1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (C) 2010 Red Hat, Inc.
4   * Copyright (c) 2016-2021 Christoph Hellwig.
5   */
6  #include <linux/module.h>
7  #include <linux/compiler.h>
8  #include <linux/fs.h>
9  #include <linux/fscrypt.h>
10  #include <linux/pagemap.h>
11  #include <linux/iomap.h>
12  #include <linux/backing-dev.h>
13  #include <linux/uio.h>
14  #include <linux/task_io_accounting_ops.h>
15  #include "trace.h"
16  
17  #include "../internal.h"
18  
19  /*
20   * Private flags for iomap_dio, must not overlap with the public ones in
21   * iomap.h:
22   */
23  #define IOMAP_DIO_WRITE_FUA	(1 << 28)
24  #define IOMAP_DIO_NEED_SYNC	(1 << 29)
25  #define IOMAP_DIO_WRITE		(1 << 30)
26  #define IOMAP_DIO_DIRTY		(1 << 31)
27  
28  struct iomap_dio {
29  	struct kiocb		*iocb;
30  	const struct iomap_dio_ops *dops;
31  	loff_t			i_size;
32  	loff_t			size;
33  	atomic_t		ref;
34  	unsigned		flags;
35  	int			error;
36  	size_t			done_before;
37  	bool			wait_for_completion;
38  
39  	union {
40  		/* used during submission and for synchronous completion: */
41  		struct {
42  			struct iov_iter		*iter;
43  			struct task_struct	*waiter;
44  			struct bio		*poll_bio;
45  		} submit;
46  
47  		/* used for aio completion: */
48  		struct {
49  			struct work_struct	work;
50  		} aio;
51  	};
52  };
53  
iomap_dio_alloc_bio(const struct iomap_iter * iter,struct iomap_dio * dio,unsigned short nr_vecs,blk_opf_t opf)54  static struct bio *iomap_dio_alloc_bio(const struct iomap_iter *iter,
55  		struct iomap_dio *dio, unsigned short nr_vecs, blk_opf_t opf)
56  {
57  	if (dio->dops && dio->dops->bio_set)
58  		return bio_alloc_bioset(iter->iomap.bdev, nr_vecs, opf,
59  					GFP_KERNEL, dio->dops->bio_set);
60  	return bio_alloc(iter->iomap.bdev, nr_vecs, opf, GFP_KERNEL);
61  }
62  
iomap_dio_submit_bio(const struct iomap_iter * iter,struct iomap_dio * dio,struct bio * bio,loff_t pos)63  static void iomap_dio_submit_bio(const struct iomap_iter *iter,
64  		struct iomap_dio *dio, struct bio *bio, loff_t pos)
65  {
66  	atomic_inc(&dio->ref);
67  
68  	/* Sync dio can't be polled reliably */
69  	if ((dio->iocb->ki_flags & IOCB_HIPRI) && !is_sync_kiocb(dio->iocb)) {
70  		bio_set_polled(bio, dio->iocb);
71  		dio->submit.poll_bio = bio;
72  	}
73  
74  	if (dio->dops && dio->dops->submit_io)
75  		dio->dops->submit_io(iter, bio, pos);
76  	else
77  		submit_bio(bio);
78  }
79  
iomap_dio_complete(struct iomap_dio * dio)80  ssize_t iomap_dio_complete(struct iomap_dio *dio)
81  {
82  	const struct iomap_dio_ops *dops = dio->dops;
83  	struct kiocb *iocb = dio->iocb;
84  	struct inode *inode = file_inode(iocb->ki_filp);
85  	loff_t offset = iocb->ki_pos;
86  	ssize_t ret = dio->error;
87  
88  	if (dops && dops->end_io)
89  		ret = dops->end_io(iocb, dio->size, ret, dio->flags);
90  
91  	if (likely(!ret)) {
92  		ret = dio->size;
93  		/* check for short read */
94  		if (offset + ret > dio->i_size &&
95  		    !(dio->flags & IOMAP_DIO_WRITE))
96  			ret = dio->i_size - offset;
97  		iocb->ki_pos += ret;
98  	}
99  
100  	/*
101  	 * Try again to invalidate clean pages which might have been cached by
102  	 * non-direct readahead, or faulted in by get_user_pages() if the source
103  	 * of the write was an mmap'ed region of the file we're writing.  Either
104  	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
105  	 * this invalidation fails, tough, the write still worked...
106  	 *
107  	 * And this page cache invalidation has to be after ->end_io(), as some
108  	 * filesystems convert unwritten extents to real allocations in
109  	 * ->end_io() when necessary, otherwise a racing buffer read would cache
110  	 * zeros from unwritten extents.
111  	 */
112  	if (!dio->error && dio->size &&
113  	    (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
114  		int err;
115  		err = invalidate_inode_pages2_range(inode->i_mapping,
116  				offset >> PAGE_SHIFT,
117  				(offset + dio->size - 1) >> PAGE_SHIFT);
118  		if (err)
119  			dio_warn_stale_pagecache(iocb->ki_filp);
120  	}
121  
122  	inode_dio_end(file_inode(iocb->ki_filp));
123  	/*
124  	 * If this is a DSYNC write, make sure we push it to stable storage now
125  	 * that we've written data.
126  	 */
127  	if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
128  		ret = generic_write_sync(iocb, ret);
129  
130  	if (ret > 0)
131  		ret += dio->done_before;
132  
133  	kfree(dio);
134  
135  	return ret;
136  }
137  EXPORT_SYMBOL_GPL(iomap_dio_complete);
138  
iomap_dio_complete_work(struct work_struct * work)139  static void iomap_dio_complete_work(struct work_struct *work)
140  {
141  	struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
142  	struct kiocb *iocb = dio->iocb;
143  
144  	iocb->ki_complete(iocb, iomap_dio_complete(dio));
145  }
146  
147  /*
148   * Set an error in the dio if none is set yet.  We have to use cmpxchg
149   * as the submission context and the completion context(s) can race to
150   * update the error.
151   */
iomap_dio_set_error(struct iomap_dio * dio,int ret)152  static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
153  {
154  	cmpxchg(&dio->error, 0, ret);
155  }
156  
iomap_dio_bio_end_io(struct bio * bio)157  void iomap_dio_bio_end_io(struct bio *bio)
158  {
159  	struct iomap_dio *dio = bio->bi_private;
160  	bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
161  
162  	if (bio->bi_status)
163  		iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
164  
165  	if (atomic_dec_and_test(&dio->ref)) {
166  		if (dio->wait_for_completion) {
167  			struct task_struct *waiter = dio->submit.waiter;
168  			WRITE_ONCE(dio->submit.waiter, NULL);
169  			blk_wake_io_task(waiter);
170  		} else if (dio->flags & IOMAP_DIO_WRITE) {
171  			struct inode *inode = file_inode(dio->iocb->ki_filp);
172  
173  			WRITE_ONCE(dio->iocb->private, NULL);
174  			INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
175  			queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
176  		} else {
177  			WRITE_ONCE(dio->iocb->private, NULL);
178  			iomap_dio_complete_work(&dio->aio.work);
179  		}
180  	}
181  
182  	if (should_dirty) {
183  		bio_check_pages_dirty(bio);
184  	} else {
185  		bio_release_pages(bio, false);
186  		bio_put(bio);
187  	}
188  }
189  EXPORT_SYMBOL_GPL(iomap_dio_bio_end_io);
190  
iomap_dio_zero(const struct iomap_iter * iter,struct iomap_dio * dio,loff_t pos,unsigned len)191  static void iomap_dio_zero(const struct iomap_iter *iter, struct iomap_dio *dio,
192  		loff_t pos, unsigned len)
193  {
194  	struct inode *inode = file_inode(dio->iocb->ki_filp);
195  	struct page *page = ZERO_PAGE(0);
196  	struct bio *bio;
197  
198  	bio = iomap_dio_alloc_bio(iter, dio, 1, REQ_OP_WRITE | REQ_SYNC | REQ_IDLE);
199  	fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits,
200  				  GFP_KERNEL);
201  	bio->bi_iter.bi_sector = iomap_sector(&iter->iomap, pos);
202  	bio->bi_private = dio;
203  	bio->bi_end_io = iomap_dio_bio_end_io;
204  
205  	get_page(page);
206  	__bio_add_page(bio, page, len, 0);
207  	iomap_dio_submit_bio(iter, dio, bio, pos);
208  }
209  
210  /*
211   * Figure out the bio's operation flags from the dio request, the
212   * mapping, and whether or not we want FUA.  Note that we can end up
213   * clearing the WRITE_FUA flag in the dio request.
214   */
iomap_dio_bio_opflags(struct iomap_dio * dio,const struct iomap * iomap,bool use_fua)215  static inline blk_opf_t iomap_dio_bio_opflags(struct iomap_dio *dio,
216  		const struct iomap *iomap, bool use_fua)
217  {
218  	blk_opf_t opflags = REQ_SYNC | REQ_IDLE;
219  
220  	if (!(dio->flags & IOMAP_DIO_WRITE))
221  		return REQ_OP_READ;
222  
223  	opflags |= REQ_OP_WRITE;
224  	if (use_fua)
225  		opflags |= REQ_FUA;
226  	else
227  		dio->flags &= ~IOMAP_DIO_WRITE_FUA;
228  
229  	return opflags;
230  }
231  
iomap_dio_bio_iter(const struct iomap_iter * iter,struct iomap_dio * dio)232  static loff_t iomap_dio_bio_iter(const struct iomap_iter *iter,
233  		struct iomap_dio *dio)
234  {
235  	const struct iomap *iomap = &iter->iomap;
236  	struct inode *inode = iter->inode;
237  	unsigned int fs_block_size = i_blocksize(inode), pad;
238  	loff_t length = iomap_length(iter);
239  	loff_t pos = iter->pos;
240  	blk_opf_t bio_opf;
241  	struct bio *bio;
242  	bool need_zeroout = false;
243  	bool use_fua = false;
244  	int nr_pages, ret = 0;
245  	size_t copied = 0;
246  	size_t orig_count;
247  
248  	if ((pos | length) & (bdev_logical_block_size(iomap->bdev) - 1) ||
249  	    !bdev_iter_is_aligned(iomap->bdev, dio->submit.iter))
250  		return -EINVAL;
251  
252  	if (iomap->type == IOMAP_UNWRITTEN) {
253  		dio->flags |= IOMAP_DIO_UNWRITTEN;
254  		need_zeroout = true;
255  	}
256  
257  	if (iomap->flags & IOMAP_F_SHARED)
258  		dio->flags |= IOMAP_DIO_COW;
259  
260  	if (iomap->flags & IOMAP_F_NEW) {
261  		need_zeroout = true;
262  	} else if (iomap->type == IOMAP_MAPPED) {
263  		/*
264  		 * Use a FUA write if we need datasync semantics, this is a pure
265  		 * data IO that doesn't require any metadata updates (including
266  		 * after IO completion such as unwritten extent conversion) and
267  		 * the underlying device supports FUA. This allows us to avoid
268  		 * cache flushes on IO completion.
269  		 */
270  		if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
271  		    (dio->flags & IOMAP_DIO_WRITE_FUA) && bdev_fua(iomap->bdev))
272  			use_fua = true;
273  	}
274  
275  	/*
276  	 * Save the original count and trim the iter to just the extent we
277  	 * are operating on right now.  The iter will be re-expanded once
278  	 * we are done.
279  	 */
280  	orig_count = iov_iter_count(dio->submit.iter);
281  	iov_iter_truncate(dio->submit.iter, length);
282  
283  	if (!iov_iter_count(dio->submit.iter))
284  		goto out;
285  
286  	/*
287  	 * We can only poll for single bio I/Os.
288  	 */
289  	if (need_zeroout ||
290  	    ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode)))
291  		dio->iocb->ki_flags &= ~IOCB_HIPRI;
292  
293  	if (need_zeroout) {
294  		/* zero out from the start of the block to the write offset */
295  		pad = pos & (fs_block_size - 1);
296  		if (pad)
297  			iomap_dio_zero(iter, dio, pos - pad, pad);
298  	}
299  
300  	/*
301  	 * Set the operation flags early so that bio_iov_iter_get_pages
302  	 * can set up the page vector appropriately for a ZONE_APPEND
303  	 * operation.
304  	 */
305  	bio_opf = iomap_dio_bio_opflags(dio, iomap, use_fua);
306  
307  	nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS);
308  	do {
309  		size_t n;
310  		if (dio->error) {
311  			iov_iter_revert(dio->submit.iter, copied);
312  			copied = ret = 0;
313  			goto out;
314  		}
315  
316  		bio = iomap_dio_alloc_bio(iter, dio, nr_pages, bio_opf);
317  		fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits,
318  					  GFP_KERNEL);
319  		bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
320  		bio->bi_ioprio = dio->iocb->ki_ioprio;
321  		bio->bi_private = dio;
322  		bio->bi_end_io = iomap_dio_bio_end_io;
323  
324  		ret = bio_iov_iter_get_pages(bio, dio->submit.iter);
325  		if (unlikely(ret)) {
326  			/*
327  			 * We have to stop part way through an IO. We must fall
328  			 * through to the sub-block tail zeroing here, otherwise
329  			 * this short IO may expose stale data in the tail of
330  			 * the block we haven't written data to.
331  			 */
332  			bio_put(bio);
333  			goto zero_tail;
334  		}
335  
336  		n = bio->bi_iter.bi_size;
337  		if (dio->flags & IOMAP_DIO_WRITE) {
338  			task_io_account_write(n);
339  		} else {
340  			if (dio->flags & IOMAP_DIO_DIRTY)
341  				bio_set_pages_dirty(bio);
342  		}
343  
344  		dio->size += n;
345  		copied += n;
346  
347  		nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter,
348  						 BIO_MAX_VECS);
349  		/*
350  		 * We can only poll for single bio I/Os.
351  		 */
352  		if (nr_pages)
353  			dio->iocb->ki_flags &= ~IOCB_HIPRI;
354  		iomap_dio_submit_bio(iter, dio, bio, pos);
355  		pos += n;
356  	} while (nr_pages);
357  
358  	/*
359  	 * We need to zeroout the tail of a sub-block write if the extent type
360  	 * requires zeroing or the write extends beyond EOF. If we don't zero
361  	 * the block tail in the latter case, we can expose stale data via mmap
362  	 * reads of the EOF block.
363  	 */
364  zero_tail:
365  	if (need_zeroout ||
366  	    ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
367  		/* zero out from the end of the write to the end of the block */
368  		pad = pos & (fs_block_size - 1);
369  		if (pad)
370  			iomap_dio_zero(iter, dio, pos, fs_block_size - pad);
371  	}
372  out:
373  	/* Undo iter limitation to current extent */
374  	iov_iter_reexpand(dio->submit.iter, orig_count - copied);
375  	if (copied)
376  		return copied;
377  	return ret;
378  }
379  
iomap_dio_hole_iter(const struct iomap_iter * iter,struct iomap_dio * dio)380  static loff_t iomap_dio_hole_iter(const struct iomap_iter *iter,
381  		struct iomap_dio *dio)
382  {
383  	loff_t length = iov_iter_zero(iomap_length(iter), dio->submit.iter);
384  
385  	dio->size += length;
386  	if (!length)
387  		return -EFAULT;
388  	return length;
389  }
390  
iomap_dio_inline_iter(const struct iomap_iter * iomi,struct iomap_dio * dio)391  static loff_t iomap_dio_inline_iter(const struct iomap_iter *iomi,
392  		struct iomap_dio *dio)
393  {
394  	const struct iomap *iomap = &iomi->iomap;
395  	struct iov_iter *iter = dio->submit.iter;
396  	void *inline_data = iomap_inline_data(iomap, iomi->pos);
397  	loff_t length = iomap_length(iomi);
398  	loff_t pos = iomi->pos;
399  	size_t copied;
400  
401  	if (WARN_ON_ONCE(!iomap_inline_data_valid(iomap)))
402  		return -EIO;
403  
404  	if (dio->flags & IOMAP_DIO_WRITE) {
405  		loff_t size = iomi->inode->i_size;
406  
407  		if (pos > size)
408  			memset(iomap_inline_data(iomap, size), 0, pos - size);
409  		copied = copy_from_iter(inline_data, length, iter);
410  		if (copied) {
411  			if (pos + copied > size)
412  				i_size_write(iomi->inode, pos + copied);
413  			mark_inode_dirty(iomi->inode);
414  		}
415  	} else {
416  		copied = copy_to_iter(inline_data, length, iter);
417  	}
418  	dio->size += copied;
419  	if (!copied)
420  		return -EFAULT;
421  	return copied;
422  }
423  
iomap_dio_iter(const struct iomap_iter * iter,struct iomap_dio * dio)424  static loff_t iomap_dio_iter(const struct iomap_iter *iter,
425  		struct iomap_dio *dio)
426  {
427  	switch (iter->iomap.type) {
428  	case IOMAP_HOLE:
429  		if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
430  			return -EIO;
431  		return iomap_dio_hole_iter(iter, dio);
432  	case IOMAP_UNWRITTEN:
433  		if (!(dio->flags & IOMAP_DIO_WRITE))
434  			return iomap_dio_hole_iter(iter, dio);
435  		return iomap_dio_bio_iter(iter, dio);
436  	case IOMAP_MAPPED:
437  		return iomap_dio_bio_iter(iter, dio);
438  	case IOMAP_INLINE:
439  		return iomap_dio_inline_iter(iter, dio);
440  	case IOMAP_DELALLOC:
441  		/*
442  		 * DIO is not serialised against mmap() access at all, and so
443  		 * if the page_mkwrite occurs between the writeback and the
444  		 * iomap_iter() call in the DIO path, then it will see the
445  		 * DELALLOC block that the page-mkwrite allocated.
446  		 */
447  		pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n",
448  				    dio->iocb->ki_filp, current->comm);
449  		return -EIO;
450  	default:
451  		WARN_ON_ONCE(1);
452  		return -EIO;
453  	}
454  }
455  
456  /*
457   * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
458   * is being issued as AIO or not.  This allows us to optimise pure data writes
459   * to use REQ_FUA rather than requiring generic_write_sync() to issue a
460   * REQ_FLUSH post write. This is slightly tricky because a single request here
461   * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
462   * may be pure data writes. In that case, we still need to do a full data sync
463   * completion.
464   *
465   * When page faults are disabled and @dio_flags includes IOMAP_DIO_PARTIAL,
466   * __iomap_dio_rw can return a partial result if it encounters a non-resident
467   * page in @iter after preparing a transfer.  In that case, the non-resident
468   * pages can be faulted in and the request resumed with @done_before set to the
469   * number of bytes previously transferred.  The request will then complete with
470   * the correct total number of bytes transferred; this is essential for
471   * completing partial requests asynchronously.
472   *
473   * Returns -ENOTBLK In case of a page invalidation invalidation failure for
474   * writes.  The callers needs to fall back to buffered I/O in this case.
475   */
476  struct iomap_dio *
__iomap_dio_rw(struct kiocb * iocb,struct iov_iter * iter,const struct iomap_ops * ops,const struct iomap_dio_ops * dops,unsigned int dio_flags,void * private,size_t done_before)477  __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
478  		const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
479  		unsigned int dio_flags, void *private, size_t done_before)
480  {
481  	struct address_space *mapping = iocb->ki_filp->f_mapping;
482  	struct inode *inode = file_inode(iocb->ki_filp);
483  	struct iomap_iter iomi = {
484  		.inode		= inode,
485  		.pos		= iocb->ki_pos,
486  		.len		= iov_iter_count(iter),
487  		.flags		= IOMAP_DIRECT,
488  		.private	= private,
489  	};
490  	loff_t end = iomi.pos + iomi.len - 1, ret = 0;
491  	bool wait_for_completion =
492  		is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT);
493  	struct blk_plug plug;
494  	struct iomap_dio *dio;
495  
496  	if (!iomi.len)
497  		return NULL;
498  
499  	dio = kmalloc(sizeof(*dio), GFP_KERNEL);
500  	if (!dio)
501  		return ERR_PTR(-ENOMEM);
502  
503  	dio->iocb = iocb;
504  	atomic_set(&dio->ref, 1);
505  	dio->size = 0;
506  	dio->i_size = i_size_read(inode);
507  	dio->dops = dops;
508  	dio->error = 0;
509  	dio->flags = 0;
510  	dio->done_before = done_before;
511  
512  	dio->submit.iter = iter;
513  	dio->submit.waiter = current;
514  	dio->submit.poll_bio = NULL;
515  
516  	if (iov_iter_rw(iter) == READ) {
517  		if (iomi.pos >= dio->i_size)
518  			goto out_free_dio;
519  
520  		if (iocb->ki_flags & IOCB_NOWAIT) {
521  			if (filemap_range_needs_writeback(mapping, iomi.pos,
522  					end)) {
523  				ret = -EAGAIN;
524  				goto out_free_dio;
525  			}
526  			iomi.flags |= IOMAP_NOWAIT;
527  		}
528  
529  		if (user_backed_iter(iter))
530  			dio->flags |= IOMAP_DIO_DIRTY;
531  	} else {
532  		iomi.flags |= IOMAP_WRITE;
533  		dio->flags |= IOMAP_DIO_WRITE;
534  
535  		if (iocb->ki_flags & IOCB_NOWAIT) {
536  			if (filemap_range_has_page(mapping, iomi.pos, end)) {
537  				ret = -EAGAIN;
538  				goto out_free_dio;
539  			}
540  			iomi.flags |= IOMAP_NOWAIT;
541  		}
542  
543  		/* for data sync or sync, we need sync completion processing */
544  		if (iocb_is_dsync(iocb) && !(dio_flags & IOMAP_DIO_NOSYNC)) {
545  			dio->flags |= IOMAP_DIO_NEED_SYNC;
546  
547  		       /*
548  			* For datasync only writes, we optimistically try
549  			* using FUA for this IO.  Any non-FUA write that
550  			* occurs will clear this flag, hence we know before
551  			* completion whether a cache flush is necessary.
552  			*/
553  			if (!(iocb->ki_flags & IOCB_SYNC))
554  				dio->flags |= IOMAP_DIO_WRITE_FUA;
555  		}
556  	}
557  
558  	if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) {
559  		ret = -EAGAIN;
560  		if (iomi.pos >= dio->i_size ||
561  		    iomi.pos + iomi.len > dio->i_size)
562  			goto out_free_dio;
563  		iomi.flags |= IOMAP_OVERWRITE_ONLY;
564  	}
565  
566  	ret = filemap_write_and_wait_range(mapping, iomi.pos, end);
567  	if (ret)
568  		goto out_free_dio;
569  
570  	if (iov_iter_rw(iter) == WRITE) {
571  		/*
572  		 * Try to invalidate cache pages for the range we are writing.
573  		 * If this invalidation fails, let the caller fall back to
574  		 * buffered I/O.
575  		 */
576  		if (invalidate_inode_pages2_range(mapping,
577  				iomi.pos >> PAGE_SHIFT, end >> PAGE_SHIFT)) {
578  			trace_iomap_dio_invalidate_fail(inode, iomi.pos,
579  							iomi.len);
580  			ret = -ENOTBLK;
581  			goto out_free_dio;
582  		}
583  
584  		if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) {
585  			ret = sb_init_dio_done_wq(inode->i_sb);
586  			if (ret < 0)
587  				goto out_free_dio;
588  		}
589  	}
590  
591  	inode_dio_begin(inode);
592  
593  	blk_start_plug(&plug);
594  	while ((ret = iomap_iter(&iomi, ops)) > 0) {
595  		iomi.processed = iomap_dio_iter(&iomi, dio);
596  
597  		/*
598  		 * We can only poll for single bio I/Os.
599  		 */
600  		iocb->ki_flags &= ~IOCB_HIPRI;
601  	}
602  
603  	blk_finish_plug(&plug);
604  
605  	/*
606  	 * We only report that we've read data up to i_size.
607  	 * Revert iter to a state corresponding to that as some callers (such
608  	 * as the splice code) rely on it.
609  	 */
610  	if (iov_iter_rw(iter) == READ && iomi.pos >= dio->i_size)
611  		iov_iter_revert(iter, iomi.pos - dio->i_size);
612  
613  	if (ret == -EFAULT && dio->size && (dio_flags & IOMAP_DIO_PARTIAL)) {
614  		if (!(iocb->ki_flags & IOCB_NOWAIT))
615  			wait_for_completion = true;
616  		ret = 0;
617  	}
618  
619  	/* magic error code to fall back to buffered I/O */
620  	if (ret == -ENOTBLK) {
621  		wait_for_completion = true;
622  		ret = 0;
623  	}
624  	if (ret < 0)
625  		iomap_dio_set_error(dio, ret);
626  
627  	/*
628  	 * If all the writes we issued were FUA, we don't need to flush the
629  	 * cache on IO completion. Clear the sync flag for this case.
630  	 */
631  	if (dio->flags & IOMAP_DIO_WRITE_FUA)
632  		dio->flags &= ~IOMAP_DIO_NEED_SYNC;
633  
634  	WRITE_ONCE(iocb->private, dio->submit.poll_bio);
635  
636  	/*
637  	 * We are about to drop our additional submission reference, which
638  	 * might be the last reference to the dio.  There are three different
639  	 * ways we can progress here:
640  	 *
641  	 *  (a) If this is the last reference we will always complete and free
642  	 *	the dio ourselves.
643  	 *  (b) If this is not the last reference, and we serve an asynchronous
644  	 *	iocb, we must never touch the dio after the decrement, the
645  	 *	I/O completion handler will complete and free it.
646  	 *  (c) If this is not the last reference, but we serve a synchronous
647  	 *	iocb, the I/O completion handler will wake us up on the drop
648  	 *	of the final reference, and we will complete and free it here
649  	 *	after we got woken by the I/O completion handler.
650  	 */
651  	dio->wait_for_completion = wait_for_completion;
652  	if (!atomic_dec_and_test(&dio->ref)) {
653  		if (!wait_for_completion)
654  			return ERR_PTR(-EIOCBQUEUED);
655  
656  		for (;;) {
657  			set_current_state(TASK_UNINTERRUPTIBLE);
658  			if (!READ_ONCE(dio->submit.waiter))
659  				break;
660  
661  			blk_io_schedule();
662  		}
663  		__set_current_state(TASK_RUNNING);
664  	}
665  
666  	return dio;
667  
668  out_free_dio:
669  	kfree(dio);
670  	if (ret)
671  		return ERR_PTR(ret);
672  	return NULL;
673  }
674  EXPORT_SYMBOL_GPL(__iomap_dio_rw);
675  
676  ssize_t
iomap_dio_rw(struct kiocb * iocb,struct iov_iter * iter,const struct iomap_ops * ops,const struct iomap_dio_ops * dops,unsigned int dio_flags,void * private,size_t done_before)677  iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
678  		const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
679  		unsigned int dio_flags, void *private, size_t done_before)
680  {
681  	struct iomap_dio *dio;
682  
683  	dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags, private,
684  			     done_before);
685  	if (IS_ERR_OR_NULL(dio))
686  		return PTR_ERR_OR_ZERO(dio);
687  	return iomap_dio_complete(dio);
688  }
689  EXPORT_SYMBOL_GPL(iomap_dio_rw);
690