1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * arch-independent dma-mapping routines
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
13 #include <linux/kmsan.h>
14 #include <linux/of_device.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17 #include "debug.h"
18 #include "direct.h"
19
20 bool dma_default_coherent;
21
22 /*
23 * Managed DMA API
24 */
25 struct dma_devres {
26 size_t size;
27 void *vaddr;
28 dma_addr_t dma_handle;
29 unsigned long attrs;
30 };
31
dmam_release(struct device * dev,void * res)32 static void dmam_release(struct device *dev, void *res)
33 {
34 struct dma_devres *this = res;
35
36 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
37 this->attrs);
38 }
39
dmam_match(struct device * dev,void * res,void * match_data)40 static int dmam_match(struct device *dev, void *res, void *match_data)
41 {
42 struct dma_devres *this = res, *match = match_data;
43
44 if (this->vaddr == match->vaddr) {
45 WARN_ON(this->size != match->size ||
46 this->dma_handle != match->dma_handle);
47 return 1;
48 }
49 return 0;
50 }
51
52 /**
53 * dmam_free_coherent - Managed dma_free_coherent()
54 * @dev: Device to free coherent memory for
55 * @size: Size of allocation
56 * @vaddr: Virtual address of the memory to free
57 * @dma_handle: DMA handle of the memory to free
58 *
59 * Managed dma_free_coherent().
60 */
dmam_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle)61 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
62 dma_addr_t dma_handle)
63 {
64 struct dma_devres match_data = { size, vaddr, dma_handle };
65
66 dma_free_coherent(dev, size, vaddr, dma_handle);
67 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
68 }
69 EXPORT_SYMBOL(dmam_free_coherent);
70
71 /**
72 * dmam_alloc_attrs - Managed dma_alloc_attrs()
73 * @dev: Device to allocate non_coherent memory for
74 * @size: Size of allocation
75 * @dma_handle: Out argument for allocated DMA handle
76 * @gfp: Allocation flags
77 * @attrs: Flags in the DMA_ATTR_* namespace.
78 *
79 * Managed dma_alloc_attrs(). Memory allocated using this function will be
80 * automatically released on driver detach.
81 *
82 * RETURNS:
83 * Pointer to allocated memory on success, NULL on failure.
84 */
dmam_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)85 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
86 gfp_t gfp, unsigned long attrs)
87 {
88 struct dma_devres *dr;
89 void *vaddr;
90
91 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
92 if (!dr)
93 return NULL;
94
95 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
96 if (!vaddr) {
97 devres_free(dr);
98 return NULL;
99 }
100
101 dr->vaddr = vaddr;
102 dr->dma_handle = *dma_handle;
103 dr->size = size;
104 dr->attrs = attrs;
105
106 devres_add(dev, dr);
107
108 return vaddr;
109 }
110 EXPORT_SYMBOL(dmam_alloc_attrs);
111
dma_go_direct(struct device * dev,dma_addr_t mask,const struct dma_map_ops * ops)112 static bool dma_go_direct(struct device *dev, dma_addr_t mask,
113 const struct dma_map_ops *ops)
114 {
115 if (likely(!ops))
116 return true;
117 #ifdef CONFIG_DMA_OPS_BYPASS
118 if (dev->dma_ops_bypass)
119 return min_not_zero(mask, dev->bus_dma_limit) >=
120 dma_direct_get_required_mask(dev);
121 #endif
122 return false;
123 }
124
125
126 /*
127 * Check if the devices uses a direct mapping for streaming DMA operations.
128 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
129 * enough.
130 */
dma_alloc_direct(struct device * dev,const struct dma_map_ops * ops)131 static inline bool dma_alloc_direct(struct device *dev,
132 const struct dma_map_ops *ops)
133 {
134 return dma_go_direct(dev, dev->coherent_dma_mask, ops);
135 }
136
dma_map_direct(struct device * dev,const struct dma_map_ops * ops)137 static inline bool dma_map_direct(struct device *dev,
138 const struct dma_map_ops *ops)
139 {
140 return dma_go_direct(dev, *dev->dma_mask, ops);
141 }
142
dma_map_page_attrs(struct device * dev,struct page * page,size_t offset,size_t size,enum dma_data_direction dir,unsigned long attrs)143 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
144 size_t offset, size_t size, enum dma_data_direction dir,
145 unsigned long attrs)
146 {
147 const struct dma_map_ops *ops = get_dma_ops(dev);
148 dma_addr_t addr;
149
150 BUG_ON(!valid_dma_direction(dir));
151
152 if (WARN_ON_ONCE(!dev->dma_mask))
153 return DMA_MAPPING_ERROR;
154
155 if (dma_map_direct(dev, ops) ||
156 arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
157 addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
158 else
159 addr = ops->map_page(dev, page, offset, size, dir, attrs);
160 kmsan_handle_dma(page, offset, size, dir);
161 debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
162
163 return addr;
164 }
165 EXPORT_SYMBOL(dma_map_page_attrs);
166
dma_unmap_page_attrs(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)167 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
168 enum dma_data_direction dir, unsigned long attrs)
169 {
170 const struct dma_map_ops *ops = get_dma_ops(dev);
171
172 BUG_ON(!valid_dma_direction(dir));
173 if (dma_map_direct(dev, ops) ||
174 arch_dma_unmap_page_direct(dev, addr + size))
175 dma_direct_unmap_page(dev, addr, size, dir, attrs);
176 else if (ops->unmap_page)
177 ops->unmap_page(dev, addr, size, dir, attrs);
178 debug_dma_unmap_page(dev, addr, size, dir);
179 }
180 EXPORT_SYMBOL(dma_unmap_page_attrs);
181
__dma_map_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)182 static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
183 int nents, enum dma_data_direction dir, unsigned long attrs)
184 {
185 const struct dma_map_ops *ops = get_dma_ops(dev);
186 int ents;
187
188 BUG_ON(!valid_dma_direction(dir));
189
190 if (WARN_ON_ONCE(!dev->dma_mask))
191 return 0;
192
193 if (dma_map_direct(dev, ops) ||
194 arch_dma_map_sg_direct(dev, sg, nents))
195 ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
196 else
197 ents = ops->map_sg(dev, sg, nents, dir, attrs);
198
199 if (ents > 0) {
200 kmsan_handle_dma_sg(sg, nents, dir);
201 debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
202 } else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
203 ents != -EIO && ents != -EREMOTEIO)) {
204 return -EIO;
205 }
206
207 return ents;
208 }
209
210 /**
211 * dma_map_sg_attrs - Map the given buffer for DMA
212 * @dev: The device for which to perform the DMA operation
213 * @sg: The sg_table object describing the buffer
214 * @nents: Number of entries to map
215 * @dir: DMA direction
216 * @attrs: Optional DMA attributes for the map operation
217 *
218 * Maps a buffer described by a scatterlist passed in the sg argument with
219 * nents segments for the @dir DMA operation by the @dev device.
220 *
221 * Returns the number of mapped entries (which can be less than nents)
222 * on success. Zero is returned for any error.
223 *
224 * dma_unmap_sg_attrs() should be used to unmap the buffer with the
225 * original sg and original nents (not the value returned by this funciton).
226 */
dma_map_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)227 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
228 int nents, enum dma_data_direction dir, unsigned long attrs)
229 {
230 int ret;
231
232 ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
233 if (ret < 0)
234 return 0;
235 return ret;
236 }
237 EXPORT_SYMBOL(dma_map_sg_attrs);
238
239 /**
240 * dma_map_sgtable - Map the given buffer for DMA
241 * @dev: The device for which to perform the DMA operation
242 * @sgt: The sg_table object describing the buffer
243 * @dir: DMA direction
244 * @attrs: Optional DMA attributes for the map operation
245 *
246 * Maps a buffer described by a scatterlist stored in the given sg_table
247 * object for the @dir DMA operation by the @dev device. After success, the
248 * ownership for the buffer is transferred to the DMA domain. One has to
249 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
250 * ownership of the buffer back to the CPU domain before touching the
251 * buffer by the CPU.
252 *
253 * Returns 0 on success or a negative error code on error. The following
254 * error codes are supported with the given meaning:
255 *
256 * -EINVAL An invalid argument, unaligned access or other error
257 * in usage. Will not succeed if retried.
258 * -ENOMEM Insufficient resources (like memory or IOVA space) to
259 * complete the mapping. Should succeed if retried later.
260 * -EIO Legacy error code with an unknown meaning. eg. this is
261 * returned if a lower level call returned
262 * DMA_MAPPING_ERROR.
263 * -EREMOTEIO The DMA device cannot access P2PDMA memory specified
264 * in the sg_table. This will not succeed if retried.
265 */
dma_map_sgtable(struct device * dev,struct sg_table * sgt,enum dma_data_direction dir,unsigned long attrs)266 int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
267 enum dma_data_direction dir, unsigned long attrs)
268 {
269 int nents;
270
271 nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
272 if (nents < 0)
273 return nents;
274 sgt->nents = nents;
275 return 0;
276 }
277 EXPORT_SYMBOL_GPL(dma_map_sgtable);
278
dma_unmap_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)279 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
280 int nents, enum dma_data_direction dir,
281 unsigned long attrs)
282 {
283 const struct dma_map_ops *ops = get_dma_ops(dev);
284
285 BUG_ON(!valid_dma_direction(dir));
286 debug_dma_unmap_sg(dev, sg, nents, dir);
287 if (dma_map_direct(dev, ops) ||
288 arch_dma_unmap_sg_direct(dev, sg, nents))
289 dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
290 else if (ops->unmap_sg)
291 ops->unmap_sg(dev, sg, nents, dir, attrs);
292 }
293 EXPORT_SYMBOL(dma_unmap_sg_attrs);
294
dma_map_resource(struct device * dev,phys_addr_t phys_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)295 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
296 size_t size, enum dma_data_direction dir, unsigned long attrs)
297 {
298 const struct dma_map_ops *ops = get_dma_ops(dev);
299 dma_addr_t addr = DMA_MAPPING_ERROR;
300
301 BUG_ON(!valid_dma_direction(dir));
302
303 if (WARN_ON_ONCE(!dev->dma_mask))
304 return DMA_MAPPING_ERROR;
305
306 if (dma_map_direct(dev, ops))
307 addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
308 else if (ops->map_resource)
309 addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
310
311 debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
312 return addr;
313 }
314 EXPORT_SYMBOL(dma_map_resource);
315
dma_unmap_resource(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)316 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
317 enum dma_data_direction dir, unsigned long attrs)
318 {
319 const struct dma_map_ops *ops = get_dma_ops(dev);
320
321 BUG_ON(!valid_dma_direction(dir));
322 if (!dma_map_direct(dev, ops) && ops->unmap_resource)
323 ops->unmap_resource(dev, addr, size, dir, attrs);
324 debug_dma_unmap_resource(dev, addr, size, dir);
325 }
326 EXPORT_SYMBOL(dma_unmap_resource);
327
dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)328 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
329 enum dma_data_direction dir)
330 {
331 const struct dma_map_ops *ops = get_dma_ops(dev);
332
333 BUG_ON(!valid_dma_direction(dir));
334 if (dma_map_direct(dev, ops))
335 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
336 else if (ops->sync_single_for_cpu)
337 ops->sync_single_for_cpu(dev, addr, size, dir);
338 debug_dma_sync_single_for_cpu(dev, addr, size, dir);
339 }
340 EXPORT_SYMBOL(dma_sync_single_for_cpu);
341
dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)342 void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
343 size_t size, enum dma_data_direction dir)
344 {
345 const struct dma_map_ops *ops = get_dma_ops(dev);
346
347 BUG_ON(!valid_dma_direction(dir));
348 if (dma_map_direct(dev, ops))
349 dma_direct_sync_single_for_device(dev, addr, size, dir);
350 else if (ops->sync_single_for_device)
351 ops->sync_single_for_device(dev, addr, size, dir);
352 debug_dma_sync_single_for_device(dev, addr, size, dir);
353 }
354 EXPORT_SYMBOL(dma_sync_single_for_device);
355
dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)356 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
357 int nelems, enum dma_data_direction dir)
358 {
359 const struct dma_map_ops *ops = get_dma_ops(dev);
360
361 BUG_ON(!valid_dma_direction(dir));
362 if (dma_map_direct(dev, ops))
363 dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
364 else if (ops->sync_sg_for_cpu)
365 ops->sync_sg_for_cpu(dev, sg, nelems, dir);
366 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
367 }
368 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
369
dma_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)370 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
371 int nelems, enum dma_data_direction dir)
372 {
373 const struct dma_map_ops *ops = get_dma_ops(dev);
374
375 BUG_ON(!valid_dma_direction(dir));
376 if (dma_map_direct(dev, ops))
377 dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
378 else if (ops->sync_sg_for_device)
379 ops->sync_sg_for_device(dev, sg, nelems, dir);
380 debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
381 }
382 EXPORT_SYMBOL(dma_sync_sg_for_device);
383
384 /*
385 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
386 * that the intention is to allow exporting memory allocated via the
387 * coherent DMA APIs through the dma_buf API, which only accepts a
388 * scattertable. This presents a couple of problems:
389 * 1. Not all memory allocated via the coherent DMA APIs is backed by
390 * a struct page
391 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
392 * as we will try to flush the memory through a different alias to that
393 * actually being used (and the flushes are redundant.)
394 */
dma_get_sgtable_attrs(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)395 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
396 void *cpu_addr, dma_addr_t dma_addr, size_t size,
397 unsigned long attrs)
398 {
399 const struct dma_map_ops *ops = get_dma_ops(dev);
400
401 if (dma_alloc_direct(dev, ops))
402 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
403 size, attrs);
404 if (!ops->get_sgtable)
405 return -ENXIO;
406 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
407 }
408 EXPORT_SYMBOL(dma_get_sgtable_attrs);
409
410 #ifdef CONFIG_MMU
411 /*
412 * Return the page attributes used for mapping dma_alloc_* memory, either in
413 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
414 */
dma_pgprot(struct device * dev,pgprot_t prot,unsigned long attrs)415 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
416 {
417 if (dev_is_dma_coherent(dev))
418 return prot;
419 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
420 if (attrs & DMA_ATTR_WRITE_COMBINE)
421 return pgprot_writecombine(prot);
422 #endif
423 return pgprot_dmacoherent(prot);
424 }
425 #endif /* CONFIG_MMU */
426
427 /**
428 * dma_can_mmap - check if a given device supports dma_mmap_*
429 * @dev: device to check
430 *
431 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
432 * map DMA allocations to userspace.
433 */
dma_can_mmap(struct device * dev)434 bool dma_can_mmap(struct device *dev)
435 {
436 const struct dma_map_ops *ops = get_dma_ops(dev);
437
438 if (dma_alloc_direct(dev, ops))
439 return dma_direct_can_mmap(dev);
440 return ops->mmap != NULL;
441 }
442 EXPORT_SYMBOL_GPL(dma_can_mmap);
443
444 /**
445 * dma_mmap_attrs - map a coherent DMA allocation into user space
446 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
447 * @vma: vm_area_struct describing requested user mapping
448 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
449 * @dma_addr: device-view address returned from dma_alloc_attrs
450 * @size: size of memory originally requested in dma_alloc_attrs
451 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
452 *
453 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
454 * space. The coherent DMA buffer must not be freed by the driver until the
455 * user space mapping has been released.
456 */
dma_mmap_attrs(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)457 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
458 void *cpu_addr, dma_addr_t dma_addr, size_t size,
459 unsigned long attrs)
460 {
461 const struct dma_map_ops *ops = get_dma_ops(dev);
462
463 if (dma_alloc_direct(dev, ops))
464 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
465 attrs);
466 if (!ops->mmap)
467 return -ENXIO;
468 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
469 }
470 EXPORT_SYMBOL(dma_mmap_attrs);
471
dma_get_required_mask(struct device * dev)472 u64 dma_get_required_mask(struct device *dev)
473 {
474 const struct dma_map_ops *ops = get_dma_ops(dev);
475
476 if (dma_alloc_direct(dev, ops))
477 return dma_direct_get_required_mask(dev);
478 if (ops->get_required_mask)
479 return ops->get_required_mask(dev);
480
481 /*
482 * We require every DMA ops implementation to at least support a 32-bit
483 * DMA mask (and use bounce buffering if that isn't supported in
484 * hardware). As the direct mapping code has its own routine to
485 * actually report an optimal mask we default to 32-bit here as that
486 * is the right thing for most IOMMUs, and at least not actively
487 * harmful in general.
488 */
489 return DMA_BIT_MASK(32);
490 }
491 EXPORT_SYMBOL_GPL(dma_get_required_mask);
492
dma_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag,unsigned long attrs)493 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
494 gfp_t flag, unsigned long attrs)
495 {
496 const struct dma_map_ops *ops = get_dma_ops(dev);
497 void *cpu_addr;
498
499 WARN_ON_ONCE(!dev->coherent_dma_mask);
500
501 /*
502 * DMA allocations can never be turned back into a page pointer, so
503 * requesting compound pages doesn't make sense (and can't even be
504 * supported at all by various backends).
505 */
506 if (WARN_ON_ONCE(flag & __GFP_COMP))
507 return NULL;
508
509 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
510 return cpu_addr;
511
512 /* let the implementation decide on the zone to allocate from: */
513 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
514
515 if (dma_alloc_direct(dev, ops))
516 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
517 else if (ops->alloc)
518 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
519 else
520 return NULL;
521
522 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
523 return cpu_addr;
524 }
525 EXPORT_SYMBOL(dma_alloc_attrs);
526
dma_free_attrs(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle,unsigned long attrs)527 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
528 dma_addr_t dma_handle, unsigned long attrs)
529 {
530 const struct dma_map_ops *ops = get_dma_ops(dev);
531
532 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
533 return;
534 /*
535 * On non-coherent platforms which implement DMA-coherent buffers via
536 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
537 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
538 * sleep on some machines, and b) an indication that the driver is
539 * probably misusing the coherent API anyway.
540 */
541 WARN_ON(irqs_disabled());
542
543 if (!cpu_addr)
544 return;
545
546 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
547 if (dma_alloc_direct(dev, ops))
548 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
549 else if (ops->free)
550 ops->free(dev, size, cpu_addr, dma_handle, attrs);
551 }
552 EXPORT_SYMBOL(dma_free_attrs);
553
__dma_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)554 static struct page *__dma_alloc_pages(struct device *dev, size_t size,
555 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
556 {
557 const struct dma_map_ops *ops = get_dma_ops(dev);
558
559 if (WARN_ON_ONCE(!dev->coherent_dma_mask))
560 return NULL;
561 if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
562 return NULL;
563 if (WARN_ON_ONCE(gfp & __GFP_COMP))
564 return NULL;
565
566 size = PAGE_ALIGN(size);
567 if (dma_alloc_direct(dev, ops))
568 return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
569 if (!ops->alloc_pages)
570 return NULL;
571 return ops->alloc_pages(dev, size, dma_handle, dir, gfp);
572 }
573
dma_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)574 struct page *dma_alloc_pages(struct device *dev, size_t size,
575 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
576 {
577 struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
578
579 if (page)
580 debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
581 return page;
582 }
583 EXPORT_SYMBOL_GPL(dma_alloc_pages);
584
__dma_free_pages(struct device * dev,size_t size,struct page * page,dma_addr_t dma_handle,enum dma_data_direction dir)585 static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
586 dma_addr_t dma_handle, enum dma_data_direction dir)
587 {
588 const struct dma_map_ops *ops = get_dma_ops(dev);
589
590 size = PAGE_ALIGN(size);
591 if (dma_alloc_direct(dev, ops))
592 dma_direct_free_pages(dev, size, page, dma_handle, dir);
593 else if (ops->free_pages)
594 ops->free_pages(dev, size, page, dma_handle, dir);
595 }
596
dma_free_pages(struct device * dev,size_t size,struct page * page,dma_addr_t dma_handle,enum dma_data_direction dir)597 void dma_free_pages(struct device *dev, size_t size, struct page *page,
598 dma_addr_t dma_handle, enum dma_data_direction dir)
599 {
600 debug_dma_unmap_page(dev, dma_handle, size, dir);
601 __dma_free_pages(dev, size, page, dma_handle, dir);
602 }
603 EXPORT_SYMBOL_GPL(dma_free_pages);
604
dma_mmap_pages(struct device * dev,struct vm_area_struct * vma,size_t size,struct page * page)605 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
606 size_t size, struct page *page)
607 {
608 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
609
610 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
611 return -ENXIO;
612 return remap_pfn_range(vma, vma->vm_start,
613 page_to_pfn(page) + vma->vm_pgoff,
614 vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
615 }
616 EXPORT_SYMBOL_GPL(dma_mmap_pages);
617
alloc_single_sgt(struct device * dev,size_t size,enum dma_data_direction dir,gfp_t gfp)618 static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
619 enum dma_data_direction dir, gfp_t gfp)
620 {
621 struct sg_table *sgt;
622 struct page *page;
623
624 sgt = kmalloc(sizeof(*sgt), gfp);
625 if (!sgt)
626 return NULL;
627 if (sg_alloc_table(sgt, 1, gfp))
628 goto out_free_sgt;
629 page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
630 if (!page)
631 goto out_free_table;
632 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
633 sg_dma_len(sgt->sgl) = sgt->sgl->length;
634 return sgt;
635 out_free_table:
636 sg_free_table(sgt);
637 out_free_sgt:
638 kfree(sgt);
639 return NULL;
640 }
641
dma_alloc_noncontiguous(struct device * dev,size_t size,enum dma_data_direction dir,gfp_t gfp,unsigned long attrs)642 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
643 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
644 {
645 const struct dma_map_ops *ops = get_dma_ops(dev);
646 struct sg_table *sgt;
647
648 if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
649 return NULL;
650 if (WARN_ON_ONCE(gfp & __GFP_COMP))
651 return NULL;
652
653 if (ops && ops->alloc_noncontiguous)
654 sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs);
655 else
656 sgt = alloc_single_sgt(dev, size, dir, gfp);
657
658 if (sgt) {
659 sgt->nents = 1;
660 debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
661 }
662 return sgt;
663 }
664 EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
665
free_single_sgt(struct device * dev,size_t size,struct sg_table * sgt,enum dma_data_direction dir)666 static void free_single_sgt(struct device *dev, size_t size,
667 struct sg_table *sgt, enum dma_data_direction dir)
668 {
669 __dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
670 dir);
671 sg_free_table(sgt);
672 kfree(sgt);
673 }
674
dma_free_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,enum dma_data_direction dir)675 void dma_free_noncontiguous(struct device *dev, size_t size,
676 struct sg_table *sgt, enum dma_data_direction dir)
677 {
678 const struct dma_map_ops *ops = get_dma_ops(dev);
679
680 debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
681 if (ops && ops->free_noncontiguous)
682 ops->free_noncontiguous(dev, size, sgt, dir);
683 else
684 free_single_sgt(dev, size, sgt, dir);
685 }
686 EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
687
dma_vmap_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt)688 void *dma_vmap_noncontiguous(struct device *dev, size_t size,
689 struct sg_table *sgt)
690 {
691 const struct dma_map_ops *ops = get_dma_ops(dev);
692 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
693
694 if (ops && ops->alloc_noncontiguous)
695 return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
696 return page_address(sg_page(sgt->sgl));
697 }
698 EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
699
dma_vunmap_noncontiguous(struct device * dev,void * vaddr)700 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
701 {
702 const struct dma_map_ops *ops = get_dma_ops(dev);
703
704 if (ops && ops->alloc_noncontiguous)
705 vunmap(vaddr);
706 }
707 EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
708
dma_mmap_noncontiguous(struct device * dev,struct vm_area_struct * vma,size_t size,struct sg_table * sgt)709 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
710 size_t size, struct sg_table *sgt)
711 {
712 const struct dma_map_ops *ops = get_dma_ops(dev);
713
714 if (ops && ops->alloc_noncontiguous) {
715 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
716
717 if (vma->vm_pgoff >= count ||
718 vma_pages(vma) > count - vma->vm_pgoff)
719 return -ENXIO;
720 return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
721 }
722 return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
723 }
724 EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
725
dma_supported(struct device * dev,u64 mask)726 static int dma_supported(struct device *dev, u64 mask)
727 {
728 const struct dma_map_ops *ops = get_dma_ops(dev);
729
730 /*
731 * ->dma_supported sets the bypass flag, so we must always call
732 * into the method here unless the device is truly direct mapped.
733 */
734 if (!ops)
735 return dma_direct_supported(dev, mask);
736 if (!ops->dma_supported)
737 return 1;
738 return ops->dma_supported(dev, mask);
739 }
740
dma_pci_p2pdma_supported(struct device * dev)741 bool dma_pci_p2pdma_supported(struct device *dev)
742 {
743 const struct dma_map_ops *ops = get_dma_ops(dev);
744
745 /* if ops is not set, dma direct will be used which supports P2PDMA */
746 if (!ops)
747 return true;
748
749 /*
750 * Note: dma_ops_bypass is not checked here because P2PDMA should
751 * not be used with dma mapping ops that do not have support even
752 * if the specific device is bypassing them.
753 */
754
755 return ops->flags & DMA_F_PCI_P2PDMA_SUPPORTED;
756 }
757 EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
758
759 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
760 void arch_dma_set_mask(struct device *dev, u64 mask);
761 #else
762 #define arch_dma_set_mask(dev, mask) do { } while (0)
763 #endif
764
dma_set_mask(struct device * dev,u64 mask)765 int dma_set_mask(struct device *dev, u64 mask)
766 {
767 /*
768 * Truncate the mask to the actually supported dma_addr_t width to
769 * avoid generating unsupportable addresses.
770 */
771 mask = (dma_addr_t)mask;
772
773 if (!dev->dma_mask || !dma_supported(dev, mask))
774 return -EIO;
775
776 arch_dma_set_mask(dev, mask);
777 *dev->dma_mask = mask;
778 return 0;
779 }
780 EXPORT_SYMBOL(dma_set_mask);
781
dma_set_coherent_mask(struct device * dev,u64 mask)782 int dma_set_coherent_mask(struct device *dev, u64 mask)
783 {
784 /*
785 * Truncate the mask to the actually supported dma_addr_t width to
786 * avoid generating unsupportable addresses.
787 */
788 mask = (dma_addr_t)mask;
789
790 if (!dma_supported(dev, mask))
791 return -EIO;
792
793 dev->coherent_dma_mask = mask;
794 return 0;
795 }
796 EXPORT_SYMBOL(dma_set_coherent_mask);
797
dma_max_mapping_size(struct device * dev)798 size_t dma_max_mapping_size(struct device *dev)
799 {
800 const struct dma_map_ops *ops = get_dma_ops(dev);
801 size_t size = SIZE_MAX;
802
803 if (dma_map_direct(dev, ops))
804 size = dma_direct_max_mapping_size(dev);
805 else if (ops && ops->max_mapping_size)
806 size = ops->max_mapping_size(dev);
807
808 return size;
809 }
810 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
811
dma_opt_mapping_size(struct device * dev)812 size_t dma_opt_mapping_size(struct device *dev)
813 {
814 const struct dma_map_ops *ops = get_dma_ops(dev);
815 size_t size = SIZE_MAX;
816
817 if (ops && ops->opt_mapping_size)
818 size = ops->opt_mapping_size();
819
820 return min(dma_max_mapping_size(dev), size);
821 }
822 EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
823
dma_need_sync(struct device * dev,dma_addr_t dma_addr)824 bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
825 {
826 const struct dma_map_ops *ops = get_dma_ops(dev);
827
828 if (dma_map_direct(dev, ops))
829 return dma_direct_need_sync(dev, dma_addr);
830 return ops->sync_single_for_cpu || ops->sync_single_for_device;
831 }
832 EXPORT_SYMBOL_GPL(dma_need_sync);
833
dma_get_merge_boundary(struct device * dev)834 unsigned long dma_get_merge_boundary(struct device *dev)
835 {
836 const struct dma_map_ops *ops = get_dma_ops(dev);
837
838 if (!ops || !ops->get_merge_boundary)
839 return 0; /* can't merge */
840
841 return ops->get_merge_boundary(dev);
842 }
843 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
844