1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Kernel Probes (KProbes)
4 *
5 * Copyright (C) IBM Corporation, 2002, 2004
6 *
7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8 * Probes initial implementation (includes suggestions from
9 * Rusty Russell).
10 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
11 * hlists and exceptions notifier as suggested by Andi Kleen.
12 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
13 * interface to access function arguments.
14 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
15 * exceptions notifier to be first on the priority list.
16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18 * <prasanna@in.ibm.com> added function-return probes.
19 */
20
21 #define pr_fmt(fmt) "kprobes: " fmt
22
23 #include <linux/kprobes.h>
24 #include <linux/hash.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/stddef.h>
28 #include <linux/export.h>
29 #include <linux/moduleloader.h>
30 #include <linux/kallsyms.h>
31 #include <linux/freezer.h>
32 #include <linux/seq_file.h>
33 #include <linux/debugfs.h>
34 #include <linux/sysctl.h>
35 #include <linux/kdebug.h>
36 #include <linux/memory.h>
37 #include <linux/ftrace.h>
38 #include <linux/cpu.h>
39 #include <linux/jump_label.h>
40 #include <linux/static_call.h>
41 #include <linux/perf_event.h>
42
43 #include <asm/sections.h>
44 #include <asm/cacheflush.h>
45 #include <asm/errno.h>
46 #include <linux/uaccess.h>
47
48 #define KPROBE_HASH_BITS 6
49 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
50
51 #if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL)
52 #define kprobe_sysctls_init() do { } while (0)
53 #endif
54
55 static int kprobes_initialized;
56 /* kprobe_table can be accessed by
57 * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held.
58 * Or
59 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
60 */
61 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
62
63 /* NOTE: change this value only with 'kprobe_mutex' held */
64 static bool kprobes_all_disarmed;
65
66 /* This protects 'kprobe_table' and 'optimizing_list' */
67 static DEFINE_MUTEX(kprobe_mutex);
68 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance);
69
kprobe_lookup_name(const char * name,unsigned int __unused)70 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
71 unsigned int __unused)
72 {
73 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
74 }
75
76 /*
77 * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where
78 * kprobes can not probe.
79 */
80 static LIST_HEAD(kprobe_blacklist);
81
82 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
83 /*
84 * 'kprobe::ainsn.insn' points to the copy of the instruction to be
85 * single-stepped. x86_64, POWER4 and above have no-exec support and
86 * stepping on the instruction on a vmalloced/kmalloced/data page
87 * is a recipe for disaster
88 */
89 struct kprobe_insn_page {
90 struct list_head list;
91 kprobe_opcode_t *insns; /* Page of instruction slots */
92 struct kprobe_insn_cache *cache;
93 int nused;
94 int ngarbage;
95 char slot_used[];
96 };
97
98 #define KPROBE_INSN_PAGE_SIZE(slots) \
99 (offsetof(struct kprobe_insn_page, slot_used) + \
100 (sizeof(char) * (slots)))
101
slots_per_page(struct kprobe_insn_cache * c)102 static int slots_per_page(struct kprobe_insn_cache *c)
103 {
104 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
105 }
106
107 enum kprobe_slot_state {
108 SLOT_CLEAN = 0,
109 SLOT_DIRTY = 1,
110 SLOT_USED = 2,
111 };
112
alloc_insn_page(void)113 void __weak *alloc_insn_page(void)
114 {
115 /*
116 * Use module_alloc() so this page is within +/- 2GB of where the
117 * kernel image and loaded module images reside. This is required
118 * for most of the architectures.
119 * (e.g. x86-64 needs this to handle the %rip-relative fixups.)
120 */
121 return module_alloc(PAGE_SIZE);
122 }
123
free_insn_page(void * page)124 static void free_insn_page(void *page)
125 {
126 module_memfree(page);
127 }
128
129 struct kprobe_insn_cache kprobe_insn_slots = {
130 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
131 .alloc = alloc_insn_page,
132 .free = free_insn_page,
133 .sym = KPROBE_INSN_PAGE_SYM,
134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 .insn_size = MAX_INSN_SIZE,
136 .nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140 /**
141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
142 * We allocate an executable page if there's no room on existing ones.
143 */
__get_insn_slot(struct kprobe_insn_cache * c)144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146 struct kprobe_insn_page *kip;
147 kprobe_opcode_t *slot = NULL;
148
149 /* Since the slot array is not protected by rcu, we need a mutex */
150 mutex_lock(&c->mutex);
151 retry:
152 rcu_read_lock();
153 list_for_each_entry_rcu(kip, &c->pages, list) {
154 if (kip->nused < slots_per_page(c)) {
155 int i;
156
157 for (i = 0; i < slots_per_page(c); i++) {
158 if (kip->slot_used[i] == SLOT_CLEAN) {
159 kip->slot_used[i] = SLOT_USED;
160 kip->nused++;
161 slot = kip->insns + (i * c->insn_size);
162 rcu_read_unlock();
163 goto out;
164 }
165 }
166 /* kip->nused is broken. Fix it. */
167 kip->nused = slots_per_page(c);
168 WARN_ON(1);
169 }
170 }
171 rcu_read_unlock();
172
173 /* If there are any garbage slots, collect it and try again. */
174 if (c->nr_garbage && collect_garbage_slots(c) == 0)
175 goto retry;
176
177 /* All out of space. Need to allocate a new page. */
178 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
179 if (!kip)
180 goto out;
181
182 kip->insns = c->alloc();
183 if (!kip->insns) {
184 kfree(kip);
185 goto out;
186 }
187 INIT_LIST_HEAD(&kip->list);
188 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
189 kip->slot_used[0] = SLOT_USED;
190 kip->nused = 1;
191 kip->ngarbage = 0;
192 kip->cache = c;
193 list_add_rcu(&kip->list, &c->pages);
194 slot = kip->insns;
195
196 /* Record the perf ksymbol register event after adding the page */
197 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
198 PAGE_SIZE, false, c->sym);
199 out:
200 mutex_unlock(&c->mutex);
201 return slot;
202 }
203
204 /* Return true if all garbages are collected, otherwise false. */
collect_one_slot(struct kprobe_insn_page * kip,int idx)205 static bool collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207 kip->slot_used[idx] = SLOT_CLEAN;
208 kip->nused--;
209 if (kip->nused == 0) {
210 /*
211 * Page is no longer in use. Free it unless
212 * it's the last one. We keep the last one
213 * so as not to have to set it up again the
214 * next time somebody inserts a probe.
215 */
216 if (!list_is_singular(&kip->list)) {
217 /*
218 * Record perf ksymbol unregister event before removing
219 * the page.
220 */
221 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
222 (unsigned long)kip->insns, PAGE_SIZE, true,
223 kip->cache->sym);
224 list_del_rcu(&kip->list);
225 synchronize_rcu();
226 kip->cache->free(kip->insns);
227 kfree(kip);
228 }
229 return true;
230 }
231 return false;
232 }
233
collect_garbage_slots(struct kprobe_insn_cache * c)234 static int collect_garbage_slots(struct kprobe_insn_cache *c)
235 {
236 struct kprobe_insn_page *kip, *next;
237
238 /* Ensure no-one is interrupted on the garbages */
239 synchronize_rcu();
240
241 list_for_each_entry_safe(kip, next, &c->pages, list) {
242 int i;
243
244 if (kip->ngarbage == 0)
245 continue;
246 kip->ngarbage = 0; /* we will collect all garbages */
247 for (i = 0; i < slots_per_page(c); i++) {
248 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
249 break;
250 }
251 }
252 c->nr_garbage = 0;
253 return 0;
254 }
255
__free_insn_slot(struct kprobe_insn_cache * c,kprobe_opcode_t * slot,int dirty)256 void __free_insn_slot(struct kprobe_insn_cache *c,
257 kprobe_opcode_t *slot, int dirty)
258 {
259 struct kprobe_insn_page *kip;
260 long idx;
261
262 mutex_lock(&c->mutex);
263 rcu_read_lock();
264 list_for_each_entry_rcu(kip, &c->pages, list) {
265 idx = ((long)slot - (long)kip->insns) /
266 (c->insn_size * sizeof(kprobe_opcode_t));
267 if (idx >= 0 && idx < slots_per_page(c))
268 goto out;
269 }
270 /* Could not find this slot. */
271 WARN_ON(1);
272 kip = NULL;
273 out:
274 rcu_read_unlock();
275 /* Mark and sweep: this may sleep */
276 if (kip) {
277 /* Check double free */
278 WARN_ON(kip->slot_used[idx] != SLOT_USED);
279 if (dirty) {
280 kip->slot_used[idx] = SLOT_DIRTY;
281 kip->ngarbage++;
282 if (++c->nr_garbage > slots_per_page(c))
283 collect_garbage_slots(c);
284 } else {
285 collect_one_slot(kip, idx);
286 }
287 }
288 mutex_unlock(&c->mutex);
289 }
290
291 /*
292 * Check given address is on the page of kprobe instruction slots.
293 * This will be used for checking whether the address on a stack
294 * is on a text area or not.
295 */
__is_insn_slot_addr(struct kprobe_insn_cache * c,unsigned long addr)296 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
297 {
298 struct kprobe_insn_page *kip;
299 bool ret = false;
300
301 rcu_read_lock();
302 list_for_each_entry_rcu(kip, &c->pages, list) {
303 if (addr >= (unsigned long)kip->insns &&
304 addr < (unsigned long)kip->insns + PAGE_SIZE) {
305 ret = true;
306 break;
307 }
308 }
309 rcu_read_unlock();
310
311 return ret;
312 }
313
kprobe_cache_get_kallsym(struct kprobe_insn_cache * c,unsigned int * symnum,unsigned long * value,char * type,char * sym)314 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
315 unsigned long *value, char *type, char *sym)
316 {
317 struct kprobe_insn_page *kip;
318 int ret = -ERANGE;
319
320 rcu_read_lock();
321 list_for_each_entry_rcu(kip, &c->pages, list) {
322 if ((*symnum)--)
323 continue;
324 strscpy(sym, c->sym, KSYM_NAME_LEN);
325 *type = 't';
326 *value = (unsigned long)kip->insns;
327 ret = 0;
328 break;
329 }
330 rcu_read_unlock();
331
332 return ret;
333 }
334
335 #ifdef CONFIG_OPTPROBES
alloc_optinsn_page(void)336 void __weak *alloc_optinsn_page(void)
337 {
338 return alloc_insn_page();
339 }
340
free_optinsn_page(void * page)341 void __weak free_optinsn_page(void *page)
342 {
343 free_insn_page(page);
344 }
345
346 /* For optimized_kprobe buffer */
347 struct kprobe_insn_cache kprobe_optinsn_slots = {
348 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
349 .alloc = alloc_optinsn_page,
350 .free = free_optinsn_page,
351 .sym = KPROBE_OPTINSN_PAGE_SYM,
352 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
353 /* .insn_size is initialized later */
354 .nr_garbage = 0,
355 };
356 #endif
357 #endif
358
359 /* We have preemption disabled.. so it is safe to use __ versions */
set_kprobe_instance(struct kprobe * kp)360 static inline void set_kprobe_instance(struct kprobe *kp)
361 {
362 __this_cpu_write(kprobe_instance, kp);
363 }
364
reset_kprobe_instance(void)365 static inline void reset_kprobe_instance(void)
366 {
367 __this_cpu_write(kprobe_instance, NULL);
368 }
369
370 /*
371 * This routine is called either:
372 * - under the 'kprobe_mutex' - during kprobe_[un]register().
373 * OR
374 * - with preemption disabled - from architecture specific code.
375 */
get_kprobe(void * addr)376 struct kprobe *get_kprobe(void *addr)
377 {
378 struct hlist_head *head;
379 struct kprobe *p;
380
381 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
382 hlist_for_each_entry_rcu(p, head, hlist,
383 lockdep_is_held(&kprobe_mutex)) {
384 if (p->addr == addr)
385 return p;
386 }
387
388 return NULL;
389 }
390 NOKPROBE_SYMBOL(get_kprobe);
391
392 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
393
394 /* Return true if 'p' is an aggregator */
kprobe_aggrprobe(struct kprobe * p)395 static inline bool kprobe_aggrprobe(struct kprobe *p)
396 {
397 return p->pre_handler == aggr_pre_handler;
398 }
399
400 /* Return true if 'p' is unused */
kprobe_unused(struct kprobe * p)401 static inline bool kprobe_unused(struct kprobe *p)
402 {
403 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
404 list_empty(&p->list);
405 }
406
407 /* Keep all fields in the kprobe consistent. */
copy_kprobe(struct kprobe * ap,struct kprobe * p)408 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
409 {
410 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
411 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
412 }
413
414 #ifdef CONFIG_OPTPROBES
415 /* NOTE: This is protected by 'kprobe_mutex'. */
416 static bool kprobes_allow_optimization;
417
418 /*
419 * Call all 'kprobe::pre_handler' on the list, but ignores its return value.
420 * This must be called from arch-dep optimized caller.
421 */
opt_pre_handler(struct kprobe * p,struct pt_regs * regs)422 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
423 {
424 struct kprobe *kp;
425
426 list_for_each_entry_rcu(kp, &p->list, list) {
427 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
428 set_kprobe_instance(kp);
429 kp->pre_handler(kp, regs);
430 }
431 reset_kprobe_instance();
432 }
433 }
434 NOKPROBE_SYMBOL(opt_pre_handler);
435
436 /* Free optimized instructions and optimized_kprobe */
free_aggr_kprobe(struct kprobe * p)437 static void free_aggr_kprobe(struct kprobe *p)
438 {
439 struct optimized_kprobe *op;
440
441 op = container_of(p, struct optimized_kprobe, kp);
442 arch_remove_optimized_kprobe(op);
443 arch_remove_kprobe(p);
444 kfree(op);
445 }
446
447 /* Return true if the kprobe is ready for optimization. */
kprobe_optready(struct kprobe * p)448 static inline int kprobe_optready(struct kprobe *p)
449 {
450 struct optimized_kprobe *op;
451
452 if (kprobe_aggrprobe(p)) {
453 op = container_of(p, struct optimized_kprobe, kp);
454 return arch_prepared_optinsn(&op->optinsn);
455 }
456
457 return 0;
458 }
459
460 /* Return true if the kprobe is disarmed. Note: p must be on hash list */
kprobe_disarmed(struct kprobe * p)461 bool kprobe_disarmed(struct kprobe *p)
462 {
463 struct optimized_kprobe *op;
464
465 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
466 if (!kprobe_aggrprobe(p))
467 return kprobe_disabled(p);
468
469 op = container_of(p, struct optimized_kprobe, kp);
470
471 return kprobe_disabled(p) && list_empty(&op->list);
472 }
473
474 /* Return true if the probe is queued on (un)optimizing lists */
kprobe_queued(struct kprobe * p)475 static bool kprobe_queued(struct kprobe *p)
476 {
477 struct optimized_kprobe *op;
478
479 if (kprobe_aggrprobe(p)) {
480 op = container_of(p, struct optimized_kprobe, kp);
481 if (!list_empty(&op->list))
482 return true;
483 }
484 return false;
485 }
486
487 /*
488 * Return an optimized kprobe whose optimizing code replaces
489 * instructions including 'addr' (exclude breakpoint).
490 */
get_optimized_kprobe(kprobe_opcode_t * addr)491 static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr)
492 {
493 int i;
494 struct kprobe *p = NULL;
495 struct optimized_kprobe *op;
496
497 /* Don't check i == 0, since that is a breakpoint case. */
498 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++)
499 p = get_kprobe(addr - i);
500
501 if (p && kprobe_optready(p)) {
502 op = container_of(p, struct optimized_kprobe, kp);
503 if (arch_within_optimized_kprobe(op, addr))
504 return p;
505 }
506
507 return NULL;
508 }
509
510 /* Optimization staging list, protected by 'kprobe_mutex' */
511 static LIST_HEAD(optimizing_list);
512 static LIST_HEAD(unoptimizing_list);
513 static LIST_HEAD(freeing_list);
514
515 static void kprobe_optimizer(struct work_struct *work);
516 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
517 #define OPTIMIZE_DELAY 5
518
519 /*
520 * Optimize (replace a breakpoint with a jump) kprobes listed on
521 * 'optimizing_list'.
522 */
do_optimize_kprobes(void)523 static void do_optimize_kprobes(void)
524 {
525 lockdep_assert_held(&text_mutex);
526 /*
527 * The optimization/unoptimization refers 'online_cpus' via
528 * stop_machine() and cpu-hotplug modifies the 'online_cpus'.
529 * And same time, 'text_mutex' will be held in cpu-hotplug and here.
530 * This combination can cause a deadlock (cpu-hotplug tries to lock
531 * 'text_mutex' but stop_machine() can not be done because
532 * the 'online_cpus' has been changed)
533 * To avoid this deadlock, caller must have locked cpu-hotplug
534 * for preventing cpu-hotplug outside of 'text_mutex' locking.
535 */
536 lockdep_assert_cpus_held();
537
538 /* Optimization never be done when disarmed */
539 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
540 list_empty(&optimizing_list))
541 return;
542
543 arch_optimize_kprobes(&optimizing_list);
544 }
545
546 /*
547 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
548 * if need) kprobes listed on 'unoptimizing_list'.
549 */
do_unoptimize_kprobes(void)550 static void do_unoptimize_kprobes(void)
551 {
552 struct optimized_kprobe *op, *tmp;
553
554 lockdep_assert_held(&text_mutex);
555 /* See comment in do_optimize_kprobes() */
556 lockdep_assert_cpus_held();
557
558 if (!list_empty(&unoptimizing_list))
559 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
560
561 /* Loop on 'freeing_list' for disarming and removing from kprobe hash list */
562 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
563 /* Switching from detour code to origin */
564 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
565 /* Disarm probes if marked disabled and not gone */
566 if (kprobe_disabled(&op->kp) && !kprobe_gone(&op->kp))
567 arch_disarm_kprobe(&op->kp);
568 if (kprobe_unused(&op->kp)) {
569 /*
570 * Remove unused probes from hash list. After waiting
571 * for synchronization, these probes are reclaimed.
572 * (reclaiming is done by do_free_cleaned_kprobes().)
573 */
574 hlist_del_rcu(&op->kp.hlist);
575 } else
576 list_del_init(&op->list);
577 }
578 }
579
580 /* Reclaim all kprobes on the 'freeing_list' */
do_free_cleaned_kprobes(void)581 static void do_free_cleaned_kprobes(void)
582 {
583 struct optimized_kprobe *op, *tmp;
584
585 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
586 list_del_init(&op->list);
587 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
588 /*
589 * This must not happen, but if there is a kprobe
590 * still in use, keep it on kprobes hash list.
591 */
592 continue;
593 }
594 free_aggr_kprobe(&op->kp);
595 }
596 }
597
598 /* Start optimizer after OPTIMIZE_DELAY passed */
kick_kprobe_optimizer(void)599 static void kick_kprobe_optimizer(void)
600 {
601 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
602 }
603
604 /* Kprobe jump optimizer */
kprobe_optimizer(struct work_struct * work)605 static void kprobe_optimizer(struct work_struct *work)
606 {
607 mutex_lock(&kprobe_mutex);
608 cpus_read_lock();
609 mutex_lock(&text_mutex);
610
611 /*
612 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
613 * kprobes before waiting for quiesence period.
614 */
615 do_unoptimize_kprobes();
616
617 /*
618 * Step 2: Wait for quiesence period to ensure all potentially
619 * preempted tasks to have normally scheduled. Because optprobe
620 * may modify multiple instructions, there is a chance that Nth
621 * instruction is preempted. In that case, such tasks can return
622 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
623 * Note that on non-preemptive kernel, this is transparently converted
624 * to synchronoze_sched() to wait for all interrupts to have completed.
625 */
626 synchronize_rcu_tasks();
627
628 /* Step 3: Optimize kprobes after quiesence period */
629 do_optimize_kprobes();
630
631 /* Step 4: Free cleaned kprobes after quiesence period */
632 do_free_cleaned_kprobes();
633
634 mutex_unlock(&text_mutex);
635 cpus_read_unlock();
636
637 /* Step 5: Kick optimizer again if needed */
638 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
639 kick_kprobe_optimizer();
640
641 mutex_unlock(&kprobe_mutex);
642 }
643
644 /* Wait for completing optimization and unoptimization */
wait_for_kprobe_optimizer(void)645 void wait_for_kprobe_optimizer(void)
646 {
647 mutex_lock(&kprobe_mutex);
648
649 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
650 mutex_unlock(&kprobe_mutex);
651
652 /* This will also make 'optimizing_work' execute immmediately */
653 flush_delayed_work(&optimizing_work);
654 /* 'optimizing_work' might not have been queued yet, relax */
655 cpu_relax();
656
657 mutex_lock(&kprobe_mutex);
658 }
659
660 mutex_unlock(&kprobe_mutex);
661 }
662
optprobe_queued_unopt(struct optimized_kprobe * op)663 bool optprobe_queued_unopt(struct optimized_kprobe *op)
664 {
665 struct optimized_kprobe *_op;
666
667 list_for_each_entry(_op, &unoptimizing_list, list) {
668 if (op == _op)
669 return true;
670 }
671
672 return false;
673 }
674
675 /* Optimize kprobe if p is ready to be optimized */
optimize_kprobe(struct kprobe * p)676 static void optimize_kprobe(struct kprobe *p)
677 {
678 struct optimized_kprobe *op;
679
680 /* Check if the kprobe is disabled or not ready for optimization. */
681 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
682 (kprobe_disabled(p) || kprobes_all_disarmed))
683 return;
684
685 /* kprobes with 'post_handler' can not be optimized */
686 if (p->post_handler)
687 return;
688
689 op = container_of(p, struct optimized_kprobe, kp);
690
691 /* Check there is no other kprobes at the optimized instructions */
692 if (arch_check_optimized_kprobe(op) < 0)
693 return;
694
695 /* Check if it is already optimized. */
696 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
697 if (optprobe_queued_unopt(op)) {
698 /* This is under unoptimizing. Just dequeue the probe */
699 list_del_init(&op->list);
700 }
701 return;
702 }
703 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
704
705 /*
706 * On the 'unoptimizing_list' and 'optimizing_list',
707 * 'op' must have OPTIMIZED flag
708 */
709 if (WARN_ON_ONCE(!list_empty(&op->list)))
710 return;
711
712 list_add(&op->list, &optimizing_list);
713 kick_kprobe_optimizer();
714 }
715
716 /* Short cut to direct unoptimizing */
force_unoptimize_kprobe(struct optimized_kprobe * op)717 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
718 {
719 lockdep_assert_cpus_held();
720 arch_unoptimize_kprobe(op);
721 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
722 }
723
724 /* Unoptimize a kprobe if p is optimized */
unoptimize_kprobe(struct kprobe * p,bool force)725 static void unoptimize_kprobe(struct kprobe *p, bool force)
726 {
727 struct optimized_kprobe *op;
728
729 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
730 return; /* This is not an optprobe nor optimized */
731
732 op = container_of(p, struct optimized_kprobe, kp);
733 if (!kprobe_optimized(p))
734 return;
735
736 if (!list_empty(&op->list)) {
737 if (optprobe_queued_unopt(op)) {
738 /* Queued in unoptimizing queue */
739 if (force) {
740 /*
741 * Forcibly unoptimize the kprobe here, and queue it
742 * in the freeing list for release afterwards.
743 */
744 force_unoptimize_kprobe(op);
745 list_move(&op->list, &freeing_list);
746 }
747 } else {
748 /* Dequeue from the optimizing queue */
749 list_del_init(&op->list);
750 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
751 }
752 return;
753 }
754
755 /* Optimized kprobe case */
756 if (force) {
757 /* Forcibly update the code: this is a special case */
758 force_unoptimize_kprobe(op);
759 } else {
760 list_add(&op->list, &unoptimizing_list);
761 kick_kprobe_optimizer();
762 }
763 }
764
765 /* Cancel unoptimizing for reusing */
reuse_unused_kprobe(struct kprobe * ap)766 static int reuse_unused_kprobe(struct kprobe *ap)
767 {
768 struct optimized_kprobe *op;
769
770 /*
771 * Unused kprobe MUST be on the way of delayed unoptimizing (means
772 * there is still a relative jump) and disabled.
773 */
774 op = container_of(ap, struct optimized_kprobe, kp);
775 WARN_ON_ONCE(list_empty(&op->list));
776 /* Enable the probe again */
777 ap->flags &= ~KPROBE_FLAG_DISABLED;
778 /* Optimize it again. (remove from 'op->list') */
779 if (!kprobe_optready(ap))
780 return -EINVAL;
781
782 optimize_kprobe(ap);
783 return 0;
784 }
785
786 /* Remove optimized instructions */
kill_optimized_kprobe(struct kprobe * p)787 static void kill_optimized_kprobe(struct kprobe *p)
788 {
789 struct optimized_kprobe *op;
790
791 op = container_of(p, struct optimized_kprobe, kp);
792 if (!list_empty(&op->list))
793 /* Dequeue from the (un)optimization queue */
794 list_del_init(&op->list);
795 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
796
797 if (kprobe_unused(p)) {
798 /*
799 * Unused kprobe is on unoptimizing or freeing list. We move it
800 * to freeing_list and let the kprobe_optimizer() remove it from
801 * the kprobe hash list and free it.
802 */
803 if (optprobe_queued_unopt(op))
804 list_move(&op->list, &freeing_list);
805 }
806
807 /* Don't touch the code, because it is already freed. */
808 arch_remove_optimized_kprobe(op);
809 }
810
811 static inline
__prepare_optimized_kprobe(struct optimized_kprobe * op,struct kprobe * p)812 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
813 {
814 if (!kprobe_ftrace(p))
815 arch_prepare_optimized_kprobe(op, p);
816 }
817
818 /* Try to prepare optimized instructions */
prepare_optimized_kprobe(struct kprobe * p)819 static void prepare_optimized_kprobe(struct kprobe *p)
820 {
821 struct optimized_kprobe *op;
822
823 op = container_of(p, struct optimized_kprobe, kp);
824 __prepare_optimized_kprobe(op, p);
825 }
826
827 /* Allocate new optimized_kprobe and try to prepare optimized instructions. */
alloc_aggr_kprobe(struct kprobe * p)828 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
829 {
830 struct optimized_kprobe *op;
831
832 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
833 if (!op)
834 return NULL;
835
836 INIT_LIST_HEAD(&op->list);
837 op->kp.addr = p->addr;
838 __prepare_optimized_kprobe(op, p);
839
840 return &op->kp;
841 }
842
843 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
844
845 /*
846 * Prepare an optimized_kprobe and optimize it.
847 * NOTE: 'p' must be a normal registered kprobe.
848 */
try_to_optimize_kprobe(struct kprobe * p)849 static void try_to_optimize_kprobe(struct kprobe *p)
850 {
851 struct kprobe *ap;
852 struct optimized_kprobe *op;
853
854 /* Impossible to optimize ftrace-based kprobe. */
855 if (kprobe_ftrace(p))
856 return;
857
858 /* For preparing optimization, jump_label_text_reserved() is called. */
859 cpus_read_lock();
860 jump_label_lock();
861 mutex_lock(&text_mutex);
862
863 ap = alloc_aggr_kprobe(p);
864 if (!ap)
865 goto out;
866
867 op = container_of(ap, struct optimized_kprobe, kp);
868 if (!arch_prepared_optinsn(&op->optinsn)) {
869 /* If failed to setup optimizing, fallback to kprobe. */
870 arch_remove_optimized_kprobe(op);
871 kfree(op);
872 goto out;
873 }
874
875 init_aggr_kprobe(ap, p);
876 optimize_kprobe(ap); /* This just kicks optimizer thread. */
877
878 out:
879 mutex_unlock(&text_mutex);
880 jump_label_unlock();
881 cpus_read_unlock();
882 }
883
optimize_all_kprobes(void)884 static void optimize_all_kprobes(void)
885 {
886 struct hlist_head *head;
887 struct kprobe *p;
888 unsigned int i;
889
890 mutex_lock(&kprobe_mutex);
891 /* If optimization is already allowed, just return. */
892 if (kprobes_allow_optimization)
893 goto out;
894
895 cpus_read_lock();
896 kprobes_allow_optimization = true;
897 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
898 head = &kprobe_table[i];
899 hlist_for_each_entry(p, head, hlist)
900 if (!kprobe_disabled(p))
901 optimize_kprobe(p);
902 }
903 cpus_read_unlock();
904 pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
905 out:
906 mutex_unlock(&kprobe_mutex);
907 }
908
909 #ifdef CONFIG_SYSCTL
unoptimize_all_kprobes(void)910 static void unoptimize_all_kprobes(void)
911 {
912 struct hlist_head *head;
913 struct kprobe *p;
914 unsigned int i;
915
916 mutex_lock(&kprobe_mutex);
917 /* If optimization is already prohibited, just return. */
918 if (!kprobes_allow_optimization) {
919 mutex_unlock(&kprobe_mutex);
920 return;
921 }
922
923 cpus_read_lock();
924 kprobes_allow_optimization = false;
925 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
926 head = &kprobe_table[i];
927 hlist_for_each_entry(p, head, hlist) {
928 if (!kprobe_disabled(p))
929 unoptimize_kprobe(p, false);
930 }
931 }
932 cpus_read_unlock();
933 mutex_unlock(&kprobe_mutex);
934
935 /* Wait for unoptimizing completion. */
936 wait_for_kprobe_optimizer();
937 pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
938 }
939
940 static DEFINE_MUTEX(kprobe_sysctl_mutex);
941 static int sysctl_kprobes_optimization;
proc_kprobes_optimization_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)942 static int proc_kprobes_optimization_handler(struct ctl_table *table,
943 int write, void *buffer,
944 size_t *length, loff_t *ppos)
945 {
946 int ret;
947
948 mutex_lock(&kprobe_sysctl_mutex);
949 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
950 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
951
952 if (sysctl_kprobes_optimization)
953 optimize_all_kprobes();
954 else
955 unoptimize_all_kprobes();
956 mutex_unlock(&kprobe_sysctl_mutex);
957
958 return ret;
959 }
960
961 static struct ctl_table kprobe_sysctls[] = {
962 {
963 .procname = "kprobes-optimization",
964 .data = &sysctl_kprobes_optimization,
965 .maxlen = sizeof(int),
966 .mode = 0644,
967 .proc_handler = proc_kprobes_optimization_handler,
968 .extra1 = SYSCTL_ZERO,
969 .extra2 = SYSCTL_ONE,
970 },
971 {}
972 };
973
kprobe_sysctls_init(void)974 static void __init kprobe_sysctls_init(void)
975 {
976 register_sysctl_init("debug", kprobe_sysctls);
977 }
978 #endif /* CONFIG_SYSCTL */
979
980 /* Put a breakpoint for a probe. */
__arm_kprobe(struct kprobe * p)981 static void __arm_kprobe(struct kprobe *p)
982 {
983 struct kprobe *_p;
984
985 lockdep_assert_held(&text_mutex);
986
987 /* Find the overlapping optimized kprobes. */
988 _p = get_optimized_kprobe(p->addr);
989 if (unlikely(_p))
990 /* Fallback to unoptimized kprobe */
991 unoptimize_kprobe(_p, true);
992
993 arch_arm_kprobe(p);
994 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
995 }
996
997 /* Remove the breakpoint of a probe. */
__disarm_kprobe(struct kprobe * p,bool reopt)998 static void __disarm_kprobe(struct kprobe *p, bool reopt)
999 {
1000 struct kprobe *_p;
1001
1002 lockdep_assert_held(&text_mutex);
1003
1004 /* Try to unoptimize */
1005 unoptimize_kprobe(p, kprobes_all_disarmed);
1006
1007 if (!kprobe_queued(p)) {
1008 arch_disarm_kprobe(p);
1009 /* If another kprobe was blocked, re-optimize it. */
1010 _p = get_optimized_kprobe(p->addr);
1011 if (unlikely(_p) && reopt)
1012 optimize_kprobe(_p);
1013 }
1014 /*
1015 * TODO: Since unoptimization and real disarming will be done by
1016 * the worker thread, we can not check whether another probe are
1017 * unoptimized because of this probe here. It should be re-optimized
1018 * by the worker thread.
1019 */
1020 }
1021
1022 #else /* !CONFIG_OPTPROBES */
1023
1024 #define optimize_kprobe(p) do {} while (0)
1025 #define unoptimize_kprobe(p, f) do {} while (0)
1026 #define kill_optimized_kprobe(p) do {} while (0)
1027 #define prepare_optimized_kprobe(p) do {} while (0)
1028 #define try_to_optimize_kprobe(p) do {} while (0)
1029 #define __arm_kprobe(p) arch_arm_kprobe(p)
1030 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
1031 #define kprobe_disarmed(p) kprobe_disabled(p)
1032 #define wait_for_kprobe_optimizer() do {} while (0)
1033
reuse_unused_kprobe(struct kprobe * ap)1034 static int reuse_unused_kprobe(struct kprobe *ap)
1035 {
1036 /*
1037 * If the optimized kprobe is NOT supported, the aggr kprobe is
1038 * released at the same time that the last aggregated kprobe is
1039 * unregistered.
1040 * Thus there should be no chance to reuse unused kprobe.
1041 */
1042 WARN_ON_ONCE(1);
1043 return -EINVAL;
1044 }
1045
free_aggr_kprobe(struct kprobe * p)1046 static void free_aggr_kprobe(struct kprobe *p)
1047 {
1048 arch_remove_kprobe(p);
1049 kfree(p);
1050 }
1051
alloc_aggr_kprobe(struct kprobe * p)1052 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1053 {
1054 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1055 }
1056 #endif /* CONFIG_OPTPROBES */
1057
1058 #ifdef CONFIG_KPROBES_ON_FTRACE
1059 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1060 .func = kprobe_ftrace_handler,
1061 .flags = FTRACE_OPS_FL_SAVE_REGS,
1062 };
1063
1064 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1065 .func = kprobe_ftrace_handler,
1066 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1067 };
1068
1069 static int kprobe_ipmodify_enabled;
1070 static int kprobe_ftrace_enabled;
1071
__arm_kprobe_ftrace(struct kprobe * p,struct ftrace_ops * ops,int * cnt)1072 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1073 int *cnt)
1074 {
1075 int ret = 0;
1076
1077 lockdep_assert_held(&kprobe_mutex);
1078
1079 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1080 if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
1081 return ret;
1082
1083 if (*cnt == 0) {
1084 ret = register_ftrace_function(ops);
1085 if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret))
1086 goto err_ftrace;
1087 }
1088
1089 (*cnt)++;
1090 return ret;
1091
1092 err_ftrace:
1093 /*
1094 * At this point, sinec ops is not registered, we should be sefe from
1095 * registering empty filter.
1096 */
1097 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1098 return ret;
1099 }
1100
arm_kprobe_ftrace(struct kprobe * p)1101 static int arm_kprobe_ftrace(struct kprobe *p)
1102 {
1103 bool ipmodify = (p->post_handler != NULL);
1104
1105 return __arm_kprobe_ftrace(p,
1106 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1107 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1108 }
1109
__disarm_kprobe_ftrace(struct kprobe * p,struct ftrace_ops * ops,int * cnt)1110 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1111 int *cnt)
1112 {
1113 int ret = 0;
1114
1115 lockdep_assert_held(&kprobe_mutex);
1116
1117 if (*cnt == 1) {
1118 ret = unregister_ftrace_function(ops);
1119 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
1120 return ret;
1121 }
1122
1123 (*cnt)--;
1124
1125 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1126 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
1127 p->addr, ret);
1128 return ret;
1129 }
1130
disarm_kprobe_ftrace(struct kprobe * p)1131 static int disarm_kprobe_ftrace(struct kprobe *p)
1132 {
1133 bool ipmodify = (p->post_handler != NULL);
1134
1135 return __disarm_kprobe_ftrace(p,
1136 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1137 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1138 }
1139 #else /* !CONFIG_KPROBES_ON_FTRACE */
arm_kprobe_ftrace(struct kprobe * p)1140 static inline int arm_kprobe_ftrace(struct kprobe *p)
1141 {
1142 return -ENODEV;
1143 }
1144
disarm_kprobe_ftrace(struct kprobe * p)1145 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1146 {
1147 return -ENODEV;
1148 }
1149 #endif
1150
prepare_kprobe(struct kprobe * p)1151 static int prepare_kprobe(struct kprobe *p)
1152 {
1153 /* Must ensure p->addr is really on ftrace */
1154 if (kprobe_ftrace(p))
1155 return arch_prepare_kprobe_ftrace(p);
1156
1157 return arch_prepare_kprobe(p);
1158 }
1159
arm_kprobe(struct kprobe * kp)1160 static int arm_kprobe(struct kprobe *kp)
1161 {
1162 if (unlikely(kprobe_ftrace(kp)))
1163 return arm_kprobe_ftrace(kp);
1164
1165 cpus_read_lock();
1166 mutex_lock(&text_mutex);
1167 __arm_kprobe(kp);
1168 mutex_unlock(&text_mutex);
1169 cpus_read_unlock();
1170
1171 return 0;
1172 }
1173
disarm_kprobe(struct kprobe * kp,bool reopt)1174 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1175 {
1176 if (unlikely(kprobe_ftrace(kp)))
1177 return disarm_kprobe_ftrace(kp);
1178
1179 cpus_read_lock();
1180 mutex_lock(&text_mutex);
1181 __disarm_kprobe(kp, reopt);
1182 mutex_unlock(&text_mutex);
1183 cpus_read_unlock();
1184
1185 return 0;
1186 }
1187
1188 /*
1189 * Aggregate handlers for multiple kprobes support - these handlers
1190 * take care of invoking the individual kprobe handlers on p->list
1191 */
aggr_pre_handler(struct kprobe * p,struct pt_regs * regs)1192 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1193 {
1194 struct kprobe *kp;
1195
1196 list_for_each_entry_rcu(kp, &p->list, list) {
1197 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1198 set_kprobe_instance(kp);
1199 if (kp->pre_handler(kp, regs))
1200 return 1;
1201 }
1202 reset_kprobe_instance();
1203 }
1204 return 0;
1205 }
1206 NOKPROBE_SYMBOL(aggr_pre_handler);
1207
aggr_post_handler(struct kprobe * p,struct pt_regs * regs,unsigned long flags)1208 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1209 unsigned long flags)
1210 {
1211 struct kprobe *kp;
1212
1213 list_for_each_entry_rcu(kp, &p->list, list) {
1214 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1215 set_kprobe_instance(kp);
1216 kp->post_handler(kp, regs, flags);
1217 reset_kprobe_instance();
1218 }
1219 }
1220 }
1221 NOKPROBE_SYMBOL(aggr_post_handler);
1222
1223 /* Walks the list and increments 'nmissed' if 'p' has child probes. */
kprobes_inc_nmissed_count(struct kprobe * p)1224 void kprobes_inc_nmissed_count(struct kprobe *p)
1225 {
1226 struct kprobe *kp;
1227
1228 if (!kprobe_aggrprobe(p)) {
1229 p->nmissed++;
1230 } else {
1231 list_for_each_entry_rcu(kp, &p->list, list)
1232 kp->nmissed++;
1233 }
1234 }
1235 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1236
1237 static struct kprobe kprobe_busy = {
1238 .addr = (void *) get_kprobe,
1239 };
1240
kprobe_busy_begin(void)1241 void kprobe_busy_begin(void)
1242 {
1243 struct kprobe_ctlblk *kcb;
1244
1245 preempt_disable();
1246 __this_cpu_write(current_kprobe, &kprobe_busy);
1247 kcb = get_kprobe_ctlblk();
1248 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1249 }
1250
kprobe_busy_end(void)1251 void kprobe_busy_end(void)
1252 {
1253 __this_cpu_write(current_kprobe, NULL);
1254 preempt_enable();
1255 }
1256
1257 /* Add the new probe to 'ap->list'. */
add_new_kprobe(struct kprobe * ap,struct kprobe * p)1258 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1259 {
1260 if (p->post_handler)
1261 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1262
1263 list_add_rcu(&p->list, &ap->list);
1264 if (p->post_handler && !ap->post_handler)
1265 ap->post_handler = aggr_post_handler;
1266
1267 return 0;
1268 }
1269
1270 /*
1271 * Fill in the required fields of the aggregator kprobe. Replace the
1272 * earlier kprobe in the hlist with the aggregator kprobe.
1273 */
init_aggr_kprobe(struct kprobe * ap,struct kprobe * p)1274 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1275 {
1276 /* Copy the insn slot of 'p' to 'ap'. */
1277 copy_kprobe(p, ap);
1278 flush_insn_slot(ap);
1279 ap->addr = p->addr;
1280 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1281 ap->pre_handler = aggr_pre_handler;
1282 /* We don't care the kprobe which has gone. */
1283 if (p->post_handler && !kprobe_gone(p))
1284 ap->post_handler = aggr_post_handler;
1285
1286 INIT_LIST_HEAD(&ap->list);
1287 INIT_HLIST_NODE(&ap->hlist);
1288
1289 list_add_rcu(&p->list, &ap->list);
1290 hlist_replace_rcu(&p->hlist, &ap->hlist);
1291 }
1292
1293 /*
1294 * This registers the second or subsequent kprobe at the same address.
1295 */
register_aggr_kprobe(struct kprobe * orig_p,struct kprobe * p)1296 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1297 {
1298 int ret = 0;
1299 struct kprobe *ap = orig_p;
1300
1301 cpus_read_lock();
1302
1303 /* For preparing optimization, jump_label_text_reserved() is called */
1304 jump_label_lock();
1305 mutex_lock(&text_mutex);
1306
1307 if (!kprobe_aggrprobe(orig_p)) {
1308 /* If 'orig_p' is not an 'aggr_kprobe', create new one. */
1309 ap = alloc_aggr_kprobe(orig_p);
1310 if (!ap) {
1311 ret = -ENOMEM;
1312 goto out;
1313 }
1314 init_aggr_kprobe(ap, orig_p);
1315 } else if (kprobe_unused(ap)) {
1316 /* This probe is going to die. Rescue it */
1317 ret = reuse_unused_kprobe(ap);
1318 if (ret)
1319 goto out;
1320 }
1321
1322 if (kprobe_gone(ap)) {
1323 /*
1324 * Attempting to insert new probe at the same location that
1325 * had a probe in the module vaddr area which already
1326 * freed. So, the instruction slot has already been
1327 * released. We need a new slot for the new probe.
1328 */
1329 ret = arch_prepare_kprobe(ap);
1330 if (ret)
1331 /*
1332 * Even if fail to allocate new slot, don't need to
1333 * free the 'ap'. It will be used next time, or
1334 * freed by unregister_kprobe().
1335 */
1336 goto out;
1337
1338 /* Prepare optimized instructions if possible. */
1339 prepare_optimized_kprobe(ap);
1340
1341 /*
1342 * Clear gone flag to prevent allocating new slot again, and
1343 * set disabled flag because it is not armed yet.
1344 */
1345 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1346 | KPROBE_FLAG_DISABLED;
1347 }
1348
1349 /* Copy the insn slot of 'p' to 'ap'. */
1350 copy_kprobe(ap, p);
1351 ret = add_new_kprobe(ap, p);
1352
1353 out:
1354 mutex_unlock(&text_mutex);
1355 jump_label_unlock();
1356 cpus_read_unlock();
1357
1358 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1359 ap->flags &= ~KPROBE_FLAG_DISABLED;
1360 if (!kprobes_all_disarmed) {
1361 /* Arm the breakpoint again. */
1362 ret = arm_kprobe(ap);
1363 if (ret) {
1364 ap->flags |= KPROBE_FLAG_DISABLED;
1365 list_del_rcu(&p->list);
1366 synchronize_rcu();
1367 }
1368 }
1369 }
1370 return ret;
1371 }
1372
arch_within_kprobe_blacklist(unsigned long addr)1373 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1374 {
1375 /* The '__kprobes' functions and entry code must not be probed. */
1376 return addr >= (unsigned long)__kprobes_text_start &&
1377 addr < (unsigned long)__kprobes_text_end;
1378 }
1379
__within_kprobe_blacklist(unsigned long addr)1380 static bool __within_kprobe_blacklist(unsigned long addr)
1381 {
1382 struct kprobe_blacklist_entry *ent;
1383
1384 if (arch_within_kprobe_blacklist(addr))
1385 return true;
1386 /*
1387 * If 'kprobe_blacklist' is defined, check the address and
1388 * reject any probe registration in the prohibited area.
1389 */
1390 list_for_each_entry(ent, &kprobe_blacklist, list) {
1391 if (addr >= ent->start_addr && addr < ent->end_addr)
1392 return true;
1393 }
1394 return false;
1395 }
1396
within_kprobe_blacklist(unsigned long addr)1397 bool within_kprobe_blacklist(unsigned long addr)
1398 {
1399 char symname[KSYM_NAME_LEN], *p;
1400
1401 if (__within_kprobe_blacklist(addr))
1402 return true;
1403
1404 /* Check if the address is on a suffixed-symbol */
1405 if (!lookup_symbol_name(addr, symname)) {
1406 p = strchr(symname, '.');
1407 if (!p)
1408 return false;
1409 *p = '\0';
1410 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1411 if (addr)
1412 return __within_kprobe_blacklist(addr);
1413 }
1414 return false;
1415 }
1416
1417 /*
1418 * arch_adjust_kprobe_addr - adjust the address
1419 * @addr: symbol base address
1420 * @offset: offset within the symbol
1421 * @on_func_entry: was this @addr+@offset on the function entry
1422 *
1423 * Typically returns @addr + @offset, except for special cases where the
1424 * function might be prefixed by a CFI landing pad, in that case any offset
1425 * inside the landing pad is mapped to the first 'real' instruction of the
1426 * symbol.
1427 *
1428 * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C
1429 * instruction at +0.
1430 */
arch_adjust_kprobe_addr(unsigned long addr,unsigned long offset,bool * on_func_entry)1431 kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr,
1432 unsigned long offset,
1433 bool *on_func_entry)
1434 {
1435 *on_func_entry = !offset;
1436 return (kprobe_opcode_t *)(addr + offset);
1437 }
1438
1439 /*
1440 * If 'symbol_name' is specified, look it up and add the 'offset'
1441 * to it. This way, we can specify a relative address to a symbol.
1442 * This returns encoded errors if it fails to look up symbol or invalid
1443 * combination of parameters.
1444 */
1445 static kprobe_opcode_t *
_kprobe_addr(kprobe_opcode_t * addr,const char * symbol_name,unsigned long offset,bool * on_func_entry)1446 _kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name,
1447 unsigned long offset, bool *on_func_entry)
1448 {
1449 if ((symbol_name && addr) || (!symbol_name && !addr))
1450 goto invalid;
1451
1452 if (symbol_name) {
1453 /*
1454 * Input: @sym + @offset
1455 * Output: @addr + @offset
1456 *
1457 * NOTE: kprobe_lookup_name() does *NOT* fold the offset
1458 * argument into it's output!
1459 */
1460 addr = kprobe_lookup_name(symbol_name, offset);
1461 if (!addr)
1462 return ERR_PTR(-ENOENT);
1463 }
1464
1465 /*
1466 * So here we have @addr + @offset, displace it into a new
1467 * @addr' + @offset' where @addr' is the symbol start address.
1468 */
1469 addr = (void *)addr + offset;
1470 if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset))
1471 return ERR_PTR(-ENOENT);
1472 addr = (void *)addr - offset;
1473
1474 /*
1475 * Then ask the architecture to re-combine them, taking care of
1476 * magical function entry details while telling us if this was indeed
1477 * at the start of the function.
1478 */
1479 addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry);
1480 if (addr)
1481 return addr;
1482
1483 invalid:
1484 return ERR_PTR(-EINVAL);
1485 }
1486
kprobe_addr(struct kprobe * p)1487 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1488 {
1489 bool on_func_entry;
1490 return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1491 }
1492
1493 /*
1494 * Check the 'p' is valid and return the aggregator kprobe
1495 * at the same address.
1496 */
__get_valid_kprobe(struct kprobe * p)1497 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1498 {
1499 struct kprobe *ap, *list_p;
1500
1501 lockdep_assert_held(&kprobe_mutex);
1502
1503 ap = get_kprobe(p->addr);
1504 if (unlikely(!ap))
1505 return NULL;
1506
1507 if (p != ap) {
1508 list_for_each_entry(list_p, &ap->list, list)
1509 if (list_p == p)
1510 /* kprobe p is a valid probe */
1511 goto valid;
1512 return NULL;
1513 }
1514 valid:
1515 return ap;
1516 }
1517
1518 /*
1519 * Warn and return error if the kprobe is being re-registered since
1520 * there must be a software bug.
1521 */
warn_kprobe_rereg(struct kprobe * p)1522 static inline int warn_kprobe_rereg(struct kprobe *p)
1523 {
1524 int ret = 0;
1525
1526 mutex_lock(&kprobe_mutex);
1527 if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1528 ret = -EINVAL;
1529 mutex_unlock(&kprobe_mutex);
1530
1531 return ret;
1532 }
1533
check_ftrace_location(struct kprobe * p)1534 static int check_ftrace_location(struct kprobe *p)
1535 {
1536 unsigned long addr = (unsigned long)p->addr;
1537
1538 if (ftrace_location(addr) == addr) {
1539 #ifdef CONFIG_KPROBES_ON_FTRACE
1540 p->flags |= KPROBE_FLAG_FTRACE;
1541 #else /* !CONFIG_KPROBES_ON_FTRACE */
1542 return -EINVAL;
1543 #endif
1544 }
1545 return 0;
1546 }
1547
check_kprobe_address_safe(struct kprobe * p,struct module ** probed_mod)1548 static int check_kprobe_address_safe(struct kprobe *p,
1549 struct module **probed_mod)
1550 {
1551 int ret;
1552
1553 ret = check_ftrace_location(p);
1554 if (ret)
1555 return ret;
1556 jump_label_lock();
1557 preempt_disable();
1558
1559 /* Ensure it is not in reserved area nor out of text */
1560 if (!(core_kernel_text((unsigned long) p->addr) ||
1561 is_module_text_address((unsigned long) p->addr)) ||
1562 in_gate_area_no_mm((unsigned long) p->addr) ||
1563 within_kprobe_blacklist((unsigned long) p->addr) ||
1564 jump_label_text_reserved(p->addr, p->addr) ||
1565 static_call_text_reserved(p->addr, p->addr) ||
1566 find_bug((unsigned long)p->addr)) {
1567 ret = -EINVAL;
1568 goto out;
1569 }
1570
1571 /* Check if 'p' is probing a module. */
1572 *probed_mod = __module_text_address((unsigned long) p->addr);
1573 if (*probed_mod) {
1574 /*
1575 * We must hold a refcount of the probed module while updating
1576 * its code to prohibit unexpected unloading.
1577 */
1578 if (unlikely(!try_module_get(*probed_mod))) {
1579 ret = -ENOENT;
1580 goto out;
1581 }
1582
1583 /*
1584 * If the module freed '.init.text', we couldn't insert
1585 * kprobes in there.
1586 */
1587 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1588 (*probed_mod)->state != MODULE_STATE_COMING) {
1589 module_put(*probed_mod);
1590 *probed_mod = NULL;
1591 ret = -ENOENT;
1592 }
1593 }
1594 out:
1595 preempt_enable();
1596 jump_label_unlock();
1597
1598 return ret;
1599 }
1600
register_kprobe(struct kprobe * p)1601 int register_kprobe(struct kprobe *p)
1602 {
1603 int ret;
1604 struct kprobe *old_p;
1605 struct module *probed_mod;
1606 kprobe_opcode_t *addr;
1607 bool on_func_entry;
1608
1609 /* Adjust probe address from symbol */
1610 addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1611 if (IS_ERR(addr))
1612 return PTR_ERR(addr);
1613 p->addr = addr;
1614
1615 ret = warn_kprobe_rereg(p);
1616 if (ret)
1617 return ret;
1618
1619 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1620 p->flags &= KPROBE_FLAG_DISABLED;
1621 p->nmissed = 0;
1622 INIT_LIST_HEAD(&p->list);
1623
1624 ret = check_kprobe_address_safe(p, &probed_mod);
1625 if (ret)
1626 return ret;
1627
1628 mutex_lock(&kprobe_mutex);
1629
1630 if (on_func_entry)
1631 p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY;
1632
1633 old_p = get_kprobe(p->addr);
1634 if (old_p) {
1635 /* Since this may unoptimize 'old_p', locking 'text_mutex'. */
1636 ret = register_aggr_kprobe(old_p, p);
1637 goto out;
1638 }
1639
1640 cpus_read_lock();
1641 /* Prevent text modification */
1642 mutex_lock(&text_mutex);
1643 ret = prepare_kprobe(p);
1644 mutex_unlock(&text_mutex);
1645 cpus_read_unlock();
1646 if (ret)
1647 goto out;
1648
1649 INIT_HLIST_NODE(&p->hlist);
1650 hlist_add_head_rcu(&p->hlist,
1651 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1652
1653 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1654 ret = arm_kprobe(p);
1655 if (ret) {
1656 hlist_del_rcu(&p->hlist);
1657 synchronize_rcu();
1658 goto out;
1659 }
1660 }
1661
1662 /* Try to optimize kprobe */
1663 try_to_optimize_kprobe(p);
1664 out:
1665 mutex_unlock(&kprobe_mutex);
1666
1667 if (probed_mod)
1668 module_put(probed_mod);
1669
1670 return ret;
1671 }
1672 EXPORT_SYMBOL_GPL(register_kprobe);
1673
1674 /* Check if all probes on the 'ap' are disabled. */
aggr_kprobe_disabled(struct kprobe * ap)1675 static bool aggr_kprobe_disabled(struct kprobe *ap)
1676 {
1677 struct kprobe *kp;
1678
1679 lockdep_assert_held(&kprobe_mutex);
1680
1681 list_for_each_entry(kp, &ap->list, list)
1682 if (!kprobe_disabled(kp))
1683 /*
1684 * Since there is an active probe on the list,
1685 * we can't disable this 'ap'.
1686 */
1687 return false;
1688
1689 return true;
1690 }
1691
__disable_kprobe(struct kprobe * p)1692 static struct kprobe *__disable_kprobe(struct kprobe *p)
1693 {
1694 struct kprobe *orig_p;
1695 int ret;
1696
1697 lockdep_assert_held(&kprobe_mutex);
1698
1699 /* Get an original kprobe for return */
1700 orig_p = __get_valid_kprobe(p);
1701 if (unlikely(orig_p == NULL))
1702 return ERR_PTR(-EINVAL);
1703
1704 if (!kprobe_disabled(p)) {
1705 /* Disable probe if it is a child probe */
1706 if (p != orig_p)
1707 p->flags |= KPROBE_FLAG_DISABLED;
1708
1709 /* Try to disarm and disable this/parent probe */
1710 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1711 /*
1712 * Don't be lazy here. Even if 'kprobes_all_disarmed'
1713 * is false, 'orig_p' might not have been armed yet.
1714 * Note arm_all_kprobes() __tries__ to arm all kprobes
1715 * on the best effort basis.
1716 */
1717 if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1718 ret = disarm_kprobe(orig_p, true);
1719 if (ret) {
1720 p->flags &= ~KPROBE_FLAG_DISABLED;
1721 return ERR_PTR(ret);
1722 }
1723 }
1724 orig_p->flags |= KPROBE_FLAG_DISABLED;
1725 }
1726 }
1727
1728 return orig_p;
1729 }
1730
1731 /*
1732 * Unregister a kprobe without a scheduler synchronization.
1733 */
__unregister_kprobe_top(struct kprobe * p)1734 static int __unregister_kprobe_top(struct kprobe *p)
1735 {
1736 struct kprobe *ap, *list_p;
1737
1738 /* Disable kprobe. This will disarm it if needed. */
1739 ap = __disable_kprobe(p);
1740 if (IS_ERR(ap))
1741 return PTR_ERR(ap);
1742
1743 if (ap == p)
1744 /*
1745 * This probe is an independent(and non-optimized) kprobe
1746 * (not an aggrprobe). Remove from the hash list.
1747 */
1748 goto disarmed;
1749
1750 /* Following process expects this probe is an aggrprobe */
1751 WARN_ON(!kprobe_aggrprobe(ap));
1752
1753 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1754 /*
1755 * !disarmed could be happen if the probe is under delayed
1756 * unoptimizing.
1757 */
1758 goto disarmed;
1759 else {
1760 /* If disabling probe has special handlers, update aggrprobe */
1761 if (p->post_handler && !kprobe_gone(p)) {
1762 list_for_each_entry(list_p, &ap->list, list) {
1763 if ((list_p != p) && (list_p->post_handler))
1764 goto noclean;
1765 }
1766 /*
1767 * For the kprobe-on-ftrace case, we keep the
1768 * post_handler setting to identify this aggrprobe
1769 * armed with kprobe_ipmodify_ops.
1770 */
1771 if (!kprobe_ftrace(ap))
1772 ap->post_handler = NULL;
1773 }
1774 noclean:
1775 /*
1776 * Remove from the aggrprobe: this path will do nothing in
1777 * __unregister_kprobe_bottom().
1778 */
1779 list_del_rcu(&p->list);
1780 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1781 /*
1782 * Try to optimize this probe again, because post
1783 * handler may have been changed.
1784 */
1785 optimize_kprobe(ap);
1786 }
1787 return 0;
1788
1789 disarmed:
1790 hlist_del_rcu(&ap->hlist);
1791 return 0;
1792 }
1793
__unregister_kprobe_bottom(struct kprobe * p)1794 static void __unregister_kprobe_bottom(struct kprobe *p)
1795 {
1796 struct kprobe *ap;
1797
1798 if (list_empty(&p->list))
1799 /* This is an independent kprobe */
1800 arch_remove_kprobe(p);
1801 else if (list_is_singular(&p->list)) {
1802 /* This is the last child of an aggrprobe */
1803 ap = list_entry(p->list.next, struct kprobe, list);
1804 list_del(&p->list);
1805 free_aggr_kprobe(ap);
1806 }
1807 /* Otherwise, do nothing. */
1808 }
1809
register_kprobes(struct kprobe ** kps,int num)1810 int register_kprobes(struct kprobe **kps, int num)
1811 {
1812 int i, ret = 0;
1813
1814 if (num <= 0)
1815 return -EINVAL;
1816 for (i = 0; i < num; i++) {
1817 ret = register_kprobe(kps[i]);
1818 if (ret < 0) {
1819 if (i > 0)
1820 unregister_kprobes(kps, i);
1821 break;
1822 }
1823 }
1824 return ret;
1825 }
1826 EXPORT_SYMBOL_GPL(register_kprobes);
1827
unregister_kprobe(struct kprobe * p)1828 void unregister_kprobe(struct kprobe *p)
1829 {
1830 unregister_kprobes(&p, 1);
1831 }
1832 EXPORT_SYMBOL_GPL(unregister_kprobe);
1833
unregister_kprobes(struct kprobe ** kps,int num)1834 void unregister_kprobes(struct kprobe **kps, int num)
1835 {
1836 int i;
1837
1838 if (num <= 0)
1839 return;
1840 mutex_lock(&kprobe_mutex);
1841 for (i = 0; i < num; i++)
1842 if (__unregister_kprobe_top(kps[i]) < 0)
1843 kps[i]->addr = NULL;
1844 mutex_unlock(&kprobe_mutex);
1845
1846 synchronize_rcu();
1847 for (i = 0; i < num; i++)
1848 if (kps[i]->addr)
1849 __unregister_kprobe_bottom(kps[i]);
1850 }
1851 EXPORT_SYMBOL_GPL(unregister_kprobes);
1852
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)1853 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1854 unsigned long val, void *data)
1855 {
1856 return NOTIFY_DONE;
1857 }
1858 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1859
1860 static struct notifier_block kprobe_exceptions_nb = {
1861 .notifier_call = kprobe_exceptions_notify,
1862 .priority = 0x7fffffff /* we need to be notified first */
1863 };
1864
1865 #ifdef CONFIG_KRETPROBES
1866
1867 #if !defined(CONFIG_KRETPROBE_ON_RETHOOK)
free_rp_inst_rcu(struct rcu_head * head)1868 static void free_rp_inst_rcu(struct rcu_head *head)
1869 {
1870 struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1871
1872 if (refcount_dec_and_test(&ri->rph->ref))
1873 kfree(ri->rph);
1874 kfree(ri);
1875 }
1876 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1877
recycle_rp_inst(struct kretprobe_instance * ri)1878 static void recycle_rp_inst(struct kretprobe_instance *ri)
1879 {
1880 struct kretprobe *rp = get_kretprobe(ri);
1881
1882 if (likely(rp))
1883 freelist_add(&ri->freelist, &rp->freelist);
1884 else
1885 call_rcu(&ri->rcu, free_rp_inst_rcu);
1886 }
1887 NOKPROBE_SYMBOL(recycle_rp_inst);
1888
1889 /*
1890 * This function is called from delayed_put_task_struct() when a task is
1891 * dead and cleaned up to recycle any kretprobe instances associated with
1892 * this task. These left over instances represent probed functions that
1893 * have been called but will never return.
1894 */
kprobe_flush_task(struct task_struct * tk)1895 void kprobe_flush_task(struct task_struct *tk)
1896 {
1897 struct kretprobe_instance *ri;
1898 struct llist_node *node;
1899
1900 /* Early boot, not yet initialized. */
1901 if (unlikely(!kprobes_initialized))
1902 return;
1903
1904 kprobe_busy_begin();
1905
1906 node = __llist_del_all(&tk->kretprobe_instances);
1907 while (node) {
1908 ri = container_of(node, struct kretprobe_instance, llist);
1909 node = node->next;
1910
1911 recycle_rp_inst(ri);
1912 }
1913
1914 kprobe_busy_end();
1915 }
1916 NOKPROBE_SYMBOL(kprobe_flush_task);
1917
free_rp_inst(struct kretprobe * rp)1918 static inline void free_rp_inst(struct kretprobe *rp)
1919 {
1920 struct kretprobe_instance *ri;
1921 struct freelist_node *node;
1922 int count = 0;
1923
1924 node = rp->freelist.head;
1925 while (node) {
1926 ri = container_of(node, struct kretprobe_instance, freelist);
1927 node = node->next;
1928
1929 kfree(ri);
1930 count++;
1931 }
1932
1933 if (refcount_sub_and_test(count, &rp->rph->ref)) {
1934 kfree(rp->rph);
1935 rp->rph = NULL;
1936 }
1937 }
1938
1939 /* This assumes the 'tsk' is the current task or the is not running. */
__kretprobe_find_ret_addr(struct task_struct * tsk,struct llist_node ** cur)1940 static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk,
1941 struct llist_node **cur)
1942 {
1943 struct kretprobe_instance *ri = NULL;
1944 struct llist_node *node = *cur;
1945
1946 if (!node)
1947 node = tsk->kretprobe_instances.first;
1948 else
1949 node = node->next;
1950
1951 while (node) {
1952 ri = container_of(node, struct kretprobe_instance, llist);
1953 if (ri->ret_addr != kretprobe_trampoline_addr()) {
1954 *cur = node;
1955 return ri->ret_addr;
1956 }
1957 node = node->next;
1958 }
1959 return NULL;
1960 }
1961 NOKPROBE_SYMBOL(__kretprobe_find_ret_addr);
1962
1963 /**
1964 * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe
1965 * @tsk: Target task
1966 * @fp: A frame pointer
1967 * @cur: a storage of the loop cursor llist_node pointer for next call
1968 *
1969 * Find the correct return address modified by a kretprobe on @tsk in unsigned
1970 * long type. If it finds the return address, this returns that address value,
1971 * or this returns 0.
1972 * The @tsk must be 'current' or a task which is not running. @fp is a hint
1973 * to get the currect return address - which is compared with the
1974 * kretprobe_instance::fp field. The @cur is a loop cursor for searching the
1975 * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the
1976 * first call, but '@cur' itself must NOT NULL.
1977 */
kretprobe_find_ret_addr(struct task_struct * tsk,void * fp,struct llist_node ** cur)1978 unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp,
1979 struct llist_node **cur)
1980 {
1981 struct kretprobe_instance *ri = NULL;
1982 kprobe_opcode_t *ret;
1983
1984 if (WARN_ON_ONCE(!cur))
1985 return 0;
1986
1987 do {
1988 ret = __kretprobe_find_ret_addr(tsk, cur);
1989 if (!ret)
1990 break;
1991 ri = container_of(*cur, struct kretprobe_instance, llist);
1992 } while (ri->fp != fp);
1993
1994 return (unsigned long)ret;
1995 }
1996 NOKPROBE_SYMBOL(kretprobe_find_ret_addr);
1997
arch_kretprobe_fixup_return(struct pt_regs * regs,kprobe_opcode_t * correct_ret_addr)1998 void __weak arch_kretprobe_fixup_return(struct pt_regs *regs,
1999 kprobe_opcode_t *correct_ret_addr)
2000 {
2001 /*
2002 * Do nothing by default. Please fill this to update the fake return
2003 * address on the stack with the correct one on each arch if possible.
2004 */
2005 }
2006
__kretprobe_trampoline_handler(struct pt_regs * regs,void * frame_pointer)2007 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
2008 void *frame_pointer)
2009 {
2010 kprobe_opcode_t *correct_ret_addr = NULL;
2011 struct kretprobe_instance *ri = NULL;
2012 struct llist_node *first, *node = NULL;
2013 struct kretprobe *rp;
2014
2015 /* Find correct address and all nodes for this frame. */
2016 correct_ret_addr = __kretprobe_find_ret_addr(current, &node);
2017 if (!correct_ret_addr) {
2018 pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
2019 BUG_ON(1);
2020 }
2021
2022 /*
2023 * Set the return address as the instruction pointer, because if the
2024 * user handler calls stack_trace_save_regs() with this 'regs',
2025 * the stack trace will start from the instruction pointer.
2026 */
2027 instruction_pointer_set(regs, (unsigned long)correct_ret_addr);
2028
2029 /* Run the user handler of the nodes. */
2030 first = current->kretprobe_instances.first;
2031 while (first) {
2032 ri = container_of(first, struct kretprobe_instance, llist);
2033
2034 if (WARN_ON_ONCE(ri->fp != frame_pointer))
2035 break;
2036
2037 rp = get_kretprobe(ri);
2038 if (rp && rp->handler) {
2039 struct kprobe *prev = kprobe_running();
2040
2041 __this_cpu_write(current_kprobe, &rp->kp);
2042 ri->ret_addr = correct_ret_addr;
2043 rp->handler(ri, regs);
2044 __this_cpu_write(current_kprobe, prev);
2045 }
2046 if (first == node)
2047 break;
2048
2049 first = first->next;
2050 }
2051
2052 arch_kretprobe_fixup_return(regs, correct_ret_addr);
2053
2054 /* Unlink all nodes for this frame. */
2055 first = current->kretprobe_instances.first;
2056 current->kretprobe_instances.first = node->next;
2057 node->next = NULL;
2058
2059 /* Recycle free instances. */
2060 while (first) {
2061 ri = container_of(first, struct kretprobe_instance, llist);
2062 first = first->next;
2063
2064 recycle_rp_inst(ri);
2065 }
2066
2067 return (unsigned long)correct_ret_addr;
2068 }
NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)2069 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2070
2071 /*
2072 * This kprobe pre_handler is registered with every kretprobe. When probe
2073 * hits it will set up the return probe.
2074 */
2075 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2076 {
2077 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2078 struct kretprobe_instance *ri;
2079 struct freelist_node *fn;
2080
2081 fn = freelist_try_get(&rp->freelist);
2082 if (!fn) {
2083 rp->nmissed++;
2084 return 0;
2085 }
2086
2087 ri = container_of(fn, struct kretprobe_instance, freelist);
2088
2089 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2090 freelist_add(&ri->freelist, &rp->freelist);
2091 return 0;
2092 }
2093
2094 arch_prepare_kretprobe(ri, regs);
2095
2096 __llist_add(&ri->llist, ¤t->kretprobe_instances);
2097
2098 return 0;
2099 }
2100 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2101 #else /* CONFIG_KRETPROBE_ON_RETHOOK */
2102 /*
2103 * This kprobe pre_handler is registered with every kretprobe. When probe
2104 * hits it will set up the return probe.
2105 */
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)2106 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2107 {
2108 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2109 struct kretprobe_instance *ri;
2110 struct rethook_node *rhn;
2111
2112 rhn = rethook_try_get(rp->rh);
2113 if (!rhn) {
2114 rp->nmissed++;
2115 return 0;
2116 }
2117
2118 ri = container_of(rhn, struct kretprobe_instance, node);
2119
2120 if (rp->entry_handler && rp->entry_handler(ri, regs))
2121 rethook_recycle(rhn);
2122 else
2123 rethook_hook(rhn, regs, kprobe_ftrace(p));
2124
2125 return 0;
2126 }
2127 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2128
kretprobe_rethook_handler(struct rethook_node * rh,void * data,struct pt_regs * regs)2129 static void kretprobe_rethook_handler(struct rethook_node *rh, void *data,
2130 struct pt_regs *regs)
2131 {
2132 struct kretprobe *rp = (struct kretprobe *)data;
2133 struct kretprobe_instance *ri;
2134 struct kprobe_ctlblk *kcb;
2135
2136 /* The data must NOT be null. This means rethook data structure is broken. */
2137 if (WARN_ON_ONCE(!data) || !rp->handler)
2138 return;
2139
2140 __this_cpu_write(current_kprobe, &rp->kp);
2141 kcb = get_kprobe_ctlblk();
2142 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
2143
2144 ri = container_of(rh, struct kretprobe_instance, node);
2145 rp->handler(ri, regs);
2146
2147 __this_cpu_write(current_kprobe, NULL);
2148 }
2149 NOKPROBE_SYMBOL(kretprobe_rethook_handler);
2150
2151 #endif /* !CONFIG_KRETPROBE_ON_RETHOOK */
2152
2153 /**
2154 * kprobe_on_func_entry() -- check whether given address is function entry
2155 * @addr: Target address
2156 * @sym: Target symbol name
2157 * @offset: The offset from the symbol or the address
2158 *
2159 * This checks whether the given @addr+@offset or @sym+@offset is on the
2160 * function entry address or not.
2161 * This returns 0 if it is the function entry, or -EINVAL if it is not.
2162 * And also it returns -ENOENT if it fails the symbol or address lookup.
2163 * Caller must pass @addr or @sym (either one must be NULL), or this
2164 * returns -EINVAL.
2165 */
kprobe_on_func_entry(kprobe_opcode_t * addr,const char * sym,unsigned long offset)2166 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2167 {
2168 bool on_func_entry;
2169 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry);
2170
2171 if (IS_ERR(kp_addr))
2172 return PTR_ERR(kp_addr);
2173
2174 if (!on_func_entry)
2175 return -EINVAL;
2176
2177 return 0;
2178 }
2179
register_kretprobe(struct kretprobe * rp)2180 int register_kretprobe(struct kretprobe *rp)
2181 {
2182 int ret;
2183 struct kretprobe_instance *inst;
2184 int i;
2185 void *addr;
2186
2187 ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2188 if (ret)
2189 return ret;
2190
2191 /* If only 'rp->kp.addr' is specified, check reregistering kprobes */
2192 if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2193 return -EINVAL;
2194
2195 if (kretprobe_blacklist_size) {
2196 addr = kprobe_addr(&rp->kp);
2197 if (IS_ERR(addr))
2198 return PTR_ERR(addr);
2199
2200 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2201 if (kretprobe_blacklist[i].addr == addr)
2202 return -EINVAL;
2203 }
2204 }
2205
2206 if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2207 return -E2BIG;
2208
2209 rp->kp.pre_handler = pre_handler_kretprobe;
2210 rp->kp.post_handler = NULL;
2211
2212 /* Pre-allocate memory for max kretprobe instances */
2213 if (rp->maxactive <= 0)
2214 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2215
2216 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2217 rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler);
2218 if (!rp->rh)
2219 return -ENOMEM;
2220
2221 for (i = 0; i < rp->maxactive; i++) {
2222 inst = kzalloc(sizeof(struct kretprobe_instance) +
2223 rp->data_size, GFP_KERNEL);
2224 if (inst == NULL) {
2225 rethook_free(rp->rh);
2226 rp->rh = NULL;
2227 return -ENOMEM;
2228 }
2229 rethook_add_node(rp->rh, &inst->node);
2230 }
2231 rp->nmissed = 0;
2232 /* Establish function entry probe point */
2233 ret = register_kprobe(&rp->kp);
2234 if (ret != 0) {
2235 rethook_free(rp->rh);
2236 rp->rh = NULL;
2237 }
2238 #else /* !CONFIG_KRETPROBE_ON_RETHOOK */
2239 rp->freelist.head = NULL;
2240 rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2241 if (!rp->rph)
2242 return -ENOMEM;
2243
2244 rp->rph->rp = rp;
2245 for (i = 0; i < rp->maxactive; i++) {
2246 inst = kzalloc(sizeof(struct kretprobe_instance) +
2247 rp->data_size, GFP_KERNEL);
2248 if (inst == NULL) {
2249 refcount_set(&rp->rph->ref, i);
2250 free_rp_inst(rp);
2251 return -ENOMEM;
2252 }
2253 inst->rph = rp->rph;
2254 freelist_add(&inst->freelist, &rp->freelist);
2255 }
2256 refcount_set(&rp->rph->ref, i);
2257
2258 rp->nmissed = 0;
2259 /* Establish function entry probe point */
2260 ret = register_kprobe(&rp->kp);
2261 if (ret != 0)
2262 free_rp_inst(rp);
2263 #endif
2264 return ret;
2265 }
2266 EXPORT_SYMBOL_GPL(register_kretprobe);
2267
register_kretprobes(struct kretprobe ** rps,int num)2268 int register_kretprobes(struct kretprobe **rps, int num)
2269 {
2270 int ret = 0, i;
2271
2272 if (num <= 0)
2273 return -EINVAL;
2274 for (i = 0; i < num; i++) {
2275 ret = register_kretprobe(rps[i]);
2276 if (ret < 0) {
2277 if (i > 0)
2278 unregister_kretprobes(rps, i);
2279 break;
2280 }
2281 }
2282 return ret;
2283 }
2284 EXPORT_SYMBOL_GPL(register_kretprobes);
2285
unregister_kretprobe(struct kretprobe * rp)2286 void unregister_kretprobe(struct kretprobe *rp)
2287 {
2288 unregister_kretprobes(&rp, 1);
2289 }
2290 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2291
unregister_kretprobes(struct kretprobe ** rps,int num)2292 void unregister_kretprobes(struct kretprobe **rps, int num)
2293 {
2294 int i;
2295
2296 if (num <= 0)
2297 return;
2298 mutex_lock(&kprobe_mutex);
2299 for (i = 0; i < num; i++) {
2300 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2301 rps[i]->kp.addr = NULL;
2302 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2303 rethook_free(rps[i]->rh);
2304 #else
2305 rps[i]->rph->rp = NULL;
2306 #endif
2307 }
2308 mutex_unlock(&kprobe_mutex);
2309
2310 synchronize_rcu();
2311 for (i = 0; i < num; i++) {
2312 if (rps[i]->kp.addr) {
2313 __unregister_kprobe_bottom(&rps[i]->kp);
2314 #ifndef CONFIG_KRETPROBE_ON_RETHOOK
2315 free_rp_inst(rps[i]);
2316 #endif
2317 }
2318 }
2319 }
2320 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2321
2322 #else /* CONFIG_KRETPROBES */
register_kretprobe(struct kretprobe * rp)2323 int register_kretprobe(struct kretprobe *rp)
2324 {
2325 return -EOPNOTSUPP;
2326 }
2327 EXPORT_SYMBOL_GPL(register_kretprobe);
2328
register_kretprobes(struct kretprobe ** rps,int num)2329 int register_kretprobes(struct kretprobe **rps, int num)
2330 {
2331 return -EOPNOTSUPP;
2332 }
2333 EXPORT_SYMBOL_GPL(register_kretprobes);
2334
unregister_kretprobe(struct kretprobe * rp)2335 void unregister_kretprobe(struct kretprobe *rp)
2336 {
2337 }
2338 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2339
unregister_kretprobes(struct kretprobe ** rps,int num)2340 void unregister_kretprobes(struct kretprobe **rps, int num)
2341 {
2342 }
2343 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2344
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)2345 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2346 {
2347 return 0;
2348 }
2349 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2350
2351 #endif /* CONFIG_KRETPROBES */
2352
2353 /* Set the kprobe gone and remove its instruction buffer. */
kill_kprobe(struct kprobe * p)2354 static void kill_kprobe(struct kprobe *p)
2355 {
2356 struct kprobe *kp;
2357
2358 lockdep_assert_held(&kprobe_mutex);
2359
2360 /*
2361 * The module is going away. We should disarm the kprobe which
2362 * is using ftrace, because ftrace framework is still available at
2363 * 'MODULE_STATE_GOING' notification.
2364 */
2365 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2366 disarm_kprobe_ftrace(p);
2367
2368 p->flags |= KPROBE_FLAG_GONE;
2369 if (kprobe_aggrprobe(p)) {
2370 /*
2371 * If this is an aggr_kprobe, we have to list all the
2372 * chained probes and mark them GONE.
2373 */
2374 list_for_each_entry(kp, &p->list, list)
2375 kp->flags |= KPROBE_FLAG_GONE;
2376 p->post_handler = NULL;
2377 kill_optimized_kprobe(p);
2378 }
2379 /*
2380 * Here, we can remove insn_slot safely, because no thread calls
2381 * the original probed function (which will be freed soon) any more.
2382 */
2383 arch_remove_kprobe(p);
2384 }
2385
2386 /* Disable one kprobe */
disable_kprobe(struct kprobe * kp)2387 int disable_kprobe(struct kprobe *kp)
2388 {
2389 int ret = 0;
2390 struct kprobe *p;
2391
2392 mutex_lock(&kprobe_mutex);
2393
2394 /* Disable this kprobe */
2395 p = __disable_kprobe(kp);
2396 if (IS_ERR(p))
2397 ret = PTR_ERR(p);
2398
2399 mutex_unlock(&kprobe_mutex);
2400 return ret;
2401 }
2402 EXPORT_SYMBOL_GPL(disable_kprobe);
2403
2404 /* Enable one kprobe */
enable_kprobe(struct kprobe * kp)2405 int enable_kprobe(struct kprobe *kp)
2406 {
2407 int ret = 0;
2408 struct kprobe *p;
2409
2410 mutex_lock(&kprobe_mutex);
2411
2412 /* Check whether specified probe is valid. */
2413 p = __get_valid_kprobe(kp);
2414 if (unlikely(p == NULL)) {
2415 ret = -EINVAL;
2416 goto out;
2417 }
2418
2419 if (kprobe_gone(kp)) {
2420 /* This kprobe has gone, we couldn't enable it. */
2421 ret = -EINVAL;
2422 goto out;
2423 }
2424
2425 if (p != kp)
2426 kp->flags &= ~KPROBE_FLAG_DISABLED;
2427
2428 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2429 p->flags &= ~KPROBE_FLAG_DISABLED;
2430 ret = arm_kprobe(p);
2431 if (ret) {
2432 p->flags |= KPROBE_FLAG_DISABLED;
2433 if (p != kp)
2434 kp->flags |= KPROBE_FLAG_DISABLED;
2435 }
2436 }
2437 out:
2438 mutex_unlock(&kprobe_mutex);
2439 return ret;
2440 }
2441 EXPORT_SYMBOL_GPL(enable_kprobe);
2442
2443 /* Caller must NOT call this in usual path. This is only for critical case */
dump_kprobe(struct kprobe * kp)2444 void dump_kprobe(struct kprobe *kp)
2445 {
2446 pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
2447 kp->symbol_name, kp->offset, kp->addr);
2448 }
2449 NOKPROBE_SYMBOL(dump_kprobe);
2450
kprobe_add_ksym_blacklist(unsigned long entry)2451 int kprobe_add_ksym_blacklist(unsigned long entry)
2452 {
2453 struct kprobe_blacklist_entry *ent;
2454 unsigned long offset = 0, size = 0;
2455
2456 if (!kernel_text_address(entry) ||
2457 !kallsyms_lookup_size_offset(entry, &size, &offset))
2458 return -EINVAL;
2459
2460 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2461 if (!ent)
2462 return -ENOMEM;
2463 ent->start_addr = entry;
2464 ent->end_addr = entry + size;
2465 INIT_LIST_HEAD(&ent->list);
2466 list_add_tail(&ent->list, &kprobe_blacklist);
2467
2468 return (int)size;
2469 }
2470
2471 /* Add all symbols in given area into kprobe blacklist */
kprobe_add_area_blacklist(unsigned long start,unsigned long end)2472 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2473 {
2474 unsigned long entry;
2475 int ret = 0;
2476
2477 for (entry = start; entry < end; entry += ret) {
2478 ret = kprobe_add_ksym_blacklist(entry);
2479 if (ret < 0)
2480 return ret;
2481 if (ret == 0) /* In case of alias symbol */
2482 ret = 1;
2483 }
2484 return 0;
2485 }
2486
2487 /* Remove all symbols in given area from kprobe blacklist */
kprobe_remove_area_blacklist(unsigned long start,unsigned long end)2488 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2489 {
2490 struct kprobe_blacklist_entry *ent, *n;
2491
2492 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2493 if (ent->start_addr < start || ent->start_addr >= end)
2494 continue;
2495 list_del(&ent->list);
2496 kfree(ent);
2497 }
2498 }
2499
kprobe_remove_ksym_blacklist(unsigned long entry)2500 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2501 {
2502 kprobe_remove_area_blacklist(entry, entry + 1);
2503 }
2504
arch_kprobe_get_kallsym(unsigned int * symnum,unsigned long * value,char * type,char * sym)2505 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2506 char *type, char *sym)
2507 {
2508 return -ERANGE;
2509 }
2510
kprobe_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)2511 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2512 char *sym)
2513 {
2514 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2515 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2516 return 0;
2517 #ifdef CONFIG_OPTPROBES
2518 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2519 return 0;
2520 #endif
2521 #endif
2522 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2523 return 0;
2524 return -ERANGE;
2525 }
2526
arch_populate_kprobe_blacklist(void)2527 int __init __weak arch_populate_kprobe_blacklist(void)
2528 {
2529 return 0;
2530 }
2531
2532 /*
2533 * Lookup and populate the kprobe_blacklist.
2534 *
2535 * Unlike the kretprobe blacklist, we'll need to determine
2536 * the range of addresses that belong to the said functions,
2537 * since a kprobe need not necessarily be at the beginning
2538 * of a function.
2539 */
populate_kprobe_blacklist(unsigned long * start,unsigned long * end)2540 static int __init populate_kprobe_blacklist(unsigned long *start,
2541 unsigned long *end)
2542 {
2543 unsigned long entry;
2544 unsigned long *iter;
2545 int ret;
2546
2547 for (iter = start; iter < end; iter++) {
2548 entry = (unsigned long)dereference_symbol_descriptor((void *)*iter);
2549 ret = kprobe_add_ksym_blacklist(entry);
2550 if (ret == -EINVAL)
2551 continue;
2552 if (ret < 0)
2553 return ret;
2554 }
2555
2556 /* Symbols in '__kprobes_text' are blacklisted */
2557 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2558 (unsigned long)__kprobes_text_end);
2559 if (ret)
2560 return ret;
2561
2562 /* Symbols in 'noinstr' section are blacklisted */
2563 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2564 (unsigned long)__noinstr_text_end);
2565
2566 return ret ? : arch_populate_kprobe_blacklist();
2567 }
2568
add_module_kprobe_blacklist(struct module * mod)2569 static void add_module_kprobe_blacklist(struct module *mod)
2570 {
2571 unsigned long start, end;
2572 int i;
2573
2574 if (mod->kprobe_blacklist) {
2575 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2576 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2577 }
2578
2579 start = (unsigned long)mod->kprobes_text_start;
2580 if (start) {
2581 end = start + mod->kprobes_text_size;
2582 kprobe_add_area_blacklist(start, end);
2583 }
2584
2585 start = (unsigned long)mod->noinstr_text_start;
2586 if (start) {
2587 end = start + mod->noinstr_text_size;
2588 kprobe_add_area_blacklist(start, end);
2589 }
2590 }
2591
remove_module_kprobe_blacklist(struct module * mod)2592 static void remove_module_kprobe_blacklist(struct module *mod)
2593 {
2594 unsigned long start, end;
2595 int i;
2596
2597 if (mod->kprobe_blacklist) {
2598 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2599 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2600 }
2601
2602 start = (unsigned long)mod->kprobes_text_start;
2603 if (start) {
2604 end = start + mod->kprobes_text_size;
2605 kprobe_remove_area_blacklist(start, end);
2606 }
2607
2608 start = (unsigned long)mod->noinstr_text_start;
2609 if (start) {
2610 end = start + mod->noinstr_text_size;
2611 kprobe_remove_area_blacklist(start, end);
2612 }
2613 }
2614
2615 /* Module notifier call back, checking kprobes on the module */
kprobes_module_callback(struct notifier_block * nb,unsigned long val,void * data)2616 static int kprobes_module_callback(struct notifier_block *nb,
2617 unsigned long val, void *data)
2618 {
2619 struct module *mod = data;
2620 struct hlist_head *head;
2621 struct kprobe *p;
2622 unsigned int i;
2623 int checkcore = (val == MODULE_STATE_GOING);
2624
2625 if (val == MODULE_STATE_COMING) {
2626 mutex_lock(&kprobe_mutex);
2627 add_module_kprobe_blacklist(mod);
2628 mutex_unlock(&kprobe_mutex);
2629 }
2630 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2631 return NOTIFY_DONE;
2632
2633 /*
2634 * When 'MODULE_STATE_GOING' was notified, both of module '.text' and
2635 * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was
2636 * notified, only '.init.text' section would be freed. We need to
2637 * disable kprobes which have been inserted in the sections.
2638 */
2639 mutex_lock(&kprobe_mutex);
2640 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2641 head = &kprobe_table[i];
2642 hlist_for_each_entry(p, head, hlist)
2643 if (within_module_init((unsigned long)p->addr, mod) ||
2644 (checkcore &&
2645 within_module_core((unsigned long)p->addr, mod))) {
2646 /*
2647 * The vaddr this probe is installed will soon
2648 * be vfreed buy not synced to disk. Hence,
2649 * disarming the breakpoint isn't needed.
2650 *
2651 * Note, this will also move any optimized probes
2652 * that are pending to be removed from their
2653 * corresponding lists to the 'freeing_list' and
2654 * will not be touched by the delayed
2655 * kprobe_optimizer() work handler.
2656 */
2657 kill_kprobe(p);
2658 }
2659 }
2660 if (val == MODULE_STATE_GOING)
2661 remove_module_kprobe_blacklist(mod);
2662 mutex_unlock(&kprobe_mutex);
2663 return NOTIFY_DONE;
2664 }
2665
2666 static struct notifier_block kprobe_module_nb = {
2667 .notifier_call = kprobes_module_callback,
2668 .priority = 0
2669 };
2670
kprobe_free_init_mem(void)2671 void kprobe_free_init_mem(void)
2672 {
2673 void *start = (void *)(&__init_begin);
2674 void *end = (void *)(&__init_end);
2675 struct hlist_head *head;
2676 struct kprobe *p;
2677 int i;
2678
2679 mutex_lock(&kprobe_mutex);
2680
2681 /* Kill all kprobes on initmem because the target code has been freed. */
2682 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2683 head = &kprobe_table[i];
2684 hlist_for_each_entry(p, head, hlist) {
2685 if (start <= (void *)p->addr && (void *)p->addr < end)
2686 kill_kprobe(p);
2687 }
2688 }
2689
2690 mutex_unlock(&kprobe_mutex);
2691 }
2692
init_kprobes(void)2693 static int __init init_kprobes(void)
2694 {
2695 int i, err = 0;
2696
2697 /* FIXME allocate the probe table, currently defined statically */
2698 /* initialize all list heads */
2699 for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2700 INIT_HLIST_HEAD(&kprobe_table[i]);
2701
2702 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2703 __stop_kprobe_blacklist);
2704 if (err)
2705 pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
2706
2707 if (kretprobe_blacklist_size) {
2708 /* lookup the function address from its name */
2709 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2710 kretprobe_blacklist[i].addr =
2711 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2712 if (!kretprobe_blacklist[i].addr)
2713 pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
2714 kretprobe_blacklist[i].name);
2715 }
2716 }
2717
2718 /* By default, kprobes are armed */
2719 kprobes_all_disarmed = false;
2720
2721 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2722 /* Init 'kprobe_optinsn_slots' for allocation */
2723 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2724 #endif
2725
2726 err = arch_init_kprobes();
2727 if (!err)
2728 err = register_die_notifier(&kprobe_exceptions_nb);
2729 if (!err)
2730 err = register_module_notifier(&kprobe_module_nb);
2731
2732 kprobes_initialized = (err == 0);
2733 kprobe_sysctls_init();
2734 return err;
2735 }
2736 early_initcall(init_kprobes);
2737
2738 #if defined(CONFIG_OPTPROBES)
init_optprobes(void)2739 static int __init init_optprobes(void)
2740 {
2741 /*
2742 * Enable kprobe optimization - this kicks the optimizer which
2743 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2744 * not spawned in early initcall. So delay the optimization.
2745 */
2746 optimize_all_kprobes();
2747
2748 return 0;
2749 }
2750 subsys_initcall(init_optprobes);
2751 #endif
2752
2753 #ifdef CONFIG_DEBUG_FS
report_probe(struct seq_file * pi,struct kprobe * p,const char * sym,int offset,char * modname,struct kprobe * pp)2754 static void report_probe(struct seq_file *pi, struct kprobe *p,
2755 const char *sym, int offset, char *modname, struct kprobe *pp)
2756 {
2757 char *kprobe_type;
2758 void *addr = p->addr;
2759
2760 if (p->pre_handler == pre_handler_kretprobe)
2761 kprobe_type = "r";
2762 else
2763 kprobe_type = "k";
2764
2765 if (!kallsyms_show_value(pi->file->f_cred))
2766 addr = NULL;
2767
2768 if (sym)
2769 seq_printf(pi, "%px %s %s+0x%x %s ",
2770 addr, kprobe_type, sym, offset,
2771 (modname ? modname : " "));
2772 else /* try to use %pS */
2773 seq_printf(pi, "%px %s %pS ",
2774 addr, kprobe_type, p->addr);
2775
2776 if (!pp)
2777 pp = p;
2778 seq_printf(pi, "%s%s%s%s\n",
2779 (kprobe_gone(p) ? "[GONE]" : ""),
2780 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2781 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2782 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2783 }
2784
kprobe_seq_start(struct seq_file * f,loff_t * pos)2785 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2786 {
2787 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2788 }
2789
kprobe_seq_next(struct seq_file * f,void * v,loff_t * pos)2790 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2791 {
2792 (*pos)++;
2793 if (*pos >= KPROBE_TABLE_SIZE)
2794 return NULL;
2795 return pos;
2796 }
2797
kprobe_seq_stop(struct seq_file * f,void * v)2798 static void kprobe_seq_stop(struct seq_file *f, void *v)
2799 {
2800 /* Nothing to do */
2801 }
2802
show_kprobe_addr(struct seq_file * pi,void * v)2803 static int show_kprobe_addr(struct seq_file *pi, void *v)
2804 {
2805 struct hlist_head *head;
2806 struct kprobe *p, *kp;
2807 const char *sym = NULL;
2808 unsigned int i = *(loff_t *) v;
2809 unsigned long offset = 0;
2810 char *modname, namebuf[KSYM_NAME_LEN];
2811
2812 head = &kprobe_table[i];
2813 preempt_disable();
2814 hlist_for_each_entry_rcu(p, head, hlist) {
2815 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2816 &offset, &modname, namebuf);
2817 if (kprobe_aggrprobe(p)) {
2818 list_for_each_entry_rcu(kp, &p->list, list)
2819 report_probe(pi, kp, sym, offset, modname, p);
2820 } else
2821 report_probe(pi, p, sym, offset, modname, NULL);
2822 }
2823 preempt_enable();
2824 return 0;
2825 }
2826
2827 static const struct seq_operations kprobes_sops = {
2828 .start = kprobe_seq_start,
2829 .next = kprobe_seq_next,
2830 .stop = kprobe_seq_stop,
2831 .show = show_kprobe_addr
2832 };
2833
2834 DEFINE_SEQ_ATTRIBUTE(kprobes);
2835
2836 /* kprobes/blacklist -- shows which functions can not be probed */
kprobe_blacklist_seq_start(struct seq_file * m,loff_t * pos)2837 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2838 {
2839 mutex_lock(&kprobe_mutex);
2840 return seq_list_start(&kprobe_blacklist, *pos);
2841 }
2842
kprobe_blacklist_seq_next(struct seq_file * m,void * v,loff_t * pos)2843 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2844 {
2845 return seq_list_next(v, &kprobe_blacklist, pos);
2846 }
2847
kprobe_blacklist_seq_show(struct seq_file * m,void * v)2848 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2849 {
2850 struct kprobe_blacklist_entry *ent =
2851 list_entry(v, struct kprobe_blacklist_entry, list);
2852
2853 /*
2854 * If '/proc/kallsyms' is not showing kernel address, we won't
2855 * show them here either.
2856 */
2857 if (!kallsyms_show_value(m->file->f_cred))
2858 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2859 (void *)ent->start_addr);
2860 else
2861 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2862 (void *)ent->end_addr, (void *)ent->start_addr);
2863 return 0;
2864 }
2865
kprobe_blacklist_seq_stop(struct seq_file * f,void * v)2866 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2867 {
2868 mutex_unlock(&kprobe_mutex);
2869 }
2870
2871 static const struct seq_operations kprobe_blacklist_sops = {
2872 .start = kprobe_blacklist_seq_start,
2873 .next = kprobe_blacklist_seq_next,
2874 .stop = kprobe_blacklist_seq_stop,
2875 .show = kprobe_blacklist_seq_show,
2876 };
2877 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2878
arm_all_kprobes(void)2879 static int arm_all_kprobes(void)
2880 {
2881 struct hlist_head *head;
2882 struct kprobe *p;
2883 unsigned int i, total = 0, errors = 0;
2884 int err, ret = 0;
2885
2886 mutex_lock(&kprobe_mutex);
2887
2888 /* If kprobes are armed, just return */
2889 if (!kprobes_all_disarmed)
2890 goto already_enabled;
2891
2892 /*
2893 * optimize_kprobe() called by arm_kprobe() checks
2894 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2895 * arm_kprobe.
2896 */
2897 kprobes_all_disarmed = false;
2898 /* Arming kprobes doesn't optimize kprobe itself */
2899 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2900 head = &kprobe_table[i];
2901 /* Arm all kprobes on a best-effort basis */
2902 hlist_for_each_entry(p, head, hlist) {
2903 if (!kprobe_disabled(p)) {
2904 err = arm_kprobe(p);
2905 if (err) {
2906 errors++;
2907 ret = err;
2908 }
2909 total++;
2910 }
2911 }
2912 }
2913
2914 if (errors)
2915 pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
2916 errors, total);
2917 else
2918 pr_info("Kprobes globally enabled\n");
2919
2920 already_enabled:
2921 mutex_unlock(&kprobe_mutex);
2922 return ret;
2923 }
2924
disarm_all_kprobes(void)2925 static int disarm_all_kprobes(void)
2926 {
2927 struct hlist_head *head;
2928 struct kprobe *p;
2929 unsigned int i, total = 0, errors = 0;
2930 int err, ret = 0;
2931
2932 mutex_lock(&kprobe_mutex);
2933
2934 /* If kprobes are already disarmed, just return */
2935 if (kprobes_all_disarmed) {
2936 mutex_unlock(&kprobe_mutex);
2937 return 0;
2938 }
2939
2940 kprobes_all_disarmed = true;
2941
2942 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2943 head = &kprobe_table[i];
2944 /* Disarm all kprobes on a best-effort basis */
2945 hlist_for_each_entry(p, head, hlist) {
2946 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2947 err = disarm_kprobe(p, false);
2948 if (err) {
2949 errors++;
2950 ret = err;
2951 }
2952 total++;
2953 }
2954 }
2955 }
2956
2957 if (errors)
2958 pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
2959 errors, total);
2960 else
2961 pr_info("Kprobes globally disabled\n");
2962
2963 mutex_unlock(&kprobe_mutex);
2964
2965 /* Wait for disarming all kprobes by optimizer */
2966 wait_for_kprobe_optimizer();
2967
2968 return ret;
2969 }
2970
2971 /*
2972 * XXX: The debugfs bool file interface doesn't allow for callbacks
2973 * when the bool state is switched. We can reuse that facility when
2974 * available
2975 */
read_enabled_file_bool(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)2976 static ssize_t read_enabled_file_bool(struct file *file,
2977 char __user *user_buf, size_t count, loff_t *ppos)
2978 {
2979 char buf[3];
2980
2981 if (!kprobes_all_disarmed)
2982 buf[0] = '1';
2983 else
2984 buf[0] = '0';
2985 buf[1] = '\n';
2986 buf[2] = 0x00;
2987 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2988 }
2989
write_enabled_file_bool(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)2990 static ssize_t write_enabled_file_bool(struct file *file,
2991 const char __user *user_buf, size_t count, loff_t *ppos)
2992 {
2993 bool enable;
2994 int ret;
2995
2996 ret = kstrtobool_from_user(user_buf, count, &enable);
2997 if (ret)
2998 return ret;
2999
3000 ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
3001 if (ret)
3002 return ret;
3003
3004 return count;
3005 }
3006
3007 static const struct file_operations fops_kp = {
3008 .read = read_enabled_file_bool,
3009 .write = write_enabled_file_bool,
3010 .llseek = default_llseek,
3011 };
3012
debugfs_kprobe_init(void)3013 static int __init debugfs_kprobe_init(void)
3014 {
3015 struct dentry *dir;
3016
3017 dir = debugfs_create_dir("kprobes", NULL);
3018
3019 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
3020
3021 debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
3022
3023 debugfs_create_file("blacklist", 0400, dir, NULL,
3024 &kprobe_blacklist_fops);
3025
3026 return 0;
3027 }
3028
3029 late_initcall(debugfs_kprobe_init);
3030 #endif /* CONFIG_DEBUG_FS */
3031