1507  * This does the work of figuring out how to flush for the ticket, waiting for
1508  * the reservation, and returning the appropriate error if there is one.
1509  */
handle_reserve_ticket(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket,u64 start_ns,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1510 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1511 				 struct btrfs_space_info *space_info,
1512 				 struct reserve_ticket *ticket,
1513 				 u64 start_ns, u64 orig_bytes,
1514 				 enum btrfs_reserve_flush_enum flush)
1515 {
1516 	int ret;
1517 
1518 	switch (flush) {
1519 	case BTRFS_RESERVE_FLUSH_DATA:
1520 	case BTRFS_RESERVE_FLUSH_ALL:
1521 	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1522 		wait_reserve_ticket(fs_info, space_info, ticket);
1523 		break;
1524 	case BTRFS_RESERVE_FLUSH_LIMIT:
1525 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1526 						priority_flush_states,
1527 						ARRAY_SIZE(priority_flush_states));
1528 		break;
1529 	case BTRFS_RESERVE_FLUSH_EVICT:
1530 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1531 						evict_flush_states,
1532 						ARRAY_SIZE(evict_flush_states));
1533 		break;
1534 	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1535 		priority_reclaim_data_space(fs_info, space_info, ticket);
1536 		break;
1537 	default:
1538 		ASSERT(0);
1539 		break;
1540 	}
1541 
1542 	ret = ticket->error;
1543 	ASSERT(list_empty(&ticket->list));
1544 	/*
1545 	 * Check that we can't have an error set if the reservation succeeded,
1546 	 * as that would confuse tasks and lead them to error out without
1547 	 * releasing reserved space (if an error happens the expectation is that
1548 	 * space wasn't reserved at all).
1549 	 */
1550 	ASSERT(!(ticket->bytes == 0 && ticket->error));
1551 	trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1552 				   start_ns, flush, ticket->error);
1553 	return ret;
1554 }
1555 
1556 /*
1557  * This returns true if this flush state will go through the ordinary flushing
1558  * code.
1559  */
is_normal_flushing(enum btrfs_reserve_flush_enum flush)1560 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1561 {
1562 	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1563 		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1564 }
1565 
maybe_clamp_preempt(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)1566 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1567 				       struct btrfs_space_info *space_info)
1568 {
1569 	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1570 	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1571 
1572 	/*
1573 	 * If we're heavy on ordered operations then clamping won't help us.  We
1574 	 * need to clamp specifically to keep up with dirty'ing buffered
1575 	 * writers, because there's not a 1:1 correlation of writing delalloc
1576 	 * and freeing space, like there is with flushing delayed refs or
1577 	 * delayed nodes.  If we're already more ordered than delalloc then
1578 	 * we're keeping up, otherwise we aren't and should probably clamp.
1579 	 */
1580 	if (ordered < delalloc)
1581 		space_info->clamp = min(space_info->clamp + 1, 8);
1582 }
1583 
can_steal(enum btrfs_reserve_flush_enum flush)1584 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1585 {
1586 	return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1587 		flush == BTRFS_RESERVE_FLUSH_EVICT);
1588 }
1589 
1590 /*
1591  * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1592  * fail as quickly as possible.
1593  */
can_ticket(enum btrfs_reserve_flush_enum flush)1594 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1595 {
1596 	return (flush != BTRFS_RESERVE_NO_FLUSH &&
1597 		flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1598 }
1599 
1600 /*
1601  * Try to reserve bytes from the block_rsv's space.
1602  *
1603  * @fs_info:    the filesystem
1604  * @space_info: space info we want to allocate from
1605  * @orig_bytes: number of bytes we want
1606  * @flush:      whether or not we can flush to make our reservation
1607  *
1608  * This will reserve orig_bytes number of bytes from the space info associated
1609  * with the block_rsv.  If there is not enough space it will make an attempt to
1610  * flush out space to make room.  It will do this by flushing delalloc if
1611  * possible or committing the transaction.  If flush is 0 then no attempts to
1612  * regain reservations will be made and this will fail if there is not enough
1613  * space already.
1614  */
__reserve_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1615 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1616 			   struct btrfs_space_info *space_info, u64 orig_bytes,
1617 			   enum btrfs_reserve_flush_enum flush)
1618 {
1619 	struct work_struct *async_work;
1620 	struct reserve_ticket ticket;
1621 	u64 start_ns = 0;
1622 	u64 used;
1623 	int ret = 0;
1624 	bool pending_tickets;
1625 
1626 	ASSERT(orig_bytes);
1627 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1628 
1629 	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1630 		async_work = &fs_info->async_data_reclaim_work;
1631 	else
1632 		async_work = &fs_info->async_reclaim_work;
1633 
1634 	spin_lock(&space_info->lock);
1635 	ret = -ENOSPC;
1636 	used = btrfs_space_info_used(space_info, true);
1637 
1638 	/*
1639 	 * We don't want NO_FLUSH allocations to jump everybody, they can
1640 	 * generally handle ENOSPC in a different way, so treat them the same as
1641 	 * normal flushers when it comes to skipping pending tickets.
1642 	 */
1643 	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1644 		pending_tickets = !list_empty(&space_info->tickets) ||
1645 			!list_empty(&space_info->priority_tickets);
1646 	else
1647 		pending_tickets = !list_empty(&space_info->priority_tickets);
1648 
1649 	/*
1650 	 * Carry on if we have enough space (short-circuit) OR call
1651 	 * can_overcommit() to ensure we can overcommit to continue.
1652 	 */
1653 	if (!pending_tickets &&
1654 	    ((used + orig_bytes <= writable_total_bytes(fs_info, space_info)) ||
1655 	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1656 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1657 						      orig_bytes);
1658 		ret = 0;
1659 	}
1660 
1661 	/*
1662 	 * Things are dire, we need to make a reservation so we don't abort.  We
1663 	 * will let this reservation go through as long as we have actual space
1664 	 * left to allocate for the block.
1665 	 */
1666 	if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1667 		used = btrfs_space_info_used(space_info, false);
1668 		if (used + orig_bytes <=
1669 		    writable_total_bytes(fs_info, space_info)) {
1670 			btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1671 							      orig_bytes);
1672 			ret = 0;
1673 		}
1674 	}
1675 
1676 	/*
1677 	 * If we couldn't make a reservation then setup our reservation ticket
1678 	 * and kick the async worker if it's not already running.
1679 	 *
1680 	 * If we are a priority flusher then we just need to add our ticket to
1681 	 * the list and we will do our own flushing further down.
1682 	 */
1683 	if (ret && can_ticket(flush)) {
1684 		ticket.bytes = orig_bytes;
1685 		ticket.error = 0;
1686 		space_info->reclaim_size += ticket.bytes;
1687 		init_waitqueue_head(&ticket.wait);
1688 		ticket.steal = can_steal(flush);
1689 		if (trace_btrfs_reserve_ticket_enabled())
1690 			start_ns = ktime_get_ns();
1691 
1692 		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1693 		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1694 		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1695 			list_add_tail(&ticket.list, &space_info->tickets);
1696 			if (!space_info->flush) {
1697 				/*
1698 				 * We were forced to add a reserve ticket, so
1699 				 * our preemptive flushing is unable to keep
1700 				 * up.  Clamp down on the threshold for the
1701 				 * preemptive flushing in order to keep up with
1702 				 * the workload.
1703 				 */
1704 				maybe_clamp_preempt(fs_info, space_info);
1705 
1706 				space_info->flush = 1;
1707 				trace_btrfs_trigger_flush(fs_info,
1708 							  space_info->flags,
1709 							  orig_bytes, flush,
1710 							  "enospc");
1711 				queue_work(system_unbound_wq, async_work);
1712 			}
1713 		} else {
1714 			list_add_tail(&ticket.list,
1715 				      &space_info->priority_tickets);
1716 		}
1717 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1718 		/*
1719 		 * We will do the space reservation dance during log replay,
1720 		 * which means we won't have fs_info->fs_root set, so don't do
1721 		 * the async reclaim as we will panic.
1722 		 */
1723 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1724 		    !work_busy(&fs_info->preempt_reclaim_work) &&
1725 		    need_preemptive_reclaim(fs_info, space_info)) {
1726 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1727 						  orig_bytes, flush, "preempt");
1728 			queue_work(system_unbound_wq,
1729 				   &fs_info->preempt_reclaim_work);
1730 		}
1731 	}
1732 	spin_unlock(&space_info->lock);
1733 	if (!ret || !can_ticket(flush))
1734 		return ret;
1735 
1736 	return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1737 				     orig_bytes, flush);
1738 }
1739 
1740 /*
1741  * Try to reserve metadata bytes from the block_rsv's space.
1742  *
1743  * @fs_info:    the filesystem
1744  * @block_rsv:  block_rsv we're allocating for
1745  * @orig_bytes: number of bytes we want
1746  * @flush:      whether or not we can flush to make our reservation
1747  *
1748  * This will reserve orig_bytes number of bytes from the space info associated
1749  * with the block_rsv.  If there is not enough space it will make an attempt to
1750  * flush out space to make room.  It will do this by flushing delalloc if
1751  * possible or committing the transaction.  If flush is 0 then no attempts to
1752  * regain reservations will be made and this will fail if there is not enough
1753  * space already.
1754  */
btrfs_reserve_metadata_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1755 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1756 				 struct btrfs_block_rsv *block_rsv,
1757 				 u64 orig_bytes,
1758 				 enum btrfs_reserve_flush_enum flush)
1759 {
1760 	int ret;
1761 
1762 	ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1763 	if (ret == -ENOSPC) {
1764 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1765 					      block_rsv->space_info->flags,
1766 					      orig_bytes, 1);
1767 
1768 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1769 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1770 					      orig_bytes, 0);
1771 	}
1772 	return ret;
1773 }
1774 
1775 /*
1776  * Try to reserve data bytes for an allocation.
1777  *
1778  * @fs_info: the filesystem
1779  * @bytes:   number of bytes we need
1780  * @flush:   how we are allowed to flush
1781  *
1782  * This will reserve bytes from the data space info.  If there is not enough
1783  * space then we will attempt to flush space as specified by flush.
1784  */
btrfs_reserve_data_bytes(struct btrfs_fs_info * fs_info,u64 bytes,enum btrfs_reserve_flush_enum flush)1785 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1786 			     enum btrfs_reserve_flush_enum flush)
1787 {
1788 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1789 	int ret;
1790 
1791 	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1792 	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1793 	       flush == BTRFS_RESERVE_NO_FLUSH);
1794 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1795 
1796 	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1797 	if (ret == -ENOSPC) {
1798 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1799 					      data_sinfo->flags, bytes, 1);
1800 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1801 			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1802 	}
1803 	return ret;
1804 }
1805 
1806 /* Dump all the space infos when we abort a transaction due to ENOSPC. */
btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info * fs_info)1807 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1808 {
1809 	struct btrfs_space_info *space_info;
1810 
1811 	btrfs_info(fs_info, "dumping space info:");
1812 	list_for_each_entry(space_info, &fs_info->space_info, list) {
1813 		spin_lock(&space_info->lock);
1814 		__btrfs_dump_space_info(fs_info, space_info);
1815 		spin_unlock(&space_info->lock);
1816 	}
1817 	dump_global_block_rsv(fs_info);
1818 }
1819 
1820 /*
1821  * Account the unused space of all the readonly block group in the space_info.
1822  * takes mirrors into account.
1823  */
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info * sinfo)1824 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1825 {
1826 	struct btrfs_block_group *block_group;
1827 	u64 free_bytes = 0;
1828 	int factor;
1829 
1830 	/* It's df, we don't care if it's racy */
1831 	if (list_empty(&sinfo->ro_bgs))
1832 		return 0;
1833 
1834 	spin_lock(&sinfo->lock);
1835 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1836 		spin_lock(&block_group->lock);
1837 
1838 		if (!block_group->ro) {
1839 			spin_unlock(&block_group->lock);
1840 			continue;
1841 		}
1842 
1843 		factor = btrfs_bg_type_to_factor(block_group->flags);
1844 		free_bytes += (block_group->length -
1845 			       block_group->used) * factor;
1846 
1847 		spin_unlock(&block_group->lock);
1848 	}
1849 	spin_unlock(&sinfo->lock);
1850 
1851 	return free_bytes;
1852 }
1853