1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Cryptographic API for algorithms (i.e., low-level API).
4 *
5 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
6 */
7 #ifndef _CRYPTO_ALGAPI_H
8 #define _CRYPTO_ALGAPI_H
9
10 #include <linux/align.h>
11 #include <linux/cache.h>
12 #include <linux/crypto.h>
13 #include <linux/kconfig.h>
14 #include <linux/list.h>
15 #include <linux/types.h>
16
17 #include <asm/unaligned.h>
18
19 /*
20 * Maximum values for blocksize and alignmask, used to allocate
21 * static buffers that are big enough for any combination of
22 * algs and architectures. Ciphers have a lower maximum size.
23 */
24 #define MAX_ALGAPI_BLOCKSIZE 160
25 #define MAX_ALGAPI_ALIGNMASK 127
26 #define MAX_CIPHER_BLOCKSIZE 16
27 #define MAX_CIPHER_ALIGNMASK 15
28
29 #ifdef ARCH_DMA_MINALIGN
30 #define CRYPTO_DMA_ALIGN ARCH_DMA_MINALIGN
31 #else
32 #define CRYPTO_DMA_ALIGN CRYPTO_MINALIGN
33 #endif
34
35 #define CRYPTO_DMA_PADDING ((CRYPTO_DMA_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
36
37 struct crypto_aead;
38 struct crypto_instance;
39 struct module;
40 struct notifier_block;
41 struct rtattr;
42 struct seq_file;
43 struct sk_buff;
44
45 struct crypto_type {
46 unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask);
47 unsigned int (*extsize)(struct crypto_alg *alg);
48 int (*init)(struct crypto_tfm *tfm, u32 type, u32 mask);
49 int (*init_tfm)(struct crypto_tfm *tfm);
50 void (*show)(struct seq_file *m, struct crypto_alg *alg);
51 int (*report)(struct sk_buff *skb, struct crypto_alg *alg);
52 void (*free)(struct crypto_instance *inst);
53
54 unsigned int type;
55 unsigned int maskclear;
56 unsigned int maskset;
57 unsigned int tfmsize;
58 };
59
60 struct crypto_instance {
61 struct crypto_alg alg;
62
63 struct crypto_template *tmpl;
64
65 union {
66 /* Node in list of instances after registration. */
67 struct hlist_node list;
68 /* List of attached spawns before registration. */
69 struct crypto_spawn *spawns;
70 };
71
72 void *__ctx[] CRYPTO_MINALIGN_ATTR;
73 };
74
75 struct crypto_template {
76 struct list_head list;
77 struct hlist_head instances;
78 struct module *module;
79
80 int (*create)(struct crypto_template *tmpl, struct rtattr **tb);
81
82 char name[CRYPTO_MAX_ALG_NAME];
83 };
84
85 struct crypto_spawn {
86 struct list_head list;
87 struct crypto_alg *alg;
88 union {
89 /* Back pointer to instance after registration.*/
90 struct crypto_instance *inst;
91 /* Spawn list pointer prior to registration. */
92 struct crypto_spawn *next;
93 };
94 const struct crypto_type *frontend;
95 u32 mask;
96 bool dead;
97 bool registered;
98 };
99
100 struct crypto_queue {
101 struct list_head list;
102 struct list_head *backlog;
103
104 unsigned int qlen;
105 unsigned int max_qlen;
106 };
107
108 struct scatter_walk {
109 struct scatterlist *sg;
110 unsigned int offset;
111 };
112
113 struct crypto_attr_alg {
114 char name[CRYPTO_MAX_ALG_NAME];
115 };
116
117 struct crypto_attr_type {
118 u32 type;
119 u32 mask;
120 };
121
122 void crypto_mod_put(struct crypto_alg *alg);
123
124 int crypto_register_template(struct crypto_template *tmpl);
125 int crypto_register_templates(struct crypto_template *tmpls, int count);
126 void crypto_unregister_template(struct crypto_template *tmpl);
127 void crypto_unregister_templates(struct crypto_template *tmpls, int count);
128 struct crypto_template *crypto_lookup_template(const char *name);
129
130 int crypto_register_instance(struct crypto_template *tmpl,
131 struct crypto_instance *inst);
132 void crypto_unregister_instance(struct crypto_instance *inst);
133
134 int crypto_grab_spawn(struct crypto_spawn *spawn, struct crypto_instance *inst,
135 const char *name, u32 type, u32 mask);
136 void crypto_drop_spawn(struct crypto_spawn *spawn);
137 struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type,
138 u32 mask);
139 void *crypto_spawn_tfm2(struct crypto_spawn *spawn);
140
141 struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb);
142 int crypto_check_attr_type(struct rtattr **tb, u32 type, u32 *mask_ret);
143 const char *crypto_attr_alg_name(struct rtattr *rta);
144 int crypto_inst_setname(struct crypto_instance *inst, const char *name,
145 struct crypto_alg *alg);
146
147 void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen);
148 int crypto_enqueue_request(struct crypto_queue *queue,
149 struct crypto_async_request *request);
150 void crypto_enqueue_request_head(struct crypto_queue *queue,
151 struct crypto_async_request *request);
152 struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue);
crypto_queue_len(struct crypto_queue * queue)153 static inline unsigned int crypto_queue_len(struct crypto_queue *queue)
154 {
155 return queue->qlen;
156 }
157
158 void crypto_inc(u8 *a, unsigned int size);
159 void __crypto_xor(u8 *dst, const u8 *src1, const u8 *src2, unsigned int size);
160
crypto_xor(u8 * dst,const u8 * src,unsigned int size)161 static inline void crypto_xor(u8 *dst, const u8 *src, unsigned int size)
162 {
163 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) &&
164 __builtin_constant_p(size) &&
165 (size % sizeof(unsigned long)) == 0) {
166 unsigned long *d = (unsigned long *)dst;
167 unsigned long *s = (unsigned long *)src;
168 unsigned long l;
169
170 while (size > 0) {
171 l = get_unaligned(d) ^ get_unaligned(s++);
172 put_unaligned(l, d++);
173 size -= sizeof(unsigned long);
174 }
175 } else {
176 __crypto_xor(dst, dst, src, size);
177 }
178 }
179
crypto_xor_cpy(u8 * dst,const u8 * src1,const u8 * src2,unsigned int size)180 static inline void crypto_xor_cpy(u8 *dst, const u8 *src1, const u8 *src2,
181 unsigned int size)
182 {
183 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) &&
184 __builtin_constant_p(size) &&
185 (size % sizeof(unsigned long)) == 0) {
186 unsigned long *d = (unsigned long *)dst;
187 unsigned long *s1 = (unsigned long *)src1;
188 unsigned long *s2 = (unsigned long *)src2;
189 unsigned long l;
190
191 while (size > 0) {
192 l = get_unaligned(s1++) ^ get_unaligned(s2++);
193 put_unaligned(l, d++);
194 size -= sizeof(unsigned long);
195 }
196 } else {
197 __crypto_xor(dst, src1, src2, size);
198 }
199 }
200
crypto_tfm_ctx(struct crypto_tfm * tfm)201 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
202 {
203 return tfm->__crt_ctx;
204 }
205
crypto_tfm_ctx_align(struct crypto_tfm * tfm,unsigned int align)206 static inline void *crypto_tfm_ctx_align(struct crypto_tfm *tfm,
207 unsigned int align)
208 {
209 if (align <= crypto_tfm_ctx_alignment())
210 align = 1;
211
212 return PTR_ALIGN(crypto_tfm_ctx(tfm), align);
213 }
214
crypto_tfm_ctx_aligned(struct crypto_tfm * tfm)215 static inline void *crypto_tfm_ctx_aligned(struct crypto_tfm *tfm)
216 {
217 return crypto_tfm_ctx_align(tfm, crypto_tfm_alg_alignmask(tfm) + 1);
218 }
219
crypto_dma_align(void)220 static inline unsigned int crypto_dma_align(void)
221 {
222 return CRYPTO_DMA_ALIGN;
223 }
224
crypto_dma_padding(void)225 static inline unsigned int crypto_dma_padding(void)
226 {
227 return (crypto_dma_align() - 1) & ~(crypto_tfm_ctx_alignment() - 1);
228 }
229
crypto_tfm_ctx_dma(struct crypto_tfm * tfm)230 static inline void *crypto_tfm_ctx_dma(struct crypto_tfm *tfm)
231 {
232 return crypto_tfm_ctx_align(tfm, crypto_dma_align());
233 }
234
crypto_tfm_alg_instance(struct crypto_tfm * tfm)235 static inline struct crypto_instance *crypto_tfm_alg_instance(
236 struct crypto_tfm *tfm)
237 {
238 return container_of(tfm->__crt_alg, struct crypto_instance, alg);
239 }
240
crypto_instance_ctx(struct crypto_instance * inst)241 static inline void *crypto_instance_ctx(struct crypto_instance *inst)
242 {
243 return inst->__ctx;
244 }
245
crypto_get_backlog(struct crypto_queue * queue)246 static inline struct crypto_async_request *crypto_get_backlog(
247 struct crypto_queue *queue)
248 {
249 return queue->backlog == &queue->list ? NULL :
250 container_of(queue->backlog, struct crypto_async_request, list);
251 }
252
crypto_requires_off(struct crypto_attr_type * algt,u32 off)253 static inline u32 crypto_requires_off(struct crypto_attr_type *algt, u32 off)
254 {
255 return (algt->type ^ off) & algt->mask & off;
256 }
257
258 /*
259 * When an algorithm uses another algorithm (e.g., if it's an instance of a
260 * template), these are the flags that should always be set on the "outer"
261 * algorithm if any "inner" algorithm has them set.
262 */
263 #define CRYPTO_ALG_INHERITED_FLAGS \
264 (CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK | \
265 CRYPTO_ALG_ALLOCATES_MEMORY)
266
267 /*
268 * Given the type and mask that specify the flags restrictions on a template
269 * instance being created, return the mask that should be passed to
270 * crypto_grab_*() (along with type=0) to honor any request the user made to
271 * have any of the CRYPTO_ALG_INHERITED_FLAGS clear.
272 */
crypto_algt_inherited_mask(struct crypto_attr_type * algt)273 static inline u32 crypto_algt_inherited_mask(struct crypto_attr_type *algt)
274 {
275 return crypto_requires_off(algt, CRYPTO_ALG_INHERITED_FLAGS);
276 }
277
278 noinline unsigned long __crypto_memneq(const void *a, const void *b, size_t size);
279
280 /**
281 * crypto_memneq - Compare two areas of memory without leaking
282 * timing information.
283 *
284 * @a: One area of memory
285 * @b: Another area of memory
286 * @size: The size of the area.
287 *
288 * Returns 0 when data is equal, 1 otherwise.
289 */
crypto_memneq(const void * a,const void * b,size_t size)290 static inline int crypto_memneq(const void *a, const void *b, size_t size)
291 {
292 return __crypto_memneq(a, b, size) != 0UL ? 1 : 0;
293 }
294
295 int crypto_register_notifier(struct notifier_block *nb);
296 int crypto_unregister_notifier(struct notifier_block *nb);
297
298 /* Crypto notification events. */
299 enum {
300 CRYPTO_MSG_ALG_REQUEST,
301 CRYPTO_MSG_ALG_REGISTER,
302 CRYPTO_MSG_ALG_LOADED,
303 };
304
crypto_request_complete(struct crypto_async_request * req,int err)305 static inline void crypto_request_complete(struct crypto_async_request *req,
306 int err)
307 {
308 req->complete(req->data, err);
309 }
310
311 #endif /* _CRYPTO_ALGAPI_H */
312