1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * DAMON api
4 *
5 * Author: SeongJae Park <sjpark@amazon.de>
6 */
7
8 #ifndef _DAMON_H_
9 #define _DAMON_H_
10
11 #include <linux/memcontrol.h>
12 #include <linux/mutex.h>
13 #include <linux/time64.h>
14 #include <linux/types.h>
15 #include <linux/random.h>
16
17 /* Minimal region size. Every damon_region is aligned by this. */
18 #define DAMON_MIN_REGION PAGE_SIZE
19 /* Max priority score for DAMON-based operation schemes */
20 #define DAMOS_MAX_SCORE (99)
21
22 /* Get a random number in [l, r) */
damon_rand(unsigned long l,unsigned long r)23 static inline unsigned long damon_rand(unsigned long l, unsigned long r)
24 {
25 return l + get_random_u32_below(r - l);
26 }
27
28 /**
29 * struct damon_addr_range - Represents an address region of [@start, @end).
30 * @start: Start address of the region (inclusive).
31 * @end: End address of the region (exclusive).
32 */
33 struct damon_addr_range {
34 unsigned long start;
35 unsigned long end;
36 };
37
38 /**
39 * struct damon_region - Represents a monitoring target region.
40 * @ar: The address range of the region.
41 * @sampling_addr: Address of the sample for the next access check.
42 * @nr_accesses: Access frequency of this region.
43 * @list: List head for siblings.
44 * @age: Age of this region.
45 *
46 * @age is initially zero, increased for each aggregation interval, and reset
47 * to zero again if the access frequency is significantly changed. If two
48 * regions are merged into a new region, both @nr_accesses and @age of the new
49 * region are set as region size-weighted average of those of the two regions.
50 */
51 struct damon_region {
52 struct damon_addr_range ar;
53 unsigned long sampling_addr;
54 unsigned int nr_accesses;
55 struct list_head list;
56
57 unsigned int age;
58 /* private: Internal value for age calculation. */
59 unsigned int last_nr_accesses;
60 };
61
62 /**
63 * struct damon_target - Represents a monitoring target.
64 * @pid: The PID of the virtual address space to monitor.
65 * @nr_regions: Number of monitoring target regions of this target.
66 * @regions_list: Head of the monitoring target regions of this target.
67 * @list: List head for siblings.
68 *
69 * Each monitoring context could have multiple targets. For example, a context
70 * for virtual memory address spaces could have multiple target processes. The
71 * @pid should be set for appropriate &struct damon_operations including the
72 * virtual address spaces monitoring operations.
73 */
74 struct damon_target {
75 struct pid *pid;
76 unsigned int nr_regions;
77 struct list_head regions_list;
78 struct list_head list;
79 };
80
81 /**
82 * enum damos_action - Represents an action of a Data Access Monitoring-based
83 * Operation Scheme.
84 *
85 * @DAMOS_WILLNEED: Call ``madvise()`` for the region with MADV_WILLNEED.
86 * @DAMOS_COLD: Call ``madvise()`` for the region with MADV_COLD.
87 * @DAMOS_PAGEOUT: Call ``madvise()`` for the region with MADV_PAGEOUT.
88 * @DAMOS_HUGEPAGE: Call ``madvise()`` for the region with MADV_HUGEPAGE.
89 * @DAMOS_NOHUGEPAGE: Call ``madvise()`` for the region with MADV_NOHUGEPAGE.
90 * @DAMOS_LRU_PRIO: Prioritize the region on its LRU lists.
91 * @DAMOS_LRU_DEPRIO: Deprioritize the region on its LRU lists.
92 * @DAMOS_STAT: Do nothing but count the stat.
93 * @NR_DAMOS_ACTIONS: Total number of DAMOS actions
94 *
95 * The support of each action is up to running &struct damon_operations.
96 * &enum DAMON_OPS_VADDR and &enum DAMON_OPS_FVADDR supports all actions except
97 * &enum DAMOS_LRU_PRIO and &enum DAMOS_LRU_DEPRIO. &enum DAMON_OPS_PADDR
98 * supports only &enum DAMOS_PAGEOUT, &enum DAMOS_LRU_PRIO, &enum
99 * DAMOS_LRU_DEPRIO, and &DAMOS_STAT.
100 */
101 enum damos_action {
102 DAMOS_WILLNEED,
103 DAMOS_COLD,
104 DAMOS_PAGEOUT,
105 DAMOS_HUGEPAGE,
106 DAMOS_NOHUGEPAGE,
107 DAMOS_LRU_PRIO,
108 DAMOS_LRU_DEPRIO,
109 DAMOS_STAT, /* Do nothing but only record the stat */
110 NR_DAMOS_ACTIONS,
111 };
112
113 /**
114 * struct damos_quota - Controls the aggressiveness of the given scheme.
115 * @ms: Maximum milliseconds that the scheme can use.
116 * @sz: Maximum bytes of memory that the action can be applied.
117 * @reset_interval: Charge reset interval in milliseconds.
118 *
119 * @weight_sz: Weight of the region's size for prioritization.
120 * @weight_nr_accesses: Weight of the region's nr_accesses for prioritization.
121 * @weight_age: Weight of the region's age for prioritization.
122 *
123 * To avoid consuming too much CPU time or IO resources for applying the
124 * &struct damos->action to large memory, DAMON allows users to set time and/or
125 * size quotas. The quotas can be set by writing non-zero values to &ms and
126 * &sz, respectively. If the time quota is set, DAMON tries to use only up to
127 * &ms milliseconds within &reset_interval for applying the action. If the
128 * size quota is set, DAMON tries to apply the action only up to &sz bytes
129 * within &reset_interval.
130 *
131 * Internally, the time quota is transformed to a size quota using estimated
132 * throughput of the scheme's action. DAMON then compares it against &sz and
133 * uses smaller one as the effective quota.
134 *
135 * For selecting regions within the quota, DAMON prioritizes current scheme's
136 * target memory regions using the &struct damon_operations->get_scheme_score.
137 * You could customize the prioritization logic by setting &weight_sz,
138 * &weight_nr_accesses, and &weight_age, because monitoring operations are
139 * encouraged to respect those.
140 */
141 struct damos_quota {
142 unsigned long ms;
143 unsigned long sz;
144 unsigned long reset_interval;
145
146 unsigned int weight_sz;
147 unsigned int weight_nr_accesses;
148 unsigned int weight_age;
149
150 /* private: */
151 /* For throughput estimation */
152 unsigned long total_charged_sz;
153 unsigned long total_charged_ns;
154
155 unsigned long esz; /* Effective size quota in bytes */
156
157 /* For charging the quota */
158 unsigned long charged_sz;
159 unsigned long charged_from;
160 struct damon_target *charge_target_from;
161 unsigned long charge_addr_from;
162
163 /* For prioritization */
164 unsigned long histogram[DAMOS_MAX_SCORE + 1];
165 unsigned int min_score;
166 };
167
168 /**
169 * enum damos_wmark_metric - Represents the watermark metric.
170 *
171 * @DAMOS_WMARK_NONE: Ignore the watermarks of the given scheme.
172 * @DAMOS_WMARK_FREE_MEM_RATE: Free memory rate of the system in [0,1000].
173 * @NR_DAMOS_WMARK_METRICS: Total number of DAMOS watermark metrics
174 */
175 enum damos_wmark_metric {
176 DAMOS_WMARK_NONE,
177 DAMOS_WMARK_FREE_MEM_RATE,
178 NR_DAMOS_WMARK_METRICS,
179 };
180
181 /**
182 * struct damos_watermarks - Controls when a given scheme should be activated.
183 * @metric: Metric for the watermarks.
184 * @interval: Watermarks check time interval in microseconds.
185 * @high: High watermark.
186 * @mid: Middle watermark.
187 * @low: Low watermark.
188 *
189 * If &metric is &DAMOS_WMARK_NONE, the scheme is always active. Being active
190 * means DAMON does monitoring and applying the action of the scheme to
191 * appropriate memory regions. Else, DAMON checks &metric of the system for at
192 * least every &interval microseconds and works as below.
193 *
194 * If &metric is higher than &high, the scheme is inactivated. If &metric is
195 * between &mid and &low, the scheme is activated. If &metric is lower than
196 * &low, the scheme is inactivated.
197 */
198 struct damos_watermarks {
199 enum damos_wmark_metric metric;
200 unsigned long interval;
201 unsigned long high;
202 unsigned long mid;
203 unsigned long low;
204
205 /* private: */
206 bool activated;
207 };
208
209 /**
210 * struct damos_stat - Statistics on a given scheme.
211 * @nr_tried: Total number of regions that the scheme is tried to be applied.
212 * @sz_tried: Total size of regions that the scheme is tried to be applied.
213 * @nr_applied: Total number of regions that the scheme is applied.
214 * @sz_applied: Total size of regions that the scheme is applied.
215 * @qt_exceeds: Total number of times the quota of the scheme has exceeded.
216 */
217 struct damos_stat {
218 unsigned long nr_tried;
219 unsigned long sz_tried;
220 unsigned long nr_applied;
221 unsigned long sz_applied;
222 unsigned long qt_exceeds;
223 };
224
225 /**
226 * enum damos_filter_type - Type of memory for &struct damos_filter
227 * @DAMOS_FILTER_TYPE_ANON: Anonymous pages.
228 * @DAMOS_FILTER_TYPE_MEMCG: Specific memcg's pages.
229 * @NR_DAMOS_FILTER_TYPES: Number of filter types.
230 *
231 * The support of each filter type is up to running &struct damon_operations.
232 * &enum DAMON_OPS_PADDR is supporting all filter types, while
233 * &enum DAMON_OPS_VADDR and &enum DAMON_OPS_FVADDR are not supporting any
234 * filter types.
235 */
236 enum damos_filter_type {
237 DAMOS_FILTER_TYPE_ANON,
238 DAMOS_FILTER_TYPE_MEMCG,
239 NR_DAMOS_FILTER_TYPES,
240 };
241
242 /**
243 * struct damos_filter - DAMOS action target memory filter.
244 * @type: Type of the page.
245 * @matching: If the matching page should filtered out or in.
246 * @memcg_id: Memcg id of the question if @type is DAMOS_FILTER_MEMCG.
247 * @list: List head for siblings.
248 *
249 * Before applying the &damos->action to a memory region, DAMOS checks if each
250 * page of the region matches to this and avoid applying the action if so.
251 * Note that the check support is up to &struct damon_operations
252 * implementation.
253 */
254 struct damos_filter {
255 enum damos_filter_type type;
256 bool matching;
257 union {
258 unsigned short memcg_id;
259 };
260 struct list_head list;
261 };
262
263 /**
264 * struct damos_access_pattern - Target access pattern of the given scheme.
265 * @min_sz_region: Minimum size of target regions.
266 * @max_sz_region: Maximum size of target regions.
267 * @min_nr_accesses: Minimum ``->nr_accesses`` of target regions.
268 * @max_nr_accesses: Maximum ``->nr_accesses`` of target regions.
269 * @min_age_region: Minimum age of target regions.
270 * @max_age_region: Maximum age of target regions.
271 */
272 struct damos_access_pattern {
273 unsigned long min_sz_region;
274 unsigned long max_sz_region;
275 unsigned int min_nr_accesses;
276 unsigned int max_nr_accesses;
277 unsigned int min_age_region;
278 unsigned int max_age_region;
279 };
280
281 /**
282 * struct damos - Represents a Data Access Monitoring-based Operation Scheme.
283 * @pattern: Access pattern of target regions.
284 * @action: &damo_action to be applied to the target regions.
285 * @quota: Control the aggressiveness of this scheme.
286 * @wmarks: Watermarks for automated (in)activation of this scheme.
287 * @filters: Additional set of &struct damos_filter for &action.
288 * @stat: Statistics of this scheme.
289 * @list: List head for siblings.
290 *
291 * For each aggregation interval, DAMON finds regions which fit in the
292 * &pattern and applies &action to those. To avoid consuming too much
293 * CPU time or IO resources for the &action, "a is used.
294 *
295 * To do the work only when needed, schemes can be activated for specific
296 * system situations using &wmarks. If all schemes that registered to the
297 * monitoring context are inactive, DAMON stops monitoring either, and just
298 * repeatedly checks the watermarks.
299 *
300 * If all schemes that registered to a &struct damon_ctx are inactive, DAMON
301 * stops monitoring and just repeatedly checks the watermarks.
302 *
303 * Before applying the &action to a memory region, &struct damon_operations
304 * implementation could check pages of the region and skip &action to respect
305 * &filters
306 *
307 * After applying the &action to each region, &stat_count and &stat_sz is
308 * updated to reflect the number of regions and total size of regions that the
309 * &action is applied.
310 */
311 struct damos {
312 struct damos_access_pattern pattern;
313 enum damos_action action;
314 struct damos_quota quota;
315 struct damos_watermarks wmarks;
316 struct list_head filters;
317 struct damos_stat stat;
318 struct list_head list;
319 };
320
321 /**
322 * enum damon_ops_id - Identifier for each monitoring operations implementation
323 *
324 * @DAMON_OPS_VADDR: Monitoring operations for virtual address spaces
325 * @DAMON_OPS_FVADDR: Monitoring operations for only fixed ranges of virtual
326 * address spaces
327 * @DAMON_OPS_PADDR: Monitoring operations for the physical address space
328 * @NR_DAMON_OPS: Number of monitoring operations implementations
329 */
330 enum damon_ops_id {
331 DAMON_OPS_VADDR,
332 DAMON_OPS_FVADDR,
333 DAMON_OPS_PADDR,
334 NR_DAMON_OPS,
335 };
336
337 struct damon_ctx;
338
339 /**
340 * struct damon_operations - Monitoring operations for given use cases.
341 *
342 * @id: Identifier of this operations set.
343 * @init: Initialize operations-related data structures.
344 * @update: Update operations-related data structures.
345 * @prepare_access_checks: Prepare next access check of target regions.
346 * @check_accesses: Check the accesses to target regions.
347 * @reset_aggregated: Reset aggregated accesses monitoring results.
348 * @get_scheme_score: Get the score of a region for a scheme.
349 * @apply_scheme: Apply a DAMON-based operation scheme.
350 * @target_valid: Determine if the target is valid.
351 * @cleanup: Clean up the context.
352 *
353 * DAMON can be extended for various address spaces and usages. For this,
354 * users should register the low level operations for their target address
355 * space and usecase via the &damon_ctx.ops. Then, the monitoring thread
356 * (&damon_ctx.kdamond) calls @init and @prepare_access_checks before starting
357 * the monitoring, @update after each &damon_attrs.ops_update_interval, and
358 * @check_accesses, @target_valid and @prepare_access_checks after each
359 * &damon_attrs.sample_interval. Finally, @reset_aggregated is called after
360 * each &damon_attrs.aggr_interval.
361 *
362 * Each &struct damon_operations instance having valid @id can be registered
363 * via damon_register_ops() and selected by damon_select_ops() later.
364 * @init should initialize operations-related data structures. For example,
365 * this could be used to construct proper monitoring target regions and link
366 * those to @damon_ctx.adaptive_targets.
367 * @update should update the operations-related data structures. For example,
368 * this could be used to update monitoring target regions for current status.
369 * @prepare_access_checks should manipulate the monitoring regions to be
370 * prepared for the next access check.
371 * @check_accesses should check the accesses to each region that made after the
372 * last preparation and update the number of observed accesses of each region.
373 * It should also return max number of observed accesses that made as a result
374 * of its update. The value will be used for regions adjustment threshold.
375 * @reset_aggregated should reset the access monitoring results that aggregated
376 * by @check_accesses.
377 * @get_scheme_score should return the priority score of a region for a scheme
378 * as an integer in [0, &DAMOS_MAX_SCORE].
379 * @apply_scheme is called from @kdamond when a region for user provided
380 * DAMON-based operation scheme is found. It should apply the scheme's action
381 * to the region and return bytes of the region that the action is successfully
382 * applied.
383 * @target_valid should check whether the target is still valid for the
384 * monitoring.
385 * @cleanup is called from @kdamond just before its termination.
386 */
387 struct damon_operations {
388 enum damon_ops_id id;
389 void (*init)(struct damon_ctx *context);
390 void (*update)(struct damon_ctx *context);
391 void (*prepare_access_checks)(struct damon_ctx *context);
392 unsigned int (*check_accesses)(struct damon_ctx *context);
393 void (*reset_aggregated)(struct damon_ctx *context);
394 int (*get_scheme_score)(struct damon_ctx *context,
395 struct damon_target *t, struct damon_region *r,
396 struct damos *scheme);
397 unsigned long (*apply_scheme)(struct damon_ctx *context,
398 struct damon_target *t, struct damon_region *r,
399 struct damos *scheme);
400 bool (*target_valid)(struct damon_target *t);
401 void (*cleanup)(struct damon_ctx *context);
402 };
403
404 /**
405 * struct damon_callback - Monitoring events notification callbacks.
406 *
407 * @before_start: Called before starting the monitoring.
408 * @after_wmarks_check: Called after each schemes' watermarks check.
409 * @after_sampling: Called after each sampling.
410 * @after_aggregation: Called after each aggregation.
411 * @before_damos_apply: Called before applying DAMOS action.
412 * @before_terminate: Called before terminating the monitoring.
413 * @private: User private data.
414 *
415 * The monitoring thread (&damon_ctx.kdamond) calls @before_start and
416 * @before_terminate just before starting and finishing the monitoring,
417 * respectively. Therefore, those are good places for installing and cleaning
418 * @private.
419 *
420 * The monitoring thread calls @after_wmarks_check after each DAMON-based
421 * operation schemes' watermarks check. If users need to make changes to the
422 * attributes of the monitoring context while it's deactivated due to the
423 * watermarks, this is the good place to do.
424 *
425 * The monitoring thread calls @after_sampling and @after_aggregation for each
426 * of the sampling intervals and aggregation intervals, respectively.
427 * Therefore, users can safely access the monitoring results without additional
428 * protection. For the reason, users are recommended to use these callback for
429 * the accesses to the results.
430 *
431 * If any callback returns non-zero, monitoring stops.
432 */
433 struct damon_callback {
434 void *private;
435
436 int (*before_start)(struct damon_ctx *context);
437 int (*after_wmarks_check)(struct damon_ctx *context);
438 int (*after_sampling)(struct damon_ctx *context);
439 int (*after_aggregation)(struct damon_ctx *context);
440 int (*before_damos_apply)(struct damon_ctx *context,
441 struct damon_target *target,
442 struct damon_region *region,
443 struct damos *scheme);
444 void (*before_terminate)(struct damon_ctx *context);
445 };
446
447 /**
448 * struct damon_attrs - Monitoring attributes for accuracy/overhead control.
449 *
450 * @sample_interval: The time between access samplings.
451 * @aggr_interval: The time between monitor results aggregations.
452 * @ops_update_interval: The time between monitoring operations updates.
453 * @min_nr_regions: The minimum number of adaptive monitoring
454 * regions.
455 * @max_nr_regions: The maximum number of adaptive monitoring
456 * regions.
457 *
458 * For each @sample_interval, DAMON checks whether each region is accessed or
459 * not. It aggregates and keeps the access information (number of accesses to
460 * each region) for @aggr_interval time. DAMON also checks whether the target
461 * memory regions need update (e.g., by ``mmap()`` calls from the application,
462 * in case of virtual memory monitoring) and applies the changes for each
463 * @ops_update_interval. All time intervals are in micro-seconds.
464 * Please refer to &struct damon_operations and &struct damon_callback for more
465 * detail.
466 */
467 struct damon_attrs {
468 unsigned long sample_interval;
469 unsigned long aggr_interval;
470 unsigned long ops_update_interval;
471 unsigned long min_nr_regions;
472 unsigned long max_nr_regions;
473 };
474
475 /**
476 * struct damon_ctx - Represents a context for each monitoring. This is the
477 * main interface that allows users to set the attributes and get the results
478 * of the monitoring.
479 *
480 * @attrs: Monitoring attributes for accuracy/overhead control.
481 * @kdamond: Kernel thread who does the monitoring.
482 * @kdamond_lock: Mutex for the synchronizations with @kdamond.
483 *
484 * For each monitoring context, one kernel thread for the monitoring is
485 * created. The pointer to the thread is stored in @kdamond.
486 *
487 * Once started, the monitoring thread runs until explicitly required to be
488 * terminated or every monitoring target is invalid. The validity of the
489 * targets is checked via the &damon_operations.target_valid of @ops. The
490 * termination can also be explicitly requested by calling damon_stop().
491 * The thread sets @kdamond to NULL when it terminates. Therefore, users can
492 * know whether the monitoring is ongoing or terminated by reading @kdamond.
493 * Reads and writes to @kdamond from outside of the monitoring thread must
494 * be protected by @kdamond_lock.
495 *
496 * Note that the monitoring thread protects only @kdamond via @kdamond_lock.
497 * Accesses to other fields must be protected by themselves.
498 *
499 * @ops: Set of monitoring operations for given use cases.
500 * @callback: Set of callbacks for monitoring events notifications.
501 *
502 * @adaptive_targets: Head of monitoring targets (&damon_target) list.
503 * @schemes: Head of schemes (&damos) list.
504 */
505 struct damon_ctx {
506 struct damon_attrs attrs;
507
508 /* private: internal use only */
509 struct timespec64 last_aggregation;
510 struct timespec64 last_ops_update;
511
512 /* public: */
513 struct task_struct *kdamond;
514 struct mutex kdamond_lock;
515
516 struct damon_operations ops;
517 struct damon_callback callback;
518
519 struct list_head adaptive_targets;
520 struct list_head schemes;
521 };
522
damon_next_region(struct damon_region * r)523 static inline struct damon_region *damon_next_region(struct damon_region *r)
524 {
525 return container_of(r->list.next, struct damon_region, list);
526 }
527
damon_prev_region(struct damon_region * r)528 static inline struct damon_region *damon_prev_region(struct damon_region *r)
529 {
530 return container_of(r->list.prev, struct damon_region, list);
531 }
532
damon_last_region(struct damon_target * t)533 static inline struct damon_region *damon_last_region(struct damon_target *t)
534 {
535 return list_last_entry(&t->regions_list, struct damon_region, list);
536 }
537
damon_first_region(struct damon_target * t)538 static inline struct damon_region *damon_first_region(struct damon_target *t)
539 {
540 return list_first_entry(&t->regions_list, struct damon_region, list);
541 }
542
damon_sz_region(struct damon_region * r)543 static inline unsigned long damon_sz_region(struct damon_region *r)
544 {
545 return r->ar.end - r->ar.start;
546 }
547
548
549 #define damon_for_each_region(r, t) \
550 list_for_each_entry(r, &t->regions_list, list)
551
552 #define damon_for_each_region_from(r, t) \
553 list_for_each_entry_from(r, &t->regions_list, list)
554
555 #define damon_for_each_region_safe(r, next, t) \
556 list_for_each_entry_safe(r, next, &t->regions_list, list)
557
558 #define damon_for_each_target(t, ctx) \
559 list_for_each_entry(t, &(ctx)->adaptive_targets, list)
560
561 #define damon_for_each_target_safe(t, next, ctx) \
562 list_for_each_entry_safe(t, next, &(ctx)->adaptive_targets, list)
563
564 #define damon_for_each_scheme(s, ctx) \
565 list_for_each_entry(s, &(ctx)->schemes, list)
566
567 #define damon_for_each_scheme_safe(s, next, ctx) \
568 list_for_each_entry_safe(s, next, &(ctx)->schemes, list)
569
570 #define damos_for_each_filter(f, scheme) \
571 list_for_each_entry(f, &(scheme)->filters, list)
572
573 #define damos_for_each_filter_safe(f, next, scheme) \
574 list_for_each_entry_safe(f, next, &(scheme)->filters, list)
575
576 #ifdef CONFIG_DAMON
577
578 struct damon_region *damon_new_region(unsigned long start, unsigned long end);
579
580 /*
581 * Add a region between two other regions
582 */
damon_insert_region(struct damon_region * r,struct damon_region * prev,struct damon_region * next,struct damon_target * t)583 static inline void damon_insert_region(struct damon_region *r,
584 struct damon_region *prev, struct damon_region *next,
585 struct damon_target *t)
586 {
587 __list_add(&r->list, &prev->list, &next->list);
588 t->nr_regions++;
589 }
590
591 void damon_add_region(struct damon_region *r, struct damon_target *t);
592 void damon_destroy_region(struct damon_region *r, struct damon_target *t);
593 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
594 unsigned int nr_ranges);
595
596 struct damos_filter *damos_new_filter(enum damos_filter_type type,
597 bool matching);
598 void damos_add_filter(struct damos *s, struct damos_filter *f);
599 void damos_destroy_filter(struct damos_filter *f);
600
601 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
602 enum damos_action action, struct damos_quota *quota,
603 struct damos_watermarks *wmarks);
604 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s);
605 void damon_destroy_scheme(struct damos *s);
606
607 struct damon_target *damon_new_target(void);
608 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t);
609 bool damon_targets_empty(struct damon_ctx *ctx);
610 void damon_free_target(struct damon_target *t);
611 void damon_destroy_target(struct damon_target *t);
612 unsigned int damon_nr_regions(struct damon_target *t);
613
614 struct damon_ctx *damon_new_ctx(void);
615 void damon_destroy_ctx(struct damon_ctx *ctx);
616 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs);
617 void damon_set_schemes(struct damon_ctx *ctx,
618 struct damos **schemes, ssize_t nr_schemes);
619 int damon_nr_running_ctxs(void);
620 bool damon_is_registered_ops(enum damon_ops_id id);
621 int damon_register_ops(struct damon_operations *ops);
622 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id);
623
damon_target_has_pid(const struct damon_ctx * ctx)624 static inline bool damon_target_has_pid(const struct damon_ctx *ctx)
625 {
626 return ctx->ops.id == DAMON_OPS_VADDR || ctx->ops.id == DAMON_OPS_FVADDR;
627 }
628
629
630 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive);
631 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs);
632
633 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
634 unsigned long *start, unsigned long *end);
635
636 #endif /* CONFIG_DAMON */
637
638 #endif /* _DAMON_H */
639