1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/printk.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * Modified to make sys_syslog() more flexible: added commands to
8 * return the last 4k of kernel messages, regardless of whether
9 * they've been read or not. Added option to suppress kernel printk's
10 * to the console. Added hook for sending the console messages
11 * elsewhere, in preparation for a serial line console (someday).
12 * Ted Ts'o, 2/11/93.
13 * Modified for sysctl support, 1/8/97, Chris Horn.
14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15 * manfred@colorfullife.com
16 * Rewrote bits to get rid of console_lock
17 * 01Mar01 Andrew Morton
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57
58 #include "printk_ringbuffer.h"
59 #include "console_cmdline.h"
60 #include "braille.h"
61 #include "internal.h"
62
63 int console_printk[4] = {
64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
68 };
69 EXPORT_SYMBOL_GPL(console_printk);
70
71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
72 EXPORT_SYMBOL(ignore_console_lock_warning);
73
74 /*
75 * Low level drivers may need that to know if they can schedule in
76 * their unblank() callback or not. So let's export it.
77 */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80
81 /*
82 * console_mutex protects console_list updates and console->flags updates.
83 * The flags are synchronized only for consoles that are registered, i.e.
84 * accessible via the console list.
85 */
86 static DEFINE_MUTEX(console_mutex);
87
88 /*
89 * console_sem protects updates to console->seq and console_suspended,
90 * and also provides serialization for console printing.
91 */
92 static DEFINE_SEMAPHORE(console_sem);
93 HLIST_HEAD(console_list);
94 EXPORT_SYMBOL_GPL(console_list);
95 DEFINE_STATIC_SRCU(console_srcu);
96
97 /*
98 * System may need to suppress printk message under certain
99 * circumstances, like after kernel panic happens.
100 */
101 int __read_mostly suppress_printk;
102
103 /*
104 * During panic, heavy printk by other CPUs can delay the
105 * panic and risk deadlock on console resources.
106 */
107 static int __read_mostly suppress_panic_printk;
108
109 #ifdef CONFIG_LOCKDEP
110 static struct lockdep_map console_lock_dep_map = {
111 .name = "console_lock"
112 };
113
lockdep_assert_console_list_lock_held(void)114 void lockdep_assert_console_list_lock_held(void)
115 {
116 lockdep_assert_held(&console_mutex);
117 }
118 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held);
119 #endif
120
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
console_srcu_read_lock_is_held(void)122 bool console_srcu_read_lock_is_held(void)
123 {
124 return srcu_read_lock_held(&console_srcu);
125 }
126 EXPORT_SYMBOL(console_srcu_read_lock_is_held);
127 #endif
128
129 enum devkmsg_log_bits {
130 __DEVKMSG_LOG_BIT_ON = 0,
131 __DEVKMSG_LOG_BIT_OFF,
132 __DEVKMSG_LOG_BIT_LOCK,
133 };
134
135 enum devkmsg_log_masks {
136 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
137 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
138 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
139 };
140
141 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
142 #define DEVKMSG_LOG_MASK_DEFAULT 0
143
144 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
145
__control_devkmsg(char * str)146 static int __control_devkmsg(char *str)
147 {
148 size_t len;
149
150 if (!str)
151 return -EINVAL;
152
153 len = str_has_prefix(str, "on");
154 if (len) {
155 devkmsg_log = DEVKMSG_LOG_MASK_ON;
156 return len;
157 }
158
159 len = str_has_prefix(str, "off");
160 if (len) {
161 devkmsg_log = DEVKMSG_LOG_MASK_OFF;
162 return len;
163 }
164
165 len = str_has_prefix(str, "ratelimit");
166 if (len) {
167 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
168 return len;
169 }
170
171 return -EINVAL;
172 }
173
control_devkmsg(char * str)174 static int __init control_devkmsg(char *str)
175 {
176 if (__control_devkmsg(str) < 0) {
177 pr_warn("printk.devkmsg: bad option string '%s'\n", str);
178 return 1;
179 }
180
181 /*
182 * Set sysctl string accordingly:
183 */
184 if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
185 strcpy(devkmsg_log_str, "on");
186 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
187 strcpy(devkmsg_log_str, "off");
188 /* else "ratelimit" which is set by default. */
189
190 /*
191 * Sysctl cannot change it anymore. The kernel command line setting of
192 * this parameter is to force the setting to be permanent throughout the
193 * runtime of the system. This is a precation measure against userspace
194 * trying to be a smarta** and attempting to change it up on us.
195 */
196 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
197
198 return 1;
199 }
200 __setup("printk.devkmsg=", control_devkmsg);
201
202 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
203 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
devkmsg_sysctl_set_loglvl(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)204 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
205 void *buffer, size_t *lenp, loff_t *ppos)
206 {
207 char old_str[DEVKMSG_STR_MAX_SIZE];
208 unsigned int old;
209 int err;
210
211 if (write) {
212 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
213 return -EINVAL;
214
215 old = devkmsg_log;
216 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
217 }
218
219 err = proc_dostring(table, write, buffer, lenp, ppos);
220 if (err)
221 return err;
222
223 if (write) {
224 err = __control_devkmsg(devkmsg_log_str);
225
226 /*
227 * Do not accept an unknown string OR a known string with
228 * trailing crap...
229 */
230 if (err < 0 || (err + 1 != *lenp)) {
231
232 /* ... and restore old setting. */
233 devkmsg_log = old;
234 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
235
236 return -EINVAL;
237 }
238 }
239
240 return 0;
241 }
242 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
243
244 /**
245 * console_list_lock - Lock the console list
246 *
247 * For console list or console->flags updates
248 */
console_list_lock(void)249 void console_list_lock(void)
250 {
251 /*
252 * In unregister_console() and console_force_preferred_locked(),
253 * synchronize_srcu() is called with the console_list_lock held.
254 * Therefore it is not allowed that the console_list_lock is taken
255 * with the srcu_lock held.
256 *
257 * Detecting if this context is really in the read-side critical
258 * section is only possible if the appropriate debug options are
259 * enabled.
260 */
261 WARN_ON_ONCE(debug_lockdep_rcu_enabled() &&
262 srcu_read_lock_held(&console_srcu));
263
264 mutex_lock(&console_mutex);
265 }
266 EXPORT_SYMBOL(console_list_lock);
267
268 /**
269 * console_list_unlock - Unlock the console list
270 *
271 * Counterpart to console_list_lock()
272 */
console_list_unlock(void)273 void console_list_unlock(void)
274 {
275 mutex_unlock(&console_mutex);
276 }
277 EXPORT_SYMBOL(console_list_unlock);
278
279 /**
280 * console_srcu_read_lock - Register a new reader for the
281 * SRCU-protected console list
282 *
283 * Use for_each_console_srcu() to iterate the console list
284 *
285 * Context: Any context.
286 * Return: A cookie to pass to console_srcu_read_unlock().
287 */
console_srcu_read_lock(void)288 int console_srcu_read_lock(void)
289 {
290 return srcu_read_lock_nmisafe(&console_srcu);
291 }
292 EXPORT_SYMBOL(console_srcu_read_lock);
293
294 /**
295 * console_srcu_read_unlock - Unregister an old reader from
296 * the SRCU-protected console list
297 * @cookie: cookie returned from console_srcu_read_lock()
298 *
299 * Counterpart to console_srcu_read_lock()
300 */
console_srcu_read_unlock(int cookie)301 void console_srcu_read_unlock(int cookie)
302 {
303 srcu_read_unlock_nmisafe(&console_srcu, cookie);
304 }
305 EXPORT_SYMBOL(console_srcu_read_unlock);
306
307 /*
308 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
309 * macros instead of functions so that _RET_IP_ contains useful information.
310 */
311 #define down_console_sem() do { \
312 down(&console_sem);\
313 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
314 } while (0)
315
__down_trylock_console_sem(unsigned long ip)316 static int __down_trylock_console_sem(unsigned long ip)
317 {
318 int lock_failed;
319 unsigned long flags;
320
321 /*
322 * Here and in __up_console_sem() we need to be in safe mode,
323 * because spindump/WARN/etc from under console ->lock will
324 * deadlock in printk()->down_trylock_console_sem() otherwise.
325 */
326 printk_safe_enter_irqsave(flags);
327 lock_failed = down_trylock(&console_sem);
328 printk_safe_exit_irqrestore(flags);
329
330 if (lock_failed)
331 return 1;
332 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
333 return 0;
334 }
335 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
336
__up_console_sem(unsigned long ip)337 static void __up_console_sem(unsigned long ip)
338 {
339 unsigned long flags;
340
341 mutex_release(&console_lock_dep_map, ip);
342
343 printk_safe_enter_irqsave(flags);
344 up(&console_sem);
345 printk_safe_exit_irqrestore(flags);
346 }
347 #define up_console_sem() __up_console_sem(_RET_IP_)
348
panic_in_progress(void)349 static bool panic_in_progress(void)
350 {
351 return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
352 }
353
354 /*
355 * This is used for debugging the mess that is the VT code by
356 * keeping track if we have the console semaphore held. It's
357 * definitely not the perfect debug tool (we don't know if _WE_
358 * hold it and are racing, but it helps tracking those weird code
359 * paths in the console code where we end up in places I want
360 * locked without the console semaphore held).
361 */
362 static int console_locked, console_suspended;
363
364 /*
365 * Array of consoles built from command line options (console=)
366 */
367
368 #define MAX_CMDLINECONSOLES 8
369
370 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
371
372 static int preferred_console = -1;
373 int console_set_on_cmdline;
374 EXPORT_SYMBOL(console_set_on_cmdline);
375
376 /* Flag: console code may call schedule() */
377 static int console_may_schedule;
378
379 enum con_msg_format_flags {
380 MSG_FORMAT_DEFAULT = 0,
381 MSG_FORMAT_SYSLOG = (1 << 0),
382 };
383
384 static int console_msg_format = MSG_FORMAT_DEFAULT;
385
386 /*
387 * The printk log buffer consists of a sequenced collection of records, each
388 * containing variable length message text. Every record also contains its
389 * own meta-data (@info).
390 *
391 * Every record meta-data carries the timestamp in microseconds, as well as
392 * the standard userspace syslog level and syslog facility. The usual kernel
393 * messages use LOG_KERN; userspace-injected messages always carry a matching
394 * syslog facility, by default LOG_USER. The origin of every message can be
395 * reliably determined that way.
396 *
397 * The human readable log message of a record is available in @text, the
398 * length of the message text in @text_len. The stored message is not
399 * terminated.
400 *
401 * Optionally, a record can carry a dictionary of properties (key/value
402 * pairs), to provide userspace with a machine-readable message context.
403 *
404 * Examples for well-defined, commonly used property names are:
405 * DEVICE=b12:8 device identifier
406 * b12:8 block dev_t
407 * c127:3 char dev_t
408 * n8 netdev ifindex
409 * +sound:card0 subsystem:devname
410 * SUBSYSTEM=pci driver-core subsystem name
411 *
412 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
413 * and values are terminated by a '\0' character.
414 *
415 * Example of record values:
416 * record.text_buf = "it's a line" (unterminated)
417 * record.info.seq = 56
418 * record.info.ts_nsec = 36863
419 * record.info.text_len = 11
420 * record.info.facility = 0 (LOG_KERN)
421 * record.info.flags = 0
422 * record.info.level = 3 (LOG_ERR)
423 * record.info.caller_id = 299 (task 299)
424 * record.info.dev_info.subsystem = "pci" (terminated)
425 * record.info.dev_info.device = "+pci:0000:00:01.0" (terminated)
426 *
427 * The 'struct printk_info' buffer must never be directly exported to
428 * userspace, it is a kernel-private implementation detail that might
429 * need to be changed in the future, when the requirements change.
430 *
431 * /dev/kmsg exports the structured data in the following line format:
432 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
433 *
434 * Users of the export format should ignore possible additional values
435 * separated by ',', and find the message after the ';' character.
436 *
437 * The optional key/value pairs are attached as continuation lines starting
438 * with a space character and terminated by a newline. All possible
439 * non-prinatable characters are escaped in the "\xff" notation.
440 */
441
442 /* syslog_lock protects syslog_* variables and write access to clear_seq. */
443 static DEFINE_MUTEX(syslog_lock);
444
445 #ifdef CONFIG_PRINTK
446 DECLARE_WAIT_QUEUE_HEAD(log_wait);
447 /* All 3 protected by @syslog_lock. */
448 /* the next printk record to read by syslog(READ) or /proc/kmsg */
449 static u64 syslog_seq;
450 static size_t syslog_partial;
451 static bool syslog_time;
452
453 struct latched_seq {
454 seqcount_latch_t latch;
455 u64 val[2];
456 };
457
458 /*
459 * The next printk record to read after the last 'clear' command. There are
460 * two copies (updated with seqcount_latch) so that reads can locklessly
461 * access a valid value. Writers are synchronized by @syslog_lock.
462 */
463 static struct latched_seq clear_seq = {
464 .latch = SEQCNT_LATCH_ZERO(clear_seq.latch),
465 .val[0] = 0,
466 .val[1] = 0,
467 };
468
469 #define LOG_LEVEL(v) ((v) & 0x07)
470 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
471
472 /* record buffer */
473 #define LOG_ALIGN __alignof__(unsigned long)
474 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
475 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
476 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
477 static char *log_buf = __log_buf;
478 static u32 log_buf_len = __LOG_BUF_LEN;
479
480 /*
481 * Define the average message size. This only affects the number of
482 * descriptors that will be available. Underestimating is better than
483 * overestimating (too many available descriptors is better than not enough).
484 */
485 #define PRB_AVGBITS 5 /* 32 character average length */
486
487 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
488 #error CONFIG_LOG_BUF_SHIFT value too small.
489 #endif
490 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
491 PRB_AVGBITS, &__log_buf[0]);
492
493 static struct printk_ringbuffer printk_rb_dynamic;
494
495 static struct printk_ringbuffer *prb = &printk_rb_static;
496
497 /*
498 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
499 * per_cpu_areas are initialised. This variable is set to true when
500 * it's safe to access per-CPU data.
501 */
502 static bool __printk_percpu_data_ready __ro_after_init;
503
printk_percpu_data_ready(void)504 bool printk_percpu_data_ready(void)
505 {
506 return __printk_percpu_data_ready;
507 }
508
509 /* Must be called under syslog_lock. */
latched_seq_write(struct latched_seq * ls,u64 val)510 static void latched_seq_write(struct latched_seq *ls, u64 val)
511 {
512 raw_write_seqcount_latch(&ls->latch);
513 ls->val[0] = val;
514 raw_write_seqcount_latch(&ls->latch);
515 ls->val[1] = val;
516 }
517
518 /* Can be called from any context. */
latched_seq_read_nolock(struct latched_seq * ls)519 static u64 latched_seq_read_nolock(struct latched_seq *ls)
520 {
521 unsigned int seq;
522 unsigned int idx;
523 u64 val;
524
525 do {
526 seq = raw_read_seqcount_latch(&ls->latch);
527 idx = seq & 0x1;
528 val = ls->val[idx];
529 } while (read_seqcount_latch_retry(&ls->latch, seq));
530
531 return val;
532 }
533
534 /* Return log buffer address */
log_buf_addr_get(void)535 char *log_buf_addr_get(void)
536 {
537 return log_buf;
538 }
539
540 /* Return log buffer size */
log_buf_len_get(void)541 u32 log_buf_len_get(void)
542 {
543 return log_buf_len;
544 }
545
546 /*
547 * Define how much of the log buffer we could take at maximum. The value
548 * must be greater than two. Note that only half of the buffer is available
549 * when the index points to the middle.
550 */
551 #define MAX_LOG_TAKE_PART 4
552 static const char trunc_msg[] = "<truncated>";
553
truncate_msg(u16 * text_len,u16 * trunc_msg_len)554 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
555 {
556 /*
557 * The message should not take the whole buffer. Otherwise, it might
558 * get removed too soon.
559 */
560 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
561
562 if (*text_len > max_text_len)
563 *text_len = max_text_len;
564
565 /* enable the warning message (if there is room) */
566 *trunc_msg_len = strlen(trunc_msg);
567 if (*text_len >= *trunc_msg_len)
568 *text_len -= *trunc_msg_len;
569 else
570 *trunc_msg_len = 0;
571 }
572
573 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
574
syslog_action_restricted(int type)575 static int syslog_action_restricted(int type)
576 {
577 if (dmesg_restrict)
578 return 1;
579 /*
580 * Unless restricted, we allow "read all" and "get buffer size"
581 * for everybody.
582 */
583 return type != SYSLOG_ACTION_READ_ALL &&
584 type != SYSLOG_ACTION_SIZE_BUFFER;
585 }
586
check_syslog_permissions(int type,int source)587 static int check_syslog_permissions(int type, int source)
588 {
589 /*
590 * If this is from /proc/kmsg and we've already opened it, then we've
591 * already done the capabilities checks at open time.
592 */
593 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
594 goto ok;
595
596 if (syslog_action_restricted(type)) {
597 if (capable(CAP_SYSLOG))
598 goto ok;
599 /*
600 * For historical reasons, accept CAP_SYS_ADMIN too, with
601 * a warning.
602 */
603 if (capable(CAP_SYS_ADMIN)) {
604 pr_warn_once("%s (%d): Attempt to access syslog with "
605 "CAP_SYS_ADMIN but no CAP_SYSLOG "
606 "(deprecated).\n",
607 current->comm, task_pid_nr(current));
608 goto ok;
609 }
610 return -EPERM;
611 }
612 ok:
613 return security_syslog(type);
614 }
615
append_char(char ** pp,char * e,char c)616 static void append_char(char **pp, char *e, char c)
617 {
618 if (*pp < e)
619 *(*pp)++ = c;
620 }
621
info_print_ext_header(char * buf,size_t size,struct printk_info * info)622 static ssize_t info_print_ext_header(char *buf, size_t size,
623 struct printk_info *info)
624 {
625 u64 ts_usec = info->ts_nsec;
626 char caller[20];
627 #ifdef CONFIG_PRINTK_CALLER
628 u32 id = info->caller_id;
629
630 snprintf(caller, sizeof(caller), ",caller=%c%u",
631 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
632 #else
633 caller[0] = '\0';
634 #endif
635
636 do_div(ts_usec, 1000);
637
638 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
639 (info->facility << 3) | info->level, info->seq,
640 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
641 }
642
msg_add_ext_text(char * buf,size_t size,const char * text,size_t text_len,unsigned char endc)643 static ssize_t msg_add_ext_text(char *buf, size_t size,
644 const char *text, size_t text_len,
645 unsigned char endc)
646 {
647 char *p = buf, *e = buf + size;
648 size_t i;
649
650 /* escape non-printable characters */
651 for (i = 0; i < text_len; i++) {
652 unsigned char c = text[i];
653
654 if (c < ' ' || c >= 127 || c == '\\')
655 p += scnprintf(p, e - p, "\\x%02x", c);
656 else
657 append_char(&p, e, c);
658 }
659 append_char(&p, e, endc);
660
661 return p - buf;
662 }
663
msg_add_dict_text(char * buf,size_t size,const char * key,const char * val)664 static ssize_t msg_add_dict_text(char *buf, size_t size,
665 const char *key, const char *val)
666 {
667 size_t val_len = strlen(val);
668 ssize_t len;
669
670 if (!val_len)
671 return 0;
672
673 len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */
674 len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
675 len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
676
677 return len;
678 }
679
msg_print_ext_body(char * buf,size_t size,char * text,size_t text_len,struct dev_printk_info * dev_info)680 static ssize_t msg_print_ext_body(char *buf, size_t size,
681 char *text, size_t text_len,
682 struct dev_printk_info *dev_info)
683 {
684 ssize_t len;
685
686 len = msg_add_ext_text(buf, size, text, text_len, '\n');
687
688 if (!dev_info)
689 goto out;
690
691 len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
692 dev_info->subsystem);
693 len += msg_add_dict_text(buf + len, size - len, "DEVICE",
694 dev_info->device);
695 out:
696 return len;
697 }
698
699 static bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
700 bool is_extended, bool may_supress);
701
702 /* /dev/kmsg - userspace message inject/listen interface */
703 struct devkmsg_user {
704 atomic64_t seq;
705 struct ratelimit_state rs;
706 struct mutex lock;
707 struct printk_buffers pbufs;
708 };
709
710 static __printf(3, 4) __cold
devkmsg_emit(int facility,int level,const char * fmt,...)711 int devkmsg_emit(int facility, int level, const char *fmt, ...)
712 {
713 va_list args;
714 int r;
715
716 va_start(args, fmt);
717 r = vprintk_emit(facility, level, NULL, fmt, args);
718 va_end(args);
719
720 return r;
721 }
722
devkmsg_write(struct kiocb * iocb,struct iov_iter * from)723 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
724 {
725 char *buf, *line;
726 int level = default_message_loglevel;
727 int facility = 1; /* LOG_USER */
728 struct file *file = iocb->ki_filp;
729 struct devkmsg_user *user = file->private_data;
730 size_t len = iov_iter_count(from);
731 ssize_t ret = len;
732
733 if (!user || len > PRINTKRB_RECORD_MAX)
734 return -EINVAL;
735
736 /* Ignore when user logging is disabled. */
737 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
738 return len;
739
740 /* Ratelimit when not explicitly enabled. */
741 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
742 if (!___ratelimit(&user->rs, current->comm))
743 return ret;
744 }
745
746 buf = kmalloc(len+1, GFP_KERNEL);
747 if (buf == NULL)
748 return -ENOMEM;
749
750 buf[len] = '\0';
751 if (!copy_from_iter_full(buf, len, from)) {
752 kfree(buf);
753 return -EFAULT;
754 }
755
756 /*
757 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
758 * the decimal value represents 32bit, the lower 3 bit are the log
759 * level, the rest are the log facility.
760 *
761 * If no prefix or no userspace facility is specified, we
762 * enforce LOG_USER, to be able to reliably distinguish
763 * kernel-generated messages from userspace-injected ones.
764 */
765 line = buf;
766 if (line[0] == '<') {
767 char *endp = NULL;
768 unsigned int u;
769
770 u = simple_strtoul(line + 1, &endp, 10);
771 if (endp && endp[0] == '>') {
772 level = LOG_LEVEL(u);
773 if (LOG_FACILITY(u) != 0)
774 facility = LOG_FACILITY(u);
775 endp++;
776 line = endp;
777 }
778 }
779
780 devkmsg_emit(facility, level, "%s", line);
781 kfree(buf);
782 return ret;
783 }
784
devkmsg_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)785 static ssize_t devkmsg_read(struct file *file, char __user *buf,
786 size_t count, loff_t *ppos)
787 {
788 struct devkmsg_user *user = file->private_data;
789 char *outbuf = &user->pbufs.outbuf[0];
790 struct printk_message pmsg = {
791 .pbufs = &user->pbufs,
792 };
793 ssize_t ret;
794
795 if (!user)
796 return -EBADF;
797
798 ret = mutex_lock_interruptible(&user->lock);
799 if (ret)
800 return ret;
801
802 if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) {
803 if (file->f_flags & O_NONBLOCK) {
804 ret = -EAGAIN;
805 goto out;
806 }
807
808 /*
809 * Guarantee this task is visible on the waitqueue before
810 * checking the wake condition.
811 *
812 * The full memory barrier within set_current_state() of
813 * prepare_to_wait_event() pairs with the full memory barrier
814 * within wq_has_sleeper().
815 *
816 * This pairs with __wake_up_klogd:A.
817 */
818 ret = wait_event_interruptible(log_wait,
819 printk_get_next_message(&pmsg, atomic64_read(&user->seq), true,
820 false)); /* LMM(devkmsg_read:A) */
821 if (ret)
822 goto out;
823 }
824
825 if (pmsg.dropped) {
826 /* our last seen message is gone, return error and reset */
827 atomic64_set(&user->seq, pmsg.seq);
828 ret = -EPIPE;
829 goto out;
830 }
831
832 atomic64_set(&user->seq, pmsg.seq + 1);
833
834 if (pmsg.outbuf_len > count) {
835 ret = -EINVAL;
836 goto out;
837 }
838
839 if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) {
840 ret = -EFAULT;
841 goto out;
842 }
843 ret = pmsg.outbuf_len;
844 out:
845 mutex_unlock(&user->lock);
846 return ret;
847 }
848
849 /*
850 * Be careful when modifying this function!!!
851 *
852 * Only few operations are supported because the device works only with the
853 * entire variable length messages (records). Non-standard values are
854 * returned in the other cases and has been this way for quite some time.
855 * User space applications might depend on this behavior.
856 */
devkmsg_llseek(struct file * file,loff_t offset,int whence)857 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
858 {
859 struct devkmsg_user *user = file->private_data;
860 loff_t ret = 0;
861
862 if (!user)
863 return -EBADF;
864 if (offset)
865 return -ESPIPE;
866
867 switch (whence) {
868 case SEEK_SET:
869 /* the first record */
870 atomic64_set(&user->seq, prb_first_valid_seq(prb));
871 break;
872 case SEEK_DATA:
873 /*
874 * The first record after the last SYSLOG_ACTION_CLEAR,
875 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
876 * changes no global state, and does not clear anything.
877 */
878 atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
879 break;
880 case SEEK_END:
881 /* after the last record */
882 atomic64_set(&user->seq, prb_next_seq(prb));
883 break;
884 default:
885 ret = -EINVAL;
886 }
887 return ret;
888 }
889
devkmsg_poll(struct file * file,poll_table * wait)890 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
891 {
892 struct devkmsg_user *user = file->private_data;
893 struct printk_info info;
894 __poll_t ret = 0;
895
896 if (!user)
897 return EPOLLERR|EPOLLNVAL;
898
899 poll_wait(file, &log_wait, wait);
900
901 if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
902 /* return error when data has vanished underneath us */
903 if (info.seq != atomic64_read(&user->seq))
904 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
905 else
906 ret = EPOLLIN|EPOLLRDNORM;
907 }
908
909 return ret;
910 }
911
devkmsg_open(struct inode * inode,struct file * file)912 static int devkmsg_open(struct inode *inode, struct file *file)
913 {
914 struct devkmsg_user *user;
915 int err;
916
917 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
918 return -EPERM;
919
920 /* write-only does not need any file context */
921 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
922 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
923 SYSLOG_FROM_READER);
924 if (err)
925 return err;
926 }
927
928 user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
929 if (!user)
930 return -ENOMEM;
931
932 ratelimit_default_init(&user->rs);
933 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
934
935 mutex_init(&user->lock);
936
937 atomic64_set(&user->seq, prb_first_valid_seq(prb));
938
939 file->private_data = user;
940 return 0;
941 }
942
devkmsg_release(struct inode * inode,struct file * file)943 static int devkmsg_release(struct inode *inode, struct file *file)
944 {
945 struct devkmsg_user *user = file->private_data;
946
947 if (!user)
948 return 0;
949
950 ratelimit_state_exit(&user->rs);
951
952 mutex_destroy(&user->lock);
953 kvfree(user);
954 return 0;
955 }
956
957 const struct file_operations kmsg_fops = {
958 .open = devkmsg_open,
959 .read = devkmsg_read,
960 .write_iter = devkmsg_write,
961 .llseek = devkmsg_llseek,
962 .poll = devkmsg_poll,
963 .release = devkmsg_release,
964 };
965
966 #ifdef CONFIG_CRASH_CORE
967 /*
968 * This appends the listed symbols to /proc/vmcore
969 *
970 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
971 * obtain access to symbols that are otherwise very difficult to locate. These
972 * symbols are specifically used so that utilities can access and extract the
973 * dmesg log from a vmcore file after a crash.
974 */
log_buf_vmcoreinfo_setup(void)975 void log_buf_vmcoreinfo_setup(void)
976 {
977 struct dev_printk_info *dev_info = NULL;
978
979 VMCOREINFO_SYMBOL(prb);
980 VMCOREINFO_SYMBOL(printk_rb_static);
981 VMCOREINFO_SYMBOL(clear_seq);
982
983 /*
984 * Export struct size and field offsets. User space tools can
985 * parse it and detect any changes to structure down the line.
986 */
987
988 VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
989 VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
990 VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
991 VMCOREINFO_OFFSET(printk_ringbuffer, fail);
992
993 VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
994 VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
995 VMCOREINFO_OFFSET(prb_desc_ring, descs);
996 VMCOREINFO_OFFSET(prb_desc_ring, infos);
997 VMCOREINFO_OFFSET(prb_desc_ring, head_id);
998 VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
999
1000 VMCOREINFO_STRUCT_SIZE(prb_desc);
1001 VMCOREINFO_OFFSET(prb_desc, state_var);
1002 VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
1003
1004 VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
1005 VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
1006 VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
1007
1008 VMCOREINFO_STRUCT_SIZE(printk_info);
1009 VMCOREINFO_OFFSET(printk_info, seq);
1010 VMCOREINFO_OFFSET(printk_info, ts_nsec);
1011 VMCOREINFO_OFFSET(printk_info, text_len);
1012 VMCOREINFO_OFFSET(printk_info, caller_id);
1013 VMCOREINFO_OFFSET(printk_info, dev_info);
1014
1015 VMCOREINFO_STRUCT_SIZE(dev_printk_info);
1016 VMCOREINFO_OFFSET(dev_printk_info, subsystem);
1017 VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
1018 VMCOREINFO_OFFSET(dev_printk_info, device);
1019 VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
1020
1021 VMCOREINFO_STRUCT_SIZE(prb_data_ring);
1022 VMCOREINFO_OFFSET(prb_data_ring, size_bits);
1023 VMCOREINFO_OFFSET(prb_data_ring, data);
1024 VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
1025 VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
1026
1027 VMCOREINFO_SIZE(atomic_long_t);
1028 VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
1029
1030 VMCOREINFO_STRUCT_SIZE(latched_seq);
1031 VMCOREINFO_OFFSET(latched_seq, val);
1032 }
1033 #endif
1034
1035 /* requested log_buf_len from kernel cmdline */
1036 static unsigned long __initdata new_log_buf_len;
1037
1038 /* we practice scaling the ring buffer by powers of 2 */
log_buf_len_update(u64 size)1039 static void __init log_buf_len_update(u64 size)
1040 {
1041 if (size > (u64)LOG_BUF_LEN_MAX) {
1042 size = (u64)LOG_BUF_LEN_MAX;
1043 pr_err("log_buf over 2G is not supported.\n");
1044 }
1045
1046 if (size)
1047 size = roundup_pow_of_two(size);
1048 if (size > log_buf_len)
1049 new_log_buf_len = (unsigned long)size;
1050 }
1051
1052 /* save requested log_buf_len since it's too early to process it */
log_buf_len_setup(char * str)1053 static int __init log_buf_len_setup(char *str)
1054 {
1055 u64 size;
1056
1057 if (!str)
1058 return -EINVAL;
1059
1060 size = memparse(str, &str);
1061
1062 log_buf_len_update(size);
1063
1064 return 0;
1065 }
1066 early_param("log_buf_len", log_buf_len_setup);
1067
1068 #ifdef CONFIG_SMP
1069 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1070
log_buf_add_cpu(void)1071 static void __init log_buf_add_cpu(void)
1072 {
1073 unsigned int cpu_extra;
1074
1075 /*
1076 * archs should set up cpu_possible_bits properly with
1077 * set_cpu_possible() after setup_arch() but just in
1078 * case lets ensure this is valid.
1079 */
1080 if (num_possible_cpus() == 1)
1081 return;
1082
1083 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1084
1085 /* by default this will only continue through for large > 64 CPUs */
1086 if (cpu_extra <= __LOG_BUF_LEN / 2)
1087 return;
1088
1089 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1090 __LOG_CPU_MAX_BUF_LEN);
1091 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1092 cpu_extra);
1093 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1094
1095 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1096 }
1097 #else /* !CONFIG_SMP */
log_buf_add_cpu(void)1098 static inline void log_buf_add_cpu(void) {}
1099 #endif /* CONFIG_SMP */
1100
set_percpu_data_ready(void)1101 static void __init set_percpu_data_ready(void)
1102 {
1103 __printk_percpu_data_ready = true;
1104 }
1105
add_to_rb(struct printk_ringbuffer * rb,struct printk_record * r)1106 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1107 struct printk_record *r)
1108 {
1109 struct prb_reserved_entry e;
1110 struct printk_record dest_r;
1111
1112 prb_rec_init_wr(&dest_r, r->info->text_len);
1113
1114 if (!prb_reserve(&e, rb, &dest_r))
1115 return 0;
1116
1117 memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1118 dest_r.info->text_len = r->info->text_len;
1119 dest_r.info->facility = r->info->facility;
1120 dest_r.info->level = r->info->level;
1121 dest_r.info->flags = r->info->flags;
1122 dest_r.info->ts_nsec = r->info->ts_nsec;
1123 dest_r.info->caller_id = r->info->caller_id;
1124 memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1125
1126 prb_final_commit(&e);
1127
1128 return prb_record_text_space(&e);
1129 }
1130
1131 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata;
1132
setup_log_buf(int early)1133 void __init setup_log_buf(int early)
1134 {
1135 struct printk_info *new_infos;
1136 unsigned int new_descs_count;
1137 struct prb_desc *new_descs;
1138 struct printk_info info;
1139 struct printk_record r;
1140 unsigned int text_size;
1141 size_t new_descs_size;
1142 size_t new_infos_size;
1143 unsigned long flags;
1144 char *new_log_buf;
1145 unsigned int free;
1146 u64 seq;
1147
1148 /*
1149 * Some archs call setup_log_buf() multiple times - first is very
1150 * early, e.g. from setup_arch(), and second - when percpu_areas
1151 * are initialised.
1152 */
1153 if (!early)
1154 set_percpu_data_ready();
1155
1156 if (log_buf != __log_buf)
1157 return;
1158
1159 if (!early && !new_log_buf_len)
1160 log_buf_add_cpu();
1161
1162 if (!new_log_buf_len)
1163 return;
1164
1165 new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1166 if (new_descs_count == 0) {
1167 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1168 return;
1169 }
1170
1171 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1172 if (unlikely(!new_log_buf)) {
1173 pr_err("log_buf_len: %lu text bytes not available\n",
1174 new_log_buf_len);
1175 return;
1176 }
1177
1178 new_descs_size = new_descs_count * sizeof(struct prb_desc);
1179 new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1180 if (unlikely(!new_descs)) {
1181 pr_err("log_buf_len: %zu desc bytes not available\n",
1182 new_descs_size);
1183 goto err_free_log_buf;
1184 }
1185
1186 new_infos_size = new_descs_count * sizeof(struct printk_info);
1187 new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1188 if (unlikely(!new_infos)) {
1189 pr_err("log_buf_len: %zu info bytes not available\n",
1190 new_infos_size);
1191 goto err_free_descs;
1192 }
1193
1194 prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1195
1196 prb_init(&printk_rb_dynamic,
1197 new_log_buf, ilog2(new_log_buf_len),
1198 new_descs, ilog2(new_descs_count),
1199 new_infos);
1200
1201 local_irq_save(flags);
1202
1203 log_buf_len = new_log_buf_len;
1204 log_buf = new_log_buf;
1205 new_log_buf_len = 0;
1206
1207 free = __LOG_BUF_LEN;
1208 prb_for_each_record(0, &printk_rb_static, seq, &r) {
1209 text_size = add_to_rb(&printk_rb_dynamic, &r);
1210 if (text_size > free)
1211 free = 0;
1212 else
1213 free -= text_size;
1214 }
1215
1216 prb = &printk_rb_dynamic;
1217
1218 local_irq_restore(flags);
1219
1220 /*
1221 * Copy any remaining messages that might have appeared from
1222 * NMI context after copying but before switching to the
1223 * dynamic buffer.
1224 */
1225 prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1226 text_size = add_to_rb(&printk_rb_dynamic, &r);
1227 if (text_size > free)
1228 free = 0;
1229 else
1230 free -= text_size;
1231 }
1232
1233 if (seq != prb_next_seq(&printk_rb_static)) {
1234 pr_err("dropped %llu messages\n",
1235 prb_next_seq(&printk_rb_static) - seq);
1236 }
1237
1238 pr_info("log_buf_len: %u bytes\n", log_buf_len);
1239 pr_info("early log buf free: %u(%u%%)\n",
1240 free, (free * 100) / __LOG_BUF_LEN);
1241 return;
1242
1243 err_free_descs:
1244 memblock_free(new_descs, new_descs_size);
1245 err_free_log_buf:
1246 memblock_free(new_log_buf, new_log_buf_len);
1247 }
1248
1249 static bool __read_mostly ignore_loglevel;
1250
ignore_loglevel_setup(char * str)1251 static int __init ignore_loglevel_setup(char *str)
1252 {
1253 ignore_loglevel = true;
1254 pr_info("debug: ignoring loglevel setting.\n");
1255
1256 return 0;
1257 }
1258
1259 early_param("ignore_loglevel", ignore_loglevel_setup);
1260 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1261 MODULE_PARM_DESC(ignore_loglevel,
1262 "ignore loglevel setting (prints all kernel messages to the console)");
1263
suppress_message_printing(int level)1264 static bool suppress_message_printing(int level)
1265 {
1266 return (level >= console_loglevel && !ignore_loglevel);
1267 }
1268
1269 #ifdef CONFIG_BOOT_PRINTK_DELAY
1270
1271 static int boot_delay; /* msecs delay after each printk during bootup */
1272 static unsigned long long loops_per_msec; /* based on boot_delay */
1273
boot_delay_setup(char * str)1274 static int __init boot_delay_setup(char *str)
1275 {
1276 unsigned long lpj;
1277
1278 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
1279 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1280
1281 get_option(&str, &boot_delay);
1282 if (boot_delay > 10 * 1000)
1283 boot_delay = 0;
1284
1285 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1286 "HZ: %d, loops_per_msec: %llu\n",
1287 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1288 return 0;
1289 }
1290 early_param("boot_delay", boot_delay_setup);
1291
boot_delay_msec(int level)1292 static void boot_delay_msec(int level)
1293 {
1294 unsigned long long k;
1295 unsigned long timeout;
1296
1297 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1298 || suppress_message_printing(level)) {
1299 return;
1300 }
1301
1302 k = (unsigned long long)loops_per_msec * boot_delay;
1303
1304 timeout = jiffies + msecs_to_jiffies(boot_delay);
1305 while (k) {
1306 k--;
1307 cpu_relax();
1308 /*
1309 * use (volatile) jiffies to prevent
1310 * compiler reduction; loop termination via jiffies
1311 * is secondary and may or may not happen.
1312 */
1313 if (time_after(jiffies, timeout))
1314 break;
1315 touch_nmi_watchdog();
1316 }
1317 }
1318 #else
boot_delay_msec(int level)1319 static inline void boot_delay_msec(int level)
1320 {
1321 }
1322 #endif
1323
1324 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1325 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1326
print_syslog(unsigned int level,char * buf)1327 static size_t print_syslog(unsigned int level, char *buf)
1328 {
1329 return sprintf(buf, "<%u>", level);
1330 }
1331
print_time(u64 ts,char * buf)1332 static size_t print_time(u64 ts, char *buf)
1333 {
1334 unsigned long rem_nsec = do_div(ts, 1000000000);
1335
1336 return sprintf(buf, "[%5lu.%06lu]",
1337 (unsigned long)ts, rem_nsec / 1000);
1338 }
1339
1340 #ifdef CONFIG_PRINTK_CALLER
print_caller(u32 id,char * buf)1341 static size_t print_caller(u32 id, char *buf)
1342 {
1343 char caller[12];
1344
1345 snprintf(caller, sizeof(caller), "%c%u",
1346 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1347 return sprintf(buf, "[%6s]", caller);
1348 }
1349 #else
1350 #define print_caller(id, buf) 0
1351 #endif
1352
info_print_prefix(const struct printk_info * info,bool syslog,bool time,char * buf)1353 static size_t info_print_prefix(const struct printk_info *info, bool syslog,
1354 bool time, char *buf)
1355 {
1356 size_t len = 0;
1357
1358 if (syslog)
1359 len = print_syslog((info->facility << 3) | info->level, buf);
1360
1361 if (time)
1362 len += print_time(info->ts_nsec, buf + len);
1363
1364 len += print_caller(info->caller_id, buf + len);
1365
1366 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1367 buf[len++] = ' ';
1368 buf[len] = '\0';
1369 }
1370
1371 return len;
1372 }
1373
1374 /*
1375 * Prepare the record for printing. The text is shifted within the given
1376 * buffer to avoid a need for another one. The following operations are
1377 * done:
1378 *
1379 * - Add prefix for each line.
1380 * - Drop truncated lines that no longer fit into the buffer.
1381 * - Add the trailing newline that has been removed in vprintk_store().
1382 * - Add a string terminator.
1383 *
1384 * Since the produced string is always terminated, the maximum possible
1385 * return value is @r->text_buf_size - 1;
1386 *
1387 * Return: The length of the updated/prepared text, including the added
1388 * prefixes and the newline. The terminator is not counted. The dropped
1389 * line(s) are not counted.
1390 */
record_print_text(struct printk_record * r,bool syslog,bool time)1391 static size_t record_print_text(struct printk_record *r, bool syslog,
1392 bool time)
1393 {
1394 size_t text_len = r->info->text_len;
1395 size_t buf_size = r->text_buf_size;
1396 char *text = r->text_buf;
1397 char prefix[PRINTK_PREFIX_MAX];
1398 bool truncated = false;
1399 size_t prefix_len;
1400 size_t line_len;
1401 size_t len = 0;
1402 char *next;
1403
1404 /*
1405 * If the message was truncated because the buffer was not large
1406 * enough, treat the available text as if it were the full text.
1407 */
1408 if (text_len > buf_size)
1409 text_len = buf_size;
1410
1411 prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1412
1413 /*
1414 * @text_len: bytes of unprocessed text
1415 * @line_len: bytes of current line _without_ newline
1416 * @text: pointer to beginning of current line
1417 * @len: number of bytes prepared in r->text_buf
1418 */
1419 for (;;) {
1420 next = memchr(text, '\n', text_len);
1421 if (next) {
1422 line_len = next - text;
1423 } else {
1424 /* Drop truncated line(s). */
1425 if (truncated)
1426 break;
1427 line_len = text_len;
1428 }
1429
1430 /*
1431 * Truncate the text if there is not enough space to add the
1432 * prefix and a trailing newline and a terminator.
1433 */
1434 if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1435 /* Drop even the current line if no space. */
1436 if (len + prefix_len + line_len + 1 + 1 > buf_size)
1437 break;
1438
1439 text_len = buf_size - len - prefix_len - 1 - 1;
1440 truncated = true;
1441 }
1442
1443 memmove(text + prefix_len, text, text_len);
1444 memcpy(text, prefix, prefix_len);
1445
1446 /*
1447 * Increment the prepared length to include the text and
1448 * prefix that were just moved+copied. Also increment for the
1449 * newline at the end of this line. If this is the last line,
1450 * there is no newline, but it will be added immediately below.
1451 */
1452 len += prefix_len + line_len + 1;
1453 if (text_len == line_len) {
1454 /*
1455 * This is the last line. Add the trailing newline
1456 * removed in vprintk_store().
1457 */
1458 text[prefix_len + line_len] = '\n';
1459 break;
1460 }
1461
1462 /*
1463 * Advance beyond the added prefix and the related line with
1464 * its newline.
1465 */
1466 text += prefix_len + line_len + 1;
1467
1468 /*
1469 * The remaining text has only decreased by the line with its
1470 * newline.
1471 *
1472 * Note that @text_len can become zero. It happens when @text
1473 * ended with a newline (either due to truncation or the
1474 * original string ending with "\n\n"). The loop is correctly
1475 * repeated and (if not truncated) an empty line with a prefix
1476 * will be prepared.
1477 */
1478 text_len -= line_len + 1;
1479 }
1480
1481 /*
1482 * If a buffer was provided, it will be terminated. Space for the
1483 * string terminator is guaranteed to be available. The terminator is
1484 * not counted in the return value.
1485 */
1486 if (buf_size > 0)
1487 r->text_buf[len] = 0;
1488
1489 return len;
1490 }
1491
get_record_print_text_size(struct printk_info * info,unsigned int line_count,bool syslog,bool time)1492 static size_t get_record_print_text_size(struct printk_info *info,
1493 unsigned int line_count,
1494 bool syslog, bool time)
1495 {
1496 char prefix[PRINTK_PREFIX_MAX];
1497 size_t prefix_len;
1498
1499 prefix_len = info_print_prefix(info, syslog, time, prefix);
1500
1501 /*
1502 * Each line will be preceded with a prefix. The intermediate
1503 * newlines are already within the text, but a final trailing
1504 * newline will be added.
1505 */
1506 return ((prefix_len * line_count) + info->text_len + 1);
1507 }
1508
1509 /*
1510 * Beginning with @start_seq, find the first record where it and all following
1511 * records up to (but not including) @max_seq fit into @size.
1512 *
1513 * @max_seq is simply an upper bound and does not need to exist. If the caller
1514 * does not require an upper bound, -1 can be used for @max_seq.
1515 */
find_first_fitting_seq(u64 start_seq,u64 max_seq,size_t size,bool syslog,bool time)1516 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1517 bool syslog, bool time)
1518 {
1519 struct printk_info info;
1520 unsigned int line_count;
1521 size_t len = 0;
1522 u64 seq;
1523
1524 /* Determine the size of the records up to @max_seq. */
1525 prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1526 if (info.seq >= max_seq)
1527 break;
1528 len += get_record_print_text_size(&info, line_count, syslog, time);
1529 }
1530
1531 /*
1532 * Adjust the upper bound for the next loop to avoid subtracting
1533 * lengths that were never added.
1534 */
1535 if (seq < max_seq)
1536 max_seq = seq;
1537
1538 /*
1539 * Move first record forward until length fits into the buffer. Ignore
1540 * newest messages that were not counted in the above cycle. Messages
1541 * might appear and get lost in the meantime. This is a best effort
1542 * that prevents an infinite loop that could occur with a retry.
1543 */
1544 prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1545 if (len <= size || info.seq >= max_seq)
1546 break;
1547 len -= get_record_print_text_size(&info, line_count, syslog, time);
1548 }
1549
1550 return seq;
1551 }
1552
1553 /* The caller is responsible for making sure @size is greater than 0. */
syslog_print(char __user * buf,int size)1554 static int syslog_print(char __user *buf, int size)
1555 {
1556 struct printk_info info;
1557 struct printk_record r;
1558 char *text;
1559 int len = 0;
1560 u64 seq;
1561
1562 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1563 if (!text)
1564 return -ENOMEM;
1565
1566 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1567
1568 mutex_lock(&syslog_lock);
1569
1570 /*
1571 * Wait for the @syslog_seq record to be available. @syslog_seq may
1572 * change while waiting.
1573 */
1574 do {
1575 seq = syslog_seq;
1576
1577 mutex_unlock(&syslog_lock);
1578 /*
1579 * Guarantee this task is visible on the waitqueue before
1580 * checking the wake condition.
1581 *
1582 * The full memory barrier within set_current_state() of
1583 * prepare_to_wait_event() pairs with the full memory barrier
1584 * within wq_has_sleeper().
1585 *
1586 * This pairs with __wake_up_klogd:A.
1587 */
1588 len = wait_event_interruptible(log_wait,
1589 prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
1590 mutex_lock(&syslog_lock);
1591
1592 if (len)
1593 goto out;
1594 } while (syslog_seq != seq);
1595
1596 /*
1597 * Copy records that fit into the buffer. The above cycle makes sure
1598 * that the first record is always available.
1599 */
1600 do {
1601 size_t n;
1602 size_t skip;
1603 int err;
1604
1605 if (!prb_read_valid(prb, syslog_seq, &r))
1606 break;
1607
1608 if (r.info->seq != syslog_seq) {
1609 /* message is gone, move to next valid one */
1610 syslog_seq = r.info->seq;
1611 syslog_partial = 0;
1612 }
1613
1614 /*
1615 * To keep reading/counting partial line consistent,
1616 * use printk_time value as of the beginning of a line.
1617 */
1618 if (!syslog_partial)
1619 syslog_time = printk_time;
1620
1621 skip = syslog_partial;
1622 n = record_print_text(&r, true, syslog_time);
1623 if (n - syslog_partial <= size) {
1624 /* message fits into buffer, move forward */
1625 syslog_seq = r.info->seq + 1;
1626 n -= syslog_partial;
1627 syslog_partial = 0;
1628 } else if (!len){
1629 /* partial read(), remember position */
1630 n = size;
1631 syslog_partial += n;
1632 } else
1633 n = 0;
1634
1635 if (!n)
1636 break;
1637
1638 mutex_unlock(&syslog_lock);
1639 err = copy_to_user(buf, text + skip, n);
1640 mutex_lock(&syslog_lock);
1641
1642 if (err) {
1643 if (!len)
1644 len = -EFAULT;
1645 break;
1646 }
1647
1648 len += n;
1649 size -= n;
1650 buf += n;
1651 } while (size);
1652 out:
1653 mutex_unlock(&syslog_lock);
1654 kfree(text);
1655 return len;
1656 }
1657
syslog_print_all(char __user * buf,int size,bool clear)1658 static int syslog_print_all(char __user *buf, int size, bool clear)
1659 {
1660 struct printk_info info;
1661 struct printk_record r;
1662 char *text;
1663 int len = 0;
1664 u64 seq;
1665 bool time;
1666
1667 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1668 if (!text)
1669 return -ENOMEM;
1670
1671 time = printk_time;
1672 /*
1673 * Find first record that fits, including all following records,
1674 * into the user-provided buffer for this dump.
1675 */
1676 seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1677 size, true, time);
1678
1679 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1680
1681 len = 0;
1682 prb_for_each_record(seq, prb, seq, &r) {
1683 int textlen;
1684
1685 textlen = record_print_text(&r, true, time);
1686
1687 if (len + textlen > size) {
1688 seq--;
1689 break;
1690 }
1691
1692 if (copy_to_user(buf + len, text, textlen))
1693 len = -EFAULT;
1694 else
1695 len += textlen;
1696
1697 if (len < 0)
1698 break;
1699 }
1700
1701 if (clear) {
1702 mutex_lock(&syslog_lock);
1703 latched_seq_write(&clear_seq, seq);
1704 mutex_unlock(&syslog_lock);
1705 }
1706
1707 kfree(text);
1708 return len;
1709 }
1710
syslog_clear(void)1711 static void syslog_clear(void)
1712 {
1713 mutex_lock(&syslog_lock);
1714 latched_seq_write(&clear_seq, prb_next_seq(prb));
1715 mutex_unlock(&syslog_lock);
1716 }
1717
do_syslog(int type,char __user * buf,int len,int source)1718 int do_syslog(int type, char __user *buf, int len, int source)
1719 {
1720 struct printk_info info;
1721 bool clear = false;
1722 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1723 int error;
1724
1725 error = check_syslog_permissions(type, source);
1726 if (error)
1727 return error;
1728
1729 switch (type) {
1730 case SYSLOG_ACTION_CLOSE: /* Close log */
1731 break;
1732 case SYSLOG_ACTION_OPEN: /* Open log */
1733 break;
1734 case SYSLOG_ACTION_READ: /* Read from log */
1735 if (!buf || len < 0)
1736 return -EINVAL;
1737 if (!len)
1738 return 0;
1739 if (!access_ok(buf, len))
1740 return -EFAULT;
1741 error = syslog_print(buf, len);
1742 break;
1743 /* Read/clear last kernel messages */
1744 case SYSLOG_ACTION_READ_CLEAR:
1745 clear = true;
1746 fallthrough;
1747 /* Read last kernel messages */
1748 case SYSLOG_ACTION_READ_ALL:
1749 if (!buf || len < 0)
1750 return -EINVAL;
1751 if (!len)
1752 return 0;
1753 if (!access_ok(buf, len))
1754 return -EFAULT;
1755 error = syslog_print_all(buf, len, clear);
1756 break;
1757 /* Clear ring buffer */
1758 case SYSLOG_ACTION_CLEAR:
1759 syslog_clear();
1760 break;
1761 /* Disable logging to console */
1762 case SYSLOG_ACTION_CONSOLE_OFF:
1763 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1764 saved_console_loglevel = console_loglevel;
1765 console_loglevel = minimum_console_loglevel;
1766 break;
1767 /* Enable logging to console */
1768 case SYSLOG_ACTION_CONSOLE_ON:
1769 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1770 console_loglevel = saved_console_loglevel;
1771 saved_console_loglevel = LOGLEVEL_DEFAULT;
1772 }
1773 break;
1774 /* Set level of messages printed to console */
1775 case SYSLOG_ACTION_CONSOLE_LEVEL:
1776 if (len < 1 || len > 8)
1777 return -EINVAL;
1778 if (len < minimum_console_loglevel)
1779 len = minimum_console_loglevel;
1780 console_loglevel = len;
1781 /* Implicitly re-enable logging to console */
1782 saved_console_loglevel = LOGLEVEL_DEFAULT;
1783 break;
1784 /* Number of chars in the log buffer */
1785 case SYSLOG_ACTION_SIZE_UNREAD:
1786 mutex_lock(&syslog_lock);
1787 if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1788 /* No unread messages. */
1789 mutex_unlock(&syslog_lock);
1790 return 0;
1791 }
1792 if (info.seq != syslog_seq) {
1793 /* messages are gone, move to first one */
1794 syslog_seq = info.seq;
1795 syslog_partial = 0;
1796 }
1797 if (source == SYSLOG_FROM_PROC) {
1798 /*
1799 * Short-cut for poll(/"proc/kmsg") which simply checks
1800 * for pending data, not the size; return the count of
1801 * records, not the length.
1802 */
1803 error = prb_next_seq(prb) - syslog_seq;
1804 } else {
1805 bool time = syslog_partial ? syslog_time : printk_time;
1806 unsigned int line_count;
1807 u64 seq;
1808
1809 prb_for_each_info(syslog_seq, prb, seq, &info,
1810 &line_count) {
1811 error += get_record_print_text_size(&info, line_count,
1812 true, time);
1813 time = printk_time;
1814 }
1815 error -= syslog_partial;
1816 }
1817 mutex_unlock(&syslog_lock);
1818 break;
1819 /* Size of the log buffer */
1820 case SYSLOG_ACTION_SIZE_BUFFER:
1821 error = log_buf_len;
1822 break;
1823 default:
1824 error = -EINVAL;
1825 break;
1826 }
1827
1828 return error;
1829 }
1830
SYSCALL_DEFINE3(syslog,int,type,char __user *,buf,int,len)1831 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1832 {
1833 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1834 }
1835
1836 /*
1837 * Special console_lock variants that help to reduce the risk of soft-lockups.
1838 * They allow to pass console_lock to another printk() call using a busy wait.
1839 */
1840
1841 #ifdef CONFIG_LOCKDEP
1842 static struct lockdep_map console_owner_dep_map = {
1843 .name = "console_owner"
1844 };
1845 #endif
1846
1847 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1848 static struct task_struct *console_owner;
1849 static bool console_waiter;
1850
1851 /**
1852 * console_lock_spinning_enable - mark beginning of code where another
1853 * thread might safely busy wait
1854 *
1855 * This basically converts console_lock into a spinlock. This marks
1856 * the section where the console_lock owner can not sleep, because
1857 * there may be a waiter spinning (like a spinlock). Also it must be
1858 * ready to hand over the lock at the end of the section.
1859 */
console_lock_spinning_enable(void)1860 static void console_lock_spinning_enable(void)
1861 {
1862 raw_spin_lock(&console_owner_lock);
1863 console_owner = current;
1864 raw_spin_unlock(&console_owner_lock);
1865
1866 /* The waiter may spin on us after setting console_owner */
1867 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1868 }
1869
1870 /**
1871 * console_lock_spinning_disable_and_check - mark end of code where another
1872 * thread was able to busy wait and check if there is a waiter
1873 * @cookie: cookie returned from console_srcu_read_lock()
1874 *
1875 * This is called at the end of the section where spinning is allowed.
1876 * It has two functions. First, it is a signal that it is no longer
1877 * safe to start busy waiting for the lock. Second, it checks if
1878 * there is a busy waiter and passes the lock rights to her.
1879 *
1880 * Important: Callers lose both the console_lock and the SRCU read lock if
1881 * there was a busy waiter. They must not touch items synchronized by
1882 * console_lock or SRCU read lock in this case.
1883 *
1884 * Return: 1 if the lock rights were passed, 0 otherwise.
1885 */
console_lock_spinning_disable_and_check(int cookie)1886 static int console_lock_spinning_disable_and_check(int cookie)
1887 {
1888 int waiter;
1889
1890 raw_spin_lock(&console_owner_lock);
1891 waiter = READ_ONCE(console_waiter);
1892 console_owner = NULL;
1893 raw_spin_unlock(&console_owner_lock);
1894
1895 if (!waiter) {
1896 spin_release(&console_owner_dep_map, _THIS_IP_);
1897 return 0;
1898 }
1899
1900 /* The waiter is now free to continue */
1901 WRITE_ONCE(console_waiter, false);
1902
1903 spin_release(&console_owner_dep_map, _THIS_IP_);
1904
1905 /*
1906 * Preserve lockdep lock ordering. Release the SRCU read lock before
1907 * releasing the console_lock.
1908 */
1909 console_srcu_read_unlock(cookie);
1910
1911 /*
1912 * Hand off console_lock to waiter. The waiter will perform
1913 * the up(). After this, the waiter is the console_lock owner.
1914 */
1915 mutex_release(&console_lock_dep_map, _THIS_IP_);
1916 return 1;
1917 }
1918
1919 /**
1920 * console_trylock_spinning - try to get console_lock by busy waiting
1921 *
1922 * This allows to busy wait for the console_lock when the current
1923 * owner is running in specially marked sections. It means that
1924 * the current owner is running and cannot reschedule until it
1925 * is ready to lose the lock.
1926 *
1927 * Return: 1 if we got the lock, 0 othrewise
1928 */
console_trylock_spinning(void)1929 static int console_trylock_spinning(void)
1930 {
1931 struct task_struct *owner = NULL;
1932 bool waiter;
1933 bool spin = false;
1934 unsigned long flags;
1935
1936 if (console_trylock())
1937 return 1;
1938
1939 /*
1940 * It's unsafe to spin once a panic has begun. If we are the
1941 * panic CPU, we may have already halted the owner of the
1942 * console_sem. If we are not the panic CPU, then we should
1943 * avoid taking console_sem, so the panic CPU has a better
1944 * chance of cleanly acquiring it later.
1945 */
1946 if (panic_in_progress())
1947 return 0;
1948
1949 printk_safe_enter_irqsave(flags);
1950
1951 raw_spin_lock(&console_owner_lock);
1952 owner = READ_ONCE(console_owner);
1953 waiter = READ_ONCE(console_waiter);
1954 if (!waiter && owner && owner != current) {
1955 WRITE_ONCE(console_waiter, true);
1956 spin = true;
1957 }
1958 raw_spin_unlock(&console_owner_lock);
1959
1960 /*
1961 * If there is an active printk() writing to the
1962 * consoles, instead of having it write our data too,
1963 * see if we can offload that load from the active
1964 * printer, and do some printing ourselves.
1965 * Go into a spin only if there isn't already a waiter
1966 * spinning, and there is an active printer, and
1967 * that active printer isn't us (recursive printk?).
1968 */
1969 if (!spin) {
1970 printk_safe_exit_irqrestore(flags);
1971 return 0;
1972 }
1973
1974 /* We spin waiting for the owner to release us */
1975 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1976 /* Owner will clear console_waiter on hand off */
1977 while (READ_ONCE(console_waiter))
1978 cpu_relax();
1979 spin_release(&console_owner_dep_map, _THIS_IP_);
1980
1981 printk_safe_exit_irqrestore(flags);
1982 /*
1983 * The owner passed the console lock to us.
1984 * Since we did not spin on console lock, annotate
1985 * this as a trylock. Otherwise lockdep will
1986 * complain.
1987 */
1988 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1989
1990 return 1;
1991 }
1992
1993 /*
1994 * Recursion is tracked separately on each CPU. If NMIs are supported, an
1995 * additional NMI context per CPU is also separately tracked. Until per-CPU
1996 * is available, a separate "early tracking" is performed.
1997 */
1998 static DEFINE_PER_CPU(u8, printk_count);
1999 static u8 printk_count_early;
2000 #ifdef CONFIG_HAVE_NMI
2001 static DEFINE_PER_CPU(u8, printk_count_nmi);
2002 static u8 printk_count_nmi_early;
2003 #endif
2004
2005 /*
2006 * Recursion is limited to keep the output sane. printk() should not require
2007 * more than 1 level of recursion (allowing, for example, printk() to trigger
2008 * a WARN), but a higher value is used in case some printk-internal errors
2009 * exist, such as the ringbuffer validation checks failing.
2010 */
2011 #define PRINTK_MAX_RECURSION 3
2012
2013 /*
2014 * Return a pointer to the dedicated counter for the CPU+context of the
2015 * caller.
2016 */
__printk_recursion_counter(void)2017 static u8 *__printk_recursion_counter(void)
2018 {
2019 #ifdef CONFIG_HAVE_NMI
2020 if (in_nmi()) {
2021 if (printk_percpu_data_ready())
2022 return this_cpu_ptr(&printk_count_nmi);
2023 return &printk_count_nmi_early;
2024 }
2025 #endif
2026 if (printk_percpu_data_ready())
2027 return this_cpu_ptr(&printk_count);
2028 return &printk_count_early;
2029 }
2030
2031 /*
2032 * Enter recursion tracking. Interrupts are disabled to simplify tracking.
2033 * The caller must check the boolean return value to see if the recursion is
2034 * allowed. On failure, interrupts are not disabled.
2035 *
2036 * @recursion_ptr must be a variable of type (u8 *) and is the same variable
2037 * that is passed to printk_exit_irqrestore().
2038 */
2039 #define printk_enter_irqsave(recursion_ptr, flags) \
2040 ({ \
2041 bool success = true; \
2042 \
2043 typecheck(u8 *, recursion_ptr); \
2044 local_irq_save(flags); \
2045 (recursion_ptr) = __printk_recursion_counter(); \
2046 if (*(recursion_ptr) > PRINTK_MAX_RECURSION) { \
2047 local_irq_restore(flags); \
2048 success = false; \
2049 } else { \
2050 (*(recursion_ptr))++; \
2051 } \
2052 success; \
2053 })
2054
2055 /* Exit recursion tracking, restoring interrupts. */
2056 #define printk_exit_irqrestore(recursion_ptr, flags) \
2057 do { \
2058 typecheck(u8 *, recursion_ptr); \
2059 (*(recursion_ptr))--; \
2060 local_irq_restore(flags); \
2061 } while (0)
2062
2063 int printk_delay_msec __read_mostly;
2064
printk_delay(int level)2065 static inline void printk_delay(int level)
2066 {
2067 boot_delay_msec(level);
2068
2069 if (unlikely(printk_delay_msec)) {
2070 int m = printk_delay_msec;
2071
2072 while (m--) {
2073 mdelay(1);
2074 touch_nmi_watchdog();
2075 }
2076 }
2077 }
2078
printk_caller_id(void)2079 static inline u32 printk_caller_id(void)
2080 {
2081 return in_task() ? task_pid_nr(current) :
2082 0x80000000 + smp_processor_id();
2083 }
2084
2085 /**
2086 * printk_parse_prefix - Parse level and control flags.
2087 *
2088 * @text: The terminated text message.
2089 * @level: A pointer to the current level value, will be updated.
2090 * @flags: A pointer to the current printk_info flags, will be updated.
2091 *
2092 * @level may be NULL if the caller is not interested in the parsed value.
2093 * Otherwise the variable pointed to by @level must be set to
2094 * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2095 *
2096 * @flags may be NULL if the caller is not interested in the parsed value.
2097 * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2098 * value.
2099 *
2100 * Return: The length of the parsed level and control flags.
2101 */
printk_parse_prefix(const char * text,int * level,enum printk_info_flags * flags)2102 u16 printk_parse_prefix(const char *text, int *level,
2103 enum printk_info_flags *flags)
2104 {
2105 u16 prefix_len = 0;
2106 int kern_level;
2107
2108 while (*text) {
2109 kern_level = printk_get_level(text);
2110 if (!kern_level)
2111 break;
2112
2113 switch (kern_level) {
2114 case '0' ... '7':
2115 if (level && *level == LOGLEVEL_DEFAULT)
2116 *level = kern_level - '0';
2117 break;
2118 case 'c': /* KERN_CONT */
2119 if (flags)
2120 *flags |= LOG_CONT;
2121 }
2122
2123 prefix_len += 2;
2124 text += 2;
2125 }
2126
2127 return prefix_len;
2128 }
2129
2130 __printf(5, 0)
printk_sprint(char * text,u16 size,int facility,enum printk_info_flags * flags,const char * fmt,va_list args)2131 static u16 printk_sprint(char *text, u16 size, int facility,
2132 enum printk_info_flags *flags, const char *fmt,
2133 va_list args)
2134 {
2135 u16 text_len;
2136
2137 text_len = vscnprintf(text, size, fmt, args);
2138
2139 /* Mark and strip a trailing newline. */
2140 if (text_len && text[text_len - 1] == '\n') {
2141 text_len--;
2142 *flags |= LOG_NEWLINE;
2143 }
2144
2145 /* Strip log level and control flags. */
2146 if (facility == 0) {
2147 u16 prefix_len;
2148
2149 prefix_len = printk_parse_prefix(text, NULL, NULL);
2150 if (prefix_len) {
2151 text_len -= prefix_len;
2152 memmove(text, text + prefix_len, text_len);
2153 }
2154 }
2155
2156 trace_console(text, text_len);
2157
2158 return text_len;
2159 }
2160
2161 __printf(4, 0)
vprintk_store(int facility,int level,const struct dev_printk_info * dev_info,const char * fmt,va_list args)2162 int vprintk_store(int facility, int level,
2163 const struct dev_printk_info *dev_info,
2164 const char *fmt, va_list args)
2165 {
2166 struct prb_reserved_entry e;
2167 enum printk_info_flags flags = 0;
2168 struct printk_record r;
2169 unsigned long irqflags;
2170 u16 trunc_msg_len = 0;
2171 char prefix_buf[8];
2172 u8 *recursion_ptr;
2173 u16 reserve_size;
2174 va_list args2;
2175 u32 caller_id;
2176 u16 text_len;
2177 int ret = 0;
2178 u64 ts_nsec;
2179
2180 if (!printk_enter_irqsave(recursion_ptr, irqflags))
2181 return 0;
2182
2183 /*
2184 * Since the duration of printk() can vary depending on the message
2185 * and state of the ringbuffer, grab the timestamp now so that it is
2186 * close to the call of printk(). This provides a more deterministic
2187 * timestamp with respect to the caller.
2188 */
2189 ts_nsec = local_clock();
2190
2191 caller_id = printk_caller_id();
2192
2193 /*
2194 * The sprintf needs to come first since the syslog prefix might be
2195 * passed in as a parameter. An extra byte must be reserved so that
2196 * later the vscnprintf() into the reserved buffer has room for the
2197 * terminating '\0', which is not counted by vsnprintf().
2198 */
2199 va_copy(args2, args);
2200 reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2201 va_end(args2);
2202
2203 if (reserve_size > PRINTKRB_RECORD_MAX)
2204 reserve_size = PRINTKRB_RECORD_MAX;
2205
2206 /* Extract log level or control flags. */
2207 if (facility == 0)
2208 printk_parse_prefix(&prefix_buf[0], &level, &flags);
2209
2210 if (level == LOGLEVEL_DEFAULT)
2211 level = default_message_loglevel;
2212
2213 if (dev_info)
2214 flags |= LOG_NEWLINE;
2215
2216 if (flags & LOG_CONT) {
2217 prb_rec_init_wr(&r, reserve_size);
2218 if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) {
2219 text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2220 facility, &flags, fmt, args);
2221 r.info->text_len += text_len;
2222
2223 if (flags & LOG_NEWLINE) {
2224 r.info->flags |= LOG_NEWLINE;
2225 prb_final_commit(&e);
2226 } else {
2227 prb_commit(&e);
2228 }
2229
2230 ret = text_len;
2231 goto out;
2232 }
2233 }
2234
2235 /*
2236 * Explicitly initialize the record before every prb_reserve() call.
2237 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2238 * structure when they fail.
2239 */
2240 prb_rec_init_wr(&r, reserve_size);
2241 if (!prb_reserve(&e, prb, &r)) {
2242 /* truncate the message if it is too long for empty buffer */
2243 truncate_msg(&reserve_size, &trunc_msg_len);
2244
2245 prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2246 if (!prb_reserve(&e, prb, &r))
2247 goto out;
2248 }
2249
2250 /* fill message */
2251 text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2252 if (trunc_msg_len)
2253 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2254 r.info->text_len = text_len + trunc_msg_len;
2255 r.info->facility = facility;
2256 r.info->level = level & 7;
2257 r.info->flags = flags & 0x1f;
2258 r.info->ts_nsec = ts_nsec;
2259 r.info->caller_id = caller_id;
2260 if (dev_info)
2261 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2262
2263 /* A message without a trailing newline can be continued. */
2264 if (!(flags & LOG_NEWLINE))
2265 prb_commit(&e);
2266 else
2267 prb_final_commit(&e);
2268
2269 ret = text_len + trunc_msg_len;
2270 out:
2271 printk_exit_irqrestore(recursion_ptr, irqflags);
2272 return ret;
2273 }
2274
vprintk_emit(int facility,int level,const struct dev_printk_info * dev_info,const char * fmt,va_list args)2275 asmlinkage int vprintk_emit(int facility, int level,
2276 const struct dev_printk_info *dev_info,
2277 const char *fmt, va_list args)
2278 {
2279 int printed_len;
2280 bool in_sched = false;
2281
2282 /* Suppress unimportant messages after panic happens */
2283 if (unlikely(suppress_printk))
2284 return 0;
2285
2286 if (unlikely(suppress_panic_printk) &&
2287 atomic_read(&panic_cpu) != raw_smp_processor_id())
2288 return 0;
2289
2290 if (level == LOGLEVEL_SCHED) {
2291 level = LOGLEVEL_DEFAULT;
2292 in_sched = true;
2293 }
2294
2295 printk_delay(level);
2296
2297 printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2298
2299 /* If called from the scheduler, we can not call up(). */
2300 if (!in_sched) {
2301 /*
2302 * The caller may be holding system-critical or
2303 * timing-sensitive locks. Disable preemption during
2304 * printing of all remaining records to all consoles so that
2305 * this context can return as soon as possible. Hopefully
2306 * another printk() caller will take over the printing.
2307 */
2308 preempt_disable();
2309 /*
2310 * Try to acquire and then immediately release the console
2311 * semaphore. The release will print out buffers. With the
2312 * spinning variant, this context tries to take over the
2313 * printing from another printing context.
2314 */
2315 if (console_trylock_spinning())
2316 console_unlock();
2317 preempt_enable();
2318 }
2319
2320 wake_up_klogd();
2321 return printed_len;
2322 }
2323 EXPORT_SYMBOL(vprintk_emit);
2324
vprintk_default(const char * fmt,va_list args)2325 int vprintk_default(const char *fmt, va_list args)
2326 {
2327 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2328 }
2329 EXPORT_SYMBOL_GPL(vprintk_default);
2330
_printk(const char * fmt,...)2331 asmlinkage __visible int _printk(const char *fmt, ...)
2332 {
2333 va_list args;
2334 int r;
2335
2336 va_start(args, fmt);
2337 r = vprintk(fmt, args);
2338 va_end(args);
2339
2340 return r;
2341 }
2342 EXPORT_SYMBOL(_printk);
2343
2344 static bool pr_flush(int timeout_ms, bool reset_on_progress);
2345 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress);
2346
2347 #else /* CONFIG_PRINTK */
2348
2349 #define printk_time false
2350
2351 #define prb_read_valid(rb, seq, r) false
2352 #define prb_first_valid_seq(rb) 0
2353 #define prb_next_seq(rb) 0
2354
2355 static u64 syslog_seq;
2356
record_print_text(const struct printk_record * r,bool syslog,bool time)2357 static size_t record_print_text(const struct printk_record *r,
2358 bool syslog, bool time)
2359 {
2360 return 0;
2361 }
info_print_ext_header(char * buf,size_t size,struct printk_info * info)2362 static ssize_t info_print_ext_header(char *buf, size_t size,
2363 struct printk_info *info)
2364 {
2365 return 0;
2366 }
msg_print_ext_body(char * buf,size_t size,char * text,size_t text_len,struct dev_printk_info * dev_info)2367 static ssize_t msg_print_ext_body(char *buf, size_t size,
2368 char *text, size_t text_len,
2369 struct dev_printk_info *dev_info) { return 0; }
console_lock_spinning_enable(void)2370 static void console_lock_spinning_enable(void) { }
console_lock_spinning_disable_and_check(int cookie)2371 static int console_lock_spinning_disable_and_check(int cookie) { return 0; }
suppress_message_printing(int level)2372 static bool suppress_message_printing(int level) { return false; }
pr_flush(int timeout_ms,bool reset_on_progress)2373 static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; }
__pr_flush(struct console * con,int timeout_ms,bool reset_on_progress)2374 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; }
2375
2376 #endif /* CONFIG_PRINTK */
2377
2378 #ifdef CONFIG_EARLY_PRINTK
2379 struct console *early_console;
2380
early_printk(const char * fmt,...)2381 asmlinkage __visible void early_printk(const char *fmt, ...)
2382 {
2383 va_list ap;
2384 char buf[512];
2385 int n;
2386
2387 if (!early_console)
2388 return;
2389
2390 va_start(ap, fmt);
2391 n = vscnprintf(buf, sizeof(buf), fmt, ap);
2392 va_end(ap);
2393
2394 early_console->write(early_console, buf, n);
2395 }
2396 #endif
2397
set_user_specified(struct console_cmdline * c,bool user_specified)2398 static void set_user_specified(struct console_cmdline *c, bool user_specified)
2399 {
2400 if (!user_specified)
2401 return;
2402
2403 /*
2404 * @c console was defined by the user on the command line.
2405 * Do not clear when added twice also by SPCR or the device tree.
2406 */
2407 c->user_specified = true;
2408 /* At least one console defined by the user on the command line. */
2409 console_set_on_cmdline = 1;
2410 }
2411
__add_preferred_console(char * name,int idx,char * options,char * brl_options,bool user_specified)2412 static int __add_preferred_console(char *name, int idx, char *options,
2413 char *brl_options, bool user_specified)
2414 {
2415 struct console_cmdline *c;
2416 int i;
2417
2418 /*
2419 * See if this tty is not yet registered, and
2420 * if we have a slot free.
2421 */
2422 for (i = 0, c = console_cmdline;
2423 i < MAX_CMDLINECONSOLES && c->name[0];
2424 i++, c++) {
2425 if (strcmp(c->name, name) == 0 && c->index == idx) {
2426 if (!brl_options)
2427 preferred_console = i;
2428 set_user_specified(c, user_specified);
2429 return 0;
2430 }
2431 }
2432 if (i == MAX_CMDLINECONSOLES)
2433 return -E2BIG;
2434 if (!brl_options)
2435 preferred_console = i;
2436 strscpy(c->name, name, sizeof(c->name));
2437 c->options = options;
2438 set_user_specified(c, user_specified);
2439 braille_set_options(c, brl_options);
2440
2441 c->index = idx;
2442 return 0;
2443 }
2444
console_msg_format_setup(char * str)2445 static int __init console_msg_format_setup(char *str)
2446 {
2447 if (!strcmp(str, "syslog"))
2448 console_msg_format = MSG_FORMAT_SYSLOG;
2449 if (!strcmp(str, "default"))
2450 console_msg_format = MSG_FORMAT_DEFAULT;
2451 return 1;
2452 }
2453 __setup("console_msg_format=", console_msg_format_setup);
2454
2455 /*
2456 * Set up a console. Called via do_early_param() in init/main.c
2457 * for each "console=" parameter in the boot command line.
2458 */
console_setup(char * str)2459 static int __init console_setup(char *str)
2460 {
2461 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2462 char *s, *options, *brl_options = NULL;
2463 int idx;
2464
2465 /*
2466 * console="" or console=null have been suggested as a way to
2467 * disable console output. Use ttynull that has been created
2468 * for exactly this purpose.
2469 */
2470 if (str[0] == 0 || strcmp(str, "null") == 0) {
2471 __add_preferred_console("ttynull", 0, NULL, NULL, true);
2472 return 1;
2473 }
2474
2475 if (_braille_console_setup(&str, &brl_options))
2476 return 1;
2477
2478 /*
2479 * Decode str into name, index, options.
2480 */
2481 if (str[0] >= '0' && str[0] <= '9') {
2482 strcpy(buf, "ttyS");
2483 strncpy(buf + 4, str, sizeof(buf) - 5);
2484 } else {
2485 strncpy(buf, str, sizeof(buf) - 1);
2486 }
2487 buf[sizeof(buf) - 1] = 0;
2488 options = strchr(str, ',');
2489 if (options)
2490 *(options++) = 0;
2491 #ifdef __sparc__
2492 if (!strcmp(str, "ttya"))
2493 strcpy(buf, "ttyS0");
2494 if (!strcmp(str, "ttyb"))
2495 strcpy(buf, "ttyS1");
2496 #endif
2497 for (s = buf; *s; s++)
2498 if (isdigit(*s) || *s == ',')
2499 break;
2500 idx = simple_strtoul(s, NULL, 10);
2501 *s = 0;
2502
2503 __add_preferred_console(buf, idx, options, brl_options, true);
2504 return 1;
2505 }
2506 __setup("console=", console_setup);
2507
2508 /**
2509 * add_preferred_console - add a device to the list of preferred consoles.
2510 * @name: device name
2511 * @idx: device index
2512 * @options: options for this console
2513 *
2514 * The last preferred console added will be used for kernel messages
2515 * and stdin/out/err for init. Normally this is used by console_setup
2516 * above to handle user-supplied console arguments; however it can also
2517 * be used by arch-specific code either to override the user or more
2518 * commonly to provide a default console (ie from PROM variables) when
2519 * the user has not supplied one.
2520 */
add_preferred_console(char * name,int idx,char * options)2521 int add_preferred_console(char *name, int idx, char *options)
2522 {
2523 return __add_preferred_console(name, idx, options, NULL, false);
2524 }
2525
2526 bool console_suspend_enabled = true;
2527 EXPORT_SYMBOL(console_suspend_enabled);
2528
console_suspend_disable(char * str)2529 static int __init console_suspend_disable(char *str)
2530 {
2531 console_suspend_enabled = false;
2532 return 1;
2533 }
2534 __setup("no_console_suspend", console_suspend_disable);
2535 module_param_named(console_suspend, console_suspend_enabled,
2536 bool, S_IRUGO | S_IWUSR);
2537 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2538 " and hibernate operations");
2539
2540 static bool printk_console_no_auto_verbose;
2541
console_verbose(void)2542 void console_verbose(void)
2543 {
2544 if (console_loglevel && !printk_console_no_auto_verbose)
2545 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2546 }
2547 EXPORT_SYMBOL_GPL(console_verbose);
2548
2549 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2550 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2551
2552 /**
2553 * suspend_console - suspend the console subsystem
2554 *
2555 * This disables printk() while we go into suspend states
2556 */
suspend_console(void)2557 void suspend_console(void)
2558 {
2559 if (!console_suspend_enabled)
2560 return;
2561 pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2562 pr_flush(1000, true);
2563 console_lock();
2564 console_suspended = 1;
2565 up_console_sem();
2566 }
2567
resume_console(void)2568 void resume_console(void)
2569 {
2570 if (!console_suspend_enabled)
2571 return;
2572 down_console_sem();
2573 console_suspended = 0;
2574 console_unlock();
2575 pr_flush(1000, true);
2576 }
2577
2578 /**
2579 * console_cpu_notify - print deferred console messages after CPU hotplug
2580 * @cpu: unused
2581 *
2582 * If printk() is called from a CPU that is not online yet, the messages
2583 * will be printed on the console only if there are CON_ANYTIME consoles.
2584 * This function is called when a new CPU comes online (or fails to come
2585 * up) or goes offline.
2586 */
console_cpu_notify(unsigned int cpu)2587 static int console_cpu_notify(unsigned int cpu)
2588 {
2589 if (!cpuhp_tasks_frozen) {
2590 /* If trylock fails, someone else is doing the printing */
2591 if (console_trylock())
2592 console_unlock();
2593 }
2594 return 0;
2595 }
2596
2597 /**
2598 * console_lock - block the console subsystem from printing
2599 *
2600 * Acquires a lock which guarantees that no consoles will
2601 * be in or enter their write() callback.
2602 *
2603 * Can sleep, returns nothing.
2604 */
console_lock(void)2605 void console_lock(void)
2606 {
2607 might_sleep();
2608
2609 down_console_sem();
2610 if (console_suspended)
2611 return;
2612 console_locked = 1;
2613 console_may_schedule = 1;
2614 }
2615 EXPORT_SYMBOL(console_lock);
2616
2617 /**
2618 * console_trylock - try to block the console subsystem from printing
2619 *
2620 * Try to acquire a lock which guarantees that no consoles will
2621 * be in or enter their write() callback.
2622 *
2623 * returns 1 on success, and 0 on failure to acquire the lock.
2624 */
console_trylock(void)2625 int console_trylock(void)
2626 {
2627 if (down_trylock_console_sem())
2628 return 0;
2629 if (console_suspended) {
2630 up_console_sem();
2631 return 0;
2632 }
2633 console_locked = 1;
2634 console_may_schedule = 0;
2635 return 1;
2636 }
2637 EXPORT_SYMBOL(console_trylock);
2638
is_console_locked(void)2639 int is_console_locked(void)
2640 {
2641 return console_locked;
2642 }
2643 EXPORT_SYMBOL(is_console_locked);
2644
2645 /*
2646 * Return true when this CPU should unlock console_sem without pushing all
2647 * messages to the console. This reduces the chance that the console is
2648 * locked when the panic CPU tries to use it.
2649 */
abandon_console_lock_in_panic(void)2650 static bool abandon_console_lock_in_panic(void)
2651 {
2652 if (!panic_in_progress())
2653 return false;
2654
2655 /*
2656 * We can use raw_smp_processor_id() here because it is impossible for
2657 * the task to be migrated to the panic_cpu, or away from it. If
2658 * panic_cpu has already been set, and we're not currently executing on
2659 * that CPU, then we never will be.
2660 */
2661 return atomic_read(&panic_cpu) != raw_smp_processor_id();
2662 }
2663
2664 /*
2665 * Check if the given console is currently capable and allowed to print
2666 * records.
2667 *
2668 * Requires the console_srcu_read_lock.
2669 */
console_is_usable(struct console * con)2670 static inline bool console_is_usable(struct console *con)
2671 {
2672 short flags = console_srcu_read_flags(con);
2673
2674 if (!(flags & CON_ENABLED))
2675 return false;
2676
2677 if (!con->write)
2678 return false;
2679
2680 /*
2681 * Console drivers may assume that per-cpu resources have been
2682 * allocated. So unless they're explicitly marked as being able to
2683 * cope (CON_ANYTIME) don't call them until this CPU is officially up.
2684 */
2685 if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME))
2686 return false;
2687
2688 return true;
2689 }
2690
__console_unlock(void)2691 static void __console_unlock(void)
2692 {
2693 console_locked = 0;
2694 up_console_sem();
2695 }
2696
2697 /*
2698 * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". This
2699 * is achieved by shifting the existing message over and inserting the dropped
2700 * message.
2701 *
2702 * @pmsg is the printk message to prepend.
2703 *
2704 * @dropped is the dropped count to report in the dropped message.
2705 *
2706 * If the message text in @pmsg->pbufs->outbuf does not have enough space for
2707 * the dropped message, the message text will be sufficiently truncated.
2708 *
2709 * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated.
2710 */
2711 #ifdef CONFIG_PRINTK
console_prepend_dropped(struct printk_message * pmsg,unsigned long dropped)2712 static void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped)
2713 {
2714 struct printk_buffers *pbufs = pmsg->pbufs;
2715 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2716 const size_t outbuf_sz = sizeof(pbufs->outbuf);
2717 char *scratchbuf = &pbufs->scratchbuf[0];
2718 char *outbuf = &pbufs->outbuf[0];
2719 size_t len;
2720
2721 len = scnprintf(scratchbuf, scratchbuf_sz,
2722 "** %lu printk messages dropped **\n", dropped);
2723
2724 /*
2725 * Make sure outbuf is sufficiently large before prepending.
2726 * Keep at least the prefix when the message must be truncated.
2727 * It is a rather theoretical problem when someone tries to
2728 * use a minimalist buffer.
2729 */
2730 if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz))
2731 return;
2732
2733 if (pmsg->outbuf_len + len >= outbuf_sz) {
2734 /* Truncate the message, but keep it terminated. */
2735 pmsg->outbuf_len = outbuf_sz - (len + 1);
2736 outbuf[pmsg->outbuf_len] = 0;
2737 }
2738
2739 memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1);
2740 memcpy(outbuf, scratchbuf, len);
2741 pmsg->outbuf_len += len;
2742 }
2743 #else
2744 #define console_prepend_dropped(pmsg, dropped)
2745 #endif /* CONFIG_PRINTK */
2746
2747 /*
2748 * Read and format the specified record (or a later record if the specified
2749 * record is not available).
2750 *
2751 * @pmsg will contain the formatted result. @pmsg->pbufs must point to a
2752 * struct printk_buffers.
2753 *
2754 * @seq is the record to read and format. If it is not available, the next
2755 * valid record is read.
2756 *
2757 * @is_extended specifies if the message should be formatted for extended
2758 * console output.
2759 *
2760 * @may_supress specifies if records may be skipped based on loglevel.
2761 *
2762 * Returns false if no record is available. Otherwise true and all fields
2763 * of @pmsg are valid. (See the documentation of struct printk_message
2764 * for information about the @pmsg fields.)
2765 */
printk_get_next_message(struct printk_message * pmsg,u64 seq,bool is_extended,bool may_suppress)2766 static bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
2767 bool is_extended, bool may_suppress)
2768 {
2769 static int panic_console_dropped;
2770
2771 struct printk_buffers *pbufs = pmsg->pbufs;
2772 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2773 const size_t outbuf_sz = sizeof(pbufs->outbuf);
2774 char *scratchbuf = &pbufs->scratchbuf[0];
2775 char *outbuf = &pbufs->outbuf[0];
2776 struct printk_info info;
2777 struct printk_record r;
2778 size_t len = 0;
2779
2780 /*
2781 * Formatting extended messages requires a separate buffer, so use the
2782 * scratch buffer to read in the ringbuffer text.
2783 *
2784 * Formatting normal messages is done in-place, so read the ringbuffer
2785 * text directly into the output buffer.
2786 */
2787 if (is_extended)
2788 prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz);
2789 else
2790 prb_rec_init_rd(&r, &info, outbuf, outbuf_sz);
2791
2792 if (!prb_read_valid(prb, seq, &r))
2793 return false;
2794
2795 pmsg->seq = r.info->seq;
2796 pmsg->dropped = r.info->seq - seq;
2797
2798 /*
2799 * Check for dropped messages in panic here so that printk
2800 * suppression can occur as early as possible if necessary.
2801 */
2802 if (pmsg->dropped &&
2803 panic_in_progress() &&
2804 panic_console_dropped++ > 10) {
2805 suppress_panic_printk = 1;
2806 pr_warn_once("Too many dropped messages. Suppress messages on non-panic CPUs to prevent livelock.\n");
2807 }
2808
2809 /* Skip record that has level above the console loglevel. */
2810 if (may_suppress && suppress_message_printing(r.info->level))
2811 goto out;
2812
2813 if (is_extended) {
2814 len = info_print_ext_header(outbuf, outbuf_sz, r.info);
2815 len += msg_print_ext_body(outbuf + len, outbuf_sz - len,
2816 &r.text_buf[0], r.info->text_len, &r.info->dev_info);
2817 } else {
2818 len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time);
2819 }
2820 out:
2821 pmsg->outbuf_len = len;
2822 return true;
2823 }
2824
2825 /*
2826 * Print one record for the given console. The record printed is whatever
2827 * record is the next available record for the given console.
2828 *
2829 * @handover will be set to true if a printk waiter has taken over the
2830 * console_lock, in which case the caller is no longer holding both the
2831 * console_lock and the SRCU read lock. Otherwise it is set to false.
2832 *
2833 * @cookie is the cookie from the SRCU read lock.
2834 *
2835 * Returns false if the given console has no next record to print, otherwise
2836 * true.
2837 *
2838 * Requires the console_lock and the SRCU read lock.
2839 */
console_emit_next_record(struct console * con,bool * handover,int cookie)2840 static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
2841 {
2842 static struct printk_buffers pbufs;
2843
2844 bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED;
2845 char *outbuf = &pbufs.outbuf[0];
2846 struct printk_message pmsg = {
2847 .pbufs = &pbufs,
2848 };
2849 unsigned long flags;
2850
2851 *handover = false;
2852
2853 if (!printk_get_next_message(&pmsg, con->seq, is_extended, true))
2854 return false;
2855
2856 con->dropped += pmsg.dropped;
2857
2858 /* Skip messages of formatted length 0. */
2859 if (pmsg.outbuf_len == 0) {
2860 con->seq = pmsg.seq + 1;
2861 goto skip;
2862 }
2863
2864 if (con->dropped && !is_extended) {
2865 console_prepend_dropped(&pmsg, con->dropped);
2866 con->dropped = 0;
2867 }
2868
2869 /*
2870 * While actively printing out messages, if another printk()
2871 * were to occur on another CPU, it may wait for this one to
2872 * finish. This task can not be preempted if there is a
2873 * waiter waiting to take over.
2874 *
2875 * Interrupts are disabled because the hand over to a waiter
2876 * must not be interrupted until the hand over is completed
2877 * (@console_waiter is cleared).
2878 */
2879 printk_safe_enter_irqsave(flags);
2880 console_lock_spinning_enable();
2881
2882 /* Do not trace print latency. */
2883 stop_critical_timings();
2884
2885 /* Write everything out to the hardware. */
2886 con->write(con, outbuf, pmsg.outbuf_len);
2887
2888 start_critical_timings();
2889
2890 con->seq = pmsg.seq + 1;
2891
2892 *handover = console_lock_spinning_disable_and_check(cookie);
2893 printk_safe_exit_irqrestore(flags);
2894 skip:
2895 return true;
2896 }
2897
2898 /*
2899 * Print out all remaining records to all consoles.
2900 *
2901 * @do_cond_resched is set by the caller. It can be true only in schedulable
2902 * context.
2903 *
2904 * @next_seq is set to the sequence number after the last available record.
2905 * The value is valid only when this function returns true. It means that all
2906 * usable consoles are completely flushed.
2907 *
2908 * @handover will be set to true if a printk waiter has taken over the
2909 * console_lock, in which case the caller is no longer holding the
2910 * console_lock. Otherwise it is set to false.
2911 *
2912 * Returns true when there was at least one usable console and all messages
2913 * were flushed to all usable consoles. A returned false informs the caller
2914 * that everything was not flushed (either there were no usable consoles or
2915 * another context has taken over printing or it is a panic situation and this
2916 * is not the panic CPU). Regardless the reason, the caller should assume it
2917 * is not useful to immediately try again.
2918 *
2919 * Requires the console_lock.
2920 */
console_flush_all(bool do_cond_resched,u64 * next_seq,bool * handover)2921 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover)
2922 {
2923 bool any_usable = false;
2924 struct console *con;
2925 bool any_progress;
2926 int cookie;
2927
2928 *next_seq = 0;
2929 *handover = false;
2930
2931 do {
2932 any_progress = false;
2933
2934 cookie = console_srcu_read_lock();
2935 for_each_console_srcu(con) {
2936 bool progress;
2937
2938 if (!console_is_usable(con))
2939 continue;
2940 any_usable = true;
2941
2942 progress = console_emit_next_record(con, handover, cookie);
2943
2944 /*
2945 * If a handover has occurred, the SRCU read lock
2946 * is already released.
2947 */
2948 if (*handover)
2949 return false;
2950
2951 /* Track the next of the highest seq flushed. */
2952 if (con->seq > *next_seq)
2953 *next_seq = con->seq;
2954
2955 if (!progress)
2956 continue;
2957 any_progress = true;
2958
2959 /* Allow panic_cpu to take over the consoles safely. */
2960 if (abandon_console_lock_in_panic())
2961 goto abandon;
2962
2963 if (do_cond_resched)
2964 cond_resched();
2965 }
2966 console_srcu_read_unlock(cookie);
2967 } while (any_progress);
2968
2969 return any_usable;
2970
2971 abandon:
2972 console_srcu_read_unlock(cookie);
2973 return false;
2974 }
2975
2976 /**
2977 * console_unlock - unblock the console subsystem from printing
2978 *
2979 * Releases the console_lock which the caller holds to block printing of
2980 * the console subsystem.
2981 *
2982 * While the console_lock was held, console output may have been buffered
2983 * by printk(). If this is the case, console_unlock(); emits
2984 * the output prior to releasing the lock.
2985 *
2986 * console_unlock(); may be called from any context.
2987 */
console_unlock(void)2988 void console_unlock(void)
2989 {
2990 bool do_cond_resched;
2991 bool handover;
2992 bool flushed;
2993 u64 next_seq;
2994
2995 if (console_suspended) {
2996 up_console_sem();
2997 return;
2998 }
2999
3000 /*
3001 * Console drivers are called with interrupts disabled, so
3002 * @console_may_schedule should be cleared before; however, we may
3003 * end up dumping a lot of lines, for example, if called from
3004 * console registration path, and should invoke cond_resched()
3005 * between lines if allowable. Not doing so can cause a very long
3006 * scheduling stall on a slow console leading to RCU stall and
3007 * softlockup warnings which exacerbate the issue with more
3008 * messages practically incapacitating the system. Therefore, create
3009 * a local to use for the printing loop.
3010 */
3011 do_cond_resched = console_may_schedule;
3012
3013 do {
3014 console_may_schedule = 0;
3015
3016 flushed = console_flush_all(do_cond_resched, &next_seq, &handover);
3017 if (!handover)
3018 __console_unlock();
3019
3020 /*
3021 * Abort if there was a failure to flush all messages to all
3022 * usable consoles. Either it is not possible to flush (in
3023 * which case it would be an infinite loop of retrying) or
3024 * another context has taken over printing.
3025 */
3026 if (!flushed)
3027 break;
3028
3029 /*
3030 * Some context may have added new records after
3031 * console_flush_all() but before unlocking the console.
3032 * Re-check if there is a new record to flush. If the trylock
3033 * fails, another context is already handling the printing.
3034 */
3035 } while (prb_read_valid(prb, next_seq, NULL) && console_trylock());
3036 }
3037 EXPORT_SYMBOL(console_unlock);
3038
3039 /**
3040 * console_conditional_schedule - yield the CPU if required
3041 *
3042 * If the console code is currently allowed to sleep, and
3043 * if this CPU should yield the CPU to another task, do
3044 * so here.
3045 *
3046 * Must be called within console_lock();.
3047 */
console_conditional_schedule(void)3048 void __sched console_conditional_schedule(void)
3049 {
3050 if (console_may_schedule)
3051 cond_resched();
3052 }
3053 EXPORT_SYMBOL(console_conditional_schedule);
3054
console_unblank(void)3055 void console_unblank(void)
3056 {
3057 struct console *c;
3058 int cookie;
3059
3060 /*
3061 * Stop console printing because the unblank() callback may
3062 * assume the console is not within its write() callback.
3063 *
3064 * If @oops_in_progress is set, this may be an atomic context.
3065 * In that case, attempt a trylock as best-effort.
3066 */
3067 if (oops_in_progress) {
3068 if (down_trylock_console_sem() != 0)
3069 return;
3070 } else
3071 console_lock();
3072
3073 console_locked = 1;
3074 console_may_schedule = 0;
3075
3076 cookie = console_srcu_read_lock();
3077 for_each_console_srcu(c) {
3078 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank)
3079 c->unblank();
3080 }
3081 console_srcu_read_unlock(cookie);
3082
3083 console_unlock();
3084
3085 if (!oops_in_progress)
3086 pr_flush(1000, true);
3087 }
3088
3089 /**
3090 * console_flush_on_panic - flush console content on panic
3091 * @mode: flush all messages in buffer or just the pending ones
3092 *
3093 * Immediately output all pending messages no matter what.
3094 */
console_flush_on_panic(enum con_flush_mode mode)3095 void console_flush_on_panic(enum con_flush_mode mode)
3096 {
3097 /*
3098 * If someone else is holding the console lock, trylock will fail
3099 * and may_schedule may be set. Ignore and proceed to unlock so
3100 * that messages are flushed out. As this can be called from any
3101 * context and we don't want to get preempted while flushing,
3102 * ensure may_schedule is cleared.
3103 */
3104 console_trylock();
3105 console_may_schedule = 0;
3106
3107 if (mode == CONSOLE_REPLAY_ALL) {
3108 struct console *c;
3109 int cookie;
3110 u64 seq;
3111
3112 seq = prb_first_valid_seq(prb);
3113
3114 cookie = console_srcu_read_lock();
3115 for_each_console_srcu(c) {
3116 /*
3117 * If the above console_trylock() failed, this is an
3118 * unsynchronized assignment. But in that case, the
3119 * kernel is in "hope and pray" mode anyway.
3120 */
3121 c->seq = seq;
3122 }
3123 console_srcu_read_unlock(cookie);
3124 }
3125 console_unlock();
3126 }
3127
3128 /*
3129 * Return the console tty driver structure and its associated index
3130 */
console_device(int * index)3131 struct tty_driver *console_device(int *index)
3132 {
3133 struct console *c;
3134 struct tty_driver *driver = NULL;
3135 int cookie;
3136
3137 /*
3138 * Take console_lock to serialize device() callback with
3139 * other console operations. For example, fg_console is
3140 * modified under console_lock when switching vt.
3141 */
3142 console_lock();
3143
3144 cookie = console_srcu_read_lock();
3145 for_each_console_srcu(c) {
3146 if (!c->device)
3147 continue;
3148 driver = c->device(c, index);
3149 if (driver)
3150 break;
3151 }
3152 console_srcu_read_unlock(cookie);
3153
3154 console_unlock();
3155 return driver;
3156 }
3157
3158 /*
3159 * Prevent further output on the passed console device so that (for example)
3160 * serial drivers can disable console output before suspending a port, and can
3161 * re-enable output afterwards.
3162 */
console_stop(struct console * console)3163 void console_stop(struct console *console)
3164 {
3165 __pr_flush(console, 1000, true);
3166 console_list_lock();
3167 console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3168 console_list_unlock();
3169
3170 /*
3171 * Ensure that all SRCU list walks have completed. All contexts must
3172 * be able to see that this console is disabled so that (for example)
3173 * the caller can suspend the port without risk of another context
3174 * using the port.
3175 */
3176 synchronize_srcu(&console_srcu);
3177 }
3178 EXPORT_SYMBOL(console_stop);
3179
console_start(struct console * console)3180 void console_start(struct console *console)
3181 {
3182 console_list_lock();
3183 console_srcu_write_flags(console, console->flags | CON_ENABLED);
3184 console_list_unlock();
3185 __pr_flush(console, 1000, true);
3186 }
3187 EXPORT_SYMBOL(console_start);
3188
3189 static int __read_mostly keep_bootcon;
3190
keep_bootcon_setup(char * str)3191 static int __init keep_bootcon_setup(char *str)
3192 {
3193 keep_bootcon = 1;
3194 pr_info("debug: skip boot console de-registration.\n");
3195
3196 return 0;
3197 }
3198
3199 early_param("keep_bootcon", keep_bootcon_setup);
3200
3201 /*
3202 * This is called by register_console() to try to match
3203 * the newly registered console with any of the ones selected
3204 * by either the command line or add_preferred_console() and
3205 * setup/enable it.
3206 *
3207 * Care need to be taken with consoles that are statically
3208 * enabled such as netconsole
3209 */
try_enable_preferred_console(struct console * newcon,bool user_specified)3210 static int try_enable_preferred_console(struct console *newcon,
3211 bool user_specified)
3212 {
3213 struct console_cmdline *c;
3214 int i, err;
3215
3216 for (i = 0, c = console_cmdline;
3217 i < MAX_CMDLINECONSOLES && c->name[0];
3218 i++, c++) {
3219 if (c->user_specified != user_specified)
3220 continue;
3221 if (!newcon->match ||
3222 newcon->match(newcon, c->name, c->index, c->options) != 0) {
3223 /* default matching */
3224 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
3225 if (strcmp(c->name, newcon->name) != 0)
3226 continue;
3227 if (newcon->index >= 0 &&
3228 newcon->index != c->index)
3229 continue;
3230 if (newcon->index < 0)
3231 newcon->index = c->index;
3232
3233 if (_braille_register_console(newcon, c))
3234 return 0;
3235
3236 if (newcon->setup &&
3237 (err = newcon->setup(newcon, c->options)) != 0)
3238 return err;
3239 }
3240 newcon->flags |= CON_ENABLED;
3241 if (i == preferred_console)
3242 newcon->flags |= CON_CONSDEV;
3243 return 0;
3244 }
3245
3246 /*
3247 * Some consoles, such as pstore and netconsole, can be enabled even
3248 * without matching. Accept the pre-enabled consoles only when match()
3249 * and setup() had a chance to be called.
3250 */
3251 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified)
3252 return 0;
3253
3254 return -ENOENT;
3255 }
3256
3257 /* Try to enable the console unconditionally */
try_enable_default_console(struct console * newcon)3258 static void try_enable_default_console(struct console *newcon)
3259 {
3260 if (newcon->index < 0)
3261 newcon->index = 0;
3262
3263 if (newcon->setup && newcon->setup(newcon, NULL) != 0)
3264 return;
3265
3266 newcon->flags |= CON_ENABLED;
3267
3268 if (newcon->device)
3269 newcon->flags |= CON_CONSDEV;
3270 }
3271
3272 #define con_printk(lvl, con, fmt, ...) \
3273 printk(lvl pr_fmt("%sconsole [%s%d] " fmt), \
3274 (con->flags & CON_BOOT) ? "boot" : "", \
3275 con->name, con->index, ##__VA_ARGS__)
3276
console_init_seq(struct console * newcon,bool bootcon_registered)3277 static void console_init_seq(struct console *newcon, bool bootcon_registered)
3278 {
3279 struct console *con;
3280 bool handover;
3281
3282 if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) {
3283 /* Get a consistent copy of @syslog_seq. */
3284 mutex_lock(&syslog_lock);
3285 newcon->seq = syslog_seq;
3286 mutex_unlock(&syslog_lock);
3287 } else {
3288 /* Begin with next message added to ringbuffer. */
3289 newcon->seq = prb_next_seq(prb);
3290
3291 /*
3292 * If any enabled boot consoles are due to be unregistered
3293 * shortly, some may not be caught up and may be the same
3294 * device as @newcon. Since it is not known which boot console
3295 * is the same device, flush all consoles and, if necessary,
3296 * start with the message of the enabled boot console that is
3297 * the furthest behind.
3298 */
3299 if (bootcon_registered && !keep_bootcon) {
3300 /*
3301 * Hold the console_lock to stop console printing and
3302 * guarantee safe access to console->seq.
3303 */
3304 console_lock();
3305
3306 /*
3307 * Flush all consoles and set the console to start at
3308 * the next unprinted sequence number.
3309 */
3310 if (!console_flush_all(true, &newcon->seq, &handover)) {
3311 /*
3312 * Flushing failed. Just choose the lowest
3313 * sequence of the enabled boot consoles.
3314 */
3315
3316 /*
3317 * If there was a handover, this context no
3318 * longer holds the console_lock.
3319 */
3320 if (handover)
3321 console_lock();
3322
3323 newcon->seq = prb_next_seq(prb);
3324 for_each_console(con) {
3325 if ((con->flags & CON_BOOT) &&
3326 (con->flags & CON_ENABLED) &&
3327 con->seq < newcon->seq) {
3328 newcon->seq = con->seq;
3329 }
3330 }
3331 }
3332
3333 console_unlock();
3334 }
3335 }
3336 }
3337
3338 #define console_first() \
3339 hlist_entry(console_list.first, struct console, node)
3340
3341 static int unregister_console_locked(struct console *console);
3342
3343 /*
3344 * The console driver calls this routine during kernel initialization
3345 * to register the console printing procedure with printk() and to
3346 * print any messages that were printed by the kernel before the
3347 * console driver was initialized.
3348 *
3349 * This can happen pretty early during the boot process (because of
3350 * early_printk) - sometimes before setup_arch() completes - be careful
3351 * of what kernel features are used - they may not be initialised yet.
3352 *
3353 * There are two types of consoles - bootconsoles (early_printk) and
3354 * "real" consoles (everything which is not a bootconsole) which are
3355 * handled differently.
3356 * - Any number of bootconsoles can be registered at any time.
3357 * - As soon as a "real" console is registered, all bootconsoles
3358 * will be unregistered automatically.
3359 * - Once a "real" console is registered, any attempt to register a
3360 * bootconsoles will be rejected
3361 */
register_console(struct console * newcon)3362 void register_console(struct console *newcon)
3363 {
3364 struct console *con;
3365 bool bootcon_registered = false;
3366 bool realcon_registered = false;
3367 int err;
3368
3369 console_list_lock();
3370
3371 for_each_console(con) {
3372 if (WARN(con == newcon, "console '%s%d' already registered\n",
3373 con->name, con->index)) {
3374 goto unlock;
3375 }
3376
3377 if (con->flags & CON_BOOT)
3378 bootcon_registered = true;
3379 else
3380 realcon_registered = true;
3381 }
3382
3383 /* Do not register boot consoles when there already is a real one. */
3384 if ((newcon->flags & CON_BOOT) && realcon_registered) {
3385 pr_info("Too late to register bootconsole %s%d\n",
3386 newcon->name, newcon->index);
3387 goto unlock;
3388 }
3389
3390 /*
3391 * See if we want to enable this console driver by default.
3392 *
3393 * Nope when a console is preferred by the command line, device
3394 * tree, or SPCR.
3395 *
3396 * The first real console with tty binding (driver) wins. More
3397 * consoles might get enabled before the right one is found.
3398 *
3399 * Note that a console with tty binding will have CON_CONSDEV
3400 * flag set and will be first in the list.
3401 */
3402 if (preferred_console < 0) {
3403 if (hlist_empty(&console_list) || !console_first()->device ||
3404 console_first()->flags & CON_BOOT) {
3405 try_enable_default_console(newcon);
3406 }
3407 }
3408
3409 /* See if this console matches one we selected on the command line */
3410 err = try_enable_preferred_console(newcon, true);
3411
3412 /* If not, try to match against the platform default(s) */
3413 if (err == -ENOENT)
3414 err = try_enable_preferred_console(newcon, false);
3415
3416 /* printk() messages are not printed to the Braille console. */
3417 if (err || newcon->flags & CON_BRL)
3418 goto unlock;
3419
3420 /*
3421 * If we have a bootconsole, and are switching to a real console,
3422 * don't print everything out again, since when the boot console, and
3423 * the real console are the same physical device, it's annoying to
3424 * see the beginning boot messages twice
3425 */
3426 if (bootcon_registered &&
3427 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
3428 newcon->flags &= ~CON_PRINTBUFFER;
3429 }
3430
3431 newcon->dropped = 0;
3432 console_init_seq(newcon, bootcon_registered);
3433
3434 /*
3435 * Put this console in the list - keep the
3436 * preferred driver at the head of the list.
3437 */
3438 if (hlist_empty(&console_list)) {
3439 /* Ensure CON_CONSDEV is always set for the head. */
3440 newcon->flags |= CON_CONSDEV;
3441 hlist_add_head_rcu(&newcon->node, &console_list);
3442
3443 } else if (newcon->flags & CON_CONSDEV) {
3444 /* Only the new head can have CON_CONSDEV set. */
3445 console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV);
3446 hlist_add_head_rcu(&newcon->node, &console_list);
3447
3448 } else {
3449 hlist_add_behind_rcu(&newcon->node, console_list.first);
3450 }
3451
3452 /*
3453 * No need to synchronize SRCU here! The caller does not rely
3454 * on all contexts being able to see the new console before
3455 * register_console() completes.
3456 */
3457
3458 console_sysfs_notify();
3459
3460 /*
3461 * By unregistering the bootconsoles after we enable the real console
3462 * we get the "console xxx enabled" message on all the consoles -
3463 * boot consoles, real consoles, etc - this is to ensure that end
3464 * users know there might be something in the kernel's log buffer that
3465 * went to the bootconsole (that they do not see on the real console)
3466 */
3467 con_printk(KERN_INFO, newcon, "enabled\n");
3468 if (bootcon_registered &&
3469 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
3470 !keep_bootcon) {
3471 struct hlist_node *tmp;
3472
3473 hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3474 if (con->flags & CON_BOOT)
3475 unregister_console_locked(con);
3476 }
3477 }
3478 unlock:
3479 console_list_unlock();
3480 }
3481 EXPORT_SYMBOL(register_console);
3482
3483 /* Must be called under console_list_lock(). */
unregister_console_locked(struct console * console)3484 static int unregister_console_locked(struct console *console)
3485 {
3486 int res;
3487
3488 lockdep_assert_console_list_lock_held();
3489
3490 con_printk(KERN_INFO, console, "disabled\n");
3491
3492 res = _braille_unregister_console(console);
3493 if (res < 0)
3494 return res;
3495 if (res > 0)
3496 return 0;
3497
3498 /* Disable it unconditionally */
3499 console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3500
3501 if (!console_is_registered_locked(console))
3502 return -ENODEV;
3503
3504 hlist_del_init_rcu(&console->node);
3505
3506 /*
3507 * <HISTORICAL>
3508 * If this isn't the last console and it has CON_CONSDEV set, we
3509 * need to set it on the next preferred console.
3510 * </HISTORICAL>
3511 *
3512 * The above makes no sense as there is no guarantee that the next
3513 * console has any device attached. Oh well....
3514 */
3515 if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV)
3516 console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV);
3517
3518 /*
3519 * Ensure that all SRCU list walks have completed. All contexts
3520 * must not be able to see this console in the list so that any
3521 * exit/cleanup routines can be performed safely.
3522 */
3523 synchronize_srcu(&console_srcu);
3524
3525 console_sysfs_notify();
3526
3527 if (console->exit)
3528 res = console->exit(console);
3529
3530 return res;
3531 }
3532
unregister_console(struct console * console)3533 int unregister_console(struct console *console)
3534 {
3535 int res;
3536
3537 console_list_lock();
3538 res = unregister_console_locked(console);
3539 console_list_unlock();
3540 return res;
3541 }
3542 EXPORT_SYMBOL(unregister_console);
3543
3544 /**
3545 * console_force_preferred_locked - force a registered console preferred
3546 * @con: The registered console to force preferred.
3547 *
3548 * Must be called under console_list_lock().
3549 */
console_force_preferred_locked(struct console * con)3550 void console_force_preferred_locked(struct console *con)
3551 {
3552 struct console *cur_pref_con;
3553
3554 if (!console_is_registered_locked(con))
3555 return;
3556
3557 cur_pref_con = console_first();
3558
3559 /* Already preferred? */
3560 if (cur_pref_con == con)
3561 return;
3562
3563 /*
3564 * Delete, but do not re-initialize the entry. This allows the console
3565 * to continue to appear registered (via any hlist_unhashed_lockless()
3566 * checks), even though it was briefly removed from the console list.
3567 */
3568 hlist_del_rcu(&con->node);
3569
3570 /*
3571 * Ensure that all SRCU list walks have completed so that the console
3572 * can be added to the beginning of the console list and its forward
3573 * list pointer can be re-initialized.
3574 */
3575 synchronize_srcu(&console_srcu);
3576
3577 con->flags |= CON_CONSDEV;
3578 WARN_ON(!con->device);
3579
3580 /* Only the new head can have CON_CONSDEV set. */
3581 console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV);
3582 hlist_add_head_rcu(&con->node, &console_list);
3583 }
3584 EXPORT_SYMBOL(console_force_preferred_locked);
3585
3586 /*
3587 * Initialize the console device. This is called *early*, so
3588 * we can't necessarily depend on lots of kernel help here.
3589 * Just do some early initializations, and do the complex setup
3590 * later.
3591 */
console_init(void)3592 void __init console_init(void)
3593 {
3594 int ret;
3595 initcall_t call;
3596 initcall_entry_t *ce;
3597
3598 /* Setup the default TTY line discipline. */
3599 n_tty_init();
3600
3601 /*
3602 * set up the console device so that later boot sequences can
3603 * inform about problems etc..
3604 */
3605 ce = __con_initcall_start;
3606 trace_initcall_level("console");
3607 while (ce < __con_initcall_end) {
3608 call = initcall_from_entry(ce);
3609 trace_initcall_start(call);
3610 ret = call();
3611 trace_initcall_finish(call, ret);
3612 ce++;
3613 }
3614 }
3615
3616 /*
3617 * Some boot consoles access data that is in the init section and which will
3618 * be discarded after the initcalls have been run. To make sure that no code
3619 * will access this data, unregister the boot consoles in a late initcall.
3620 *
3621 * If for some reason, such as deferred probe or the driver being a loadable
3622 * module, the real console hasn't registered yet at this point, there will
3623 * be a brief interval in which no messages are logged to the console, which
3624 * makes it difficult to diagnose problems that occur during this time.
3625 *
3626 * To mitigate this problem somewhat, only unregister consoles whose memory
3627 * intersects with the init section. Note that all other boot consoles will
3628 * get unregistered when the real preferred console is registered.
3629 */
printk_late_init(void)3630 static int __init printk_late_init(void)
3631 {
3632 struct hlist_node *tmp;
3633 struct console *con;
3634 int ret;
3635
3636 console_list_lock();
3637 hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3638 if (!(con->flags & CON_BOOT))
3639 continue;
3640
3641 /* Check addresses that might be used for enabled consoles. */
3642 if (init_section_intersects(con, sizeof(*con)) ||
3643 init_section_contains(con->write, 0) ||
3644 init_section_contains(con->read, 0) ||
3645 init_section_contains(con->device, 0) ||
3646 init_section_contains(con->unblank, 0) ||
3647 init_section_contains(con->data, 0)) {
3648 /*
3649 * Please, consider moving the reported consoles out
3650 * of the init section.
3651 */
3652 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3653 con->name, con->index);
3654 unregister_console_locked(con);
3655 }
3656 }
3657 console_list_unlock();
3658
3659 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3660 console_cpu_notify);
3661 WARN_ON(ret < 0);
3662 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3663 console_cpu_notify, NULL);
3664 WARN_ON(ret < 0);
3665 printk_sysctl_init();
3666 return 0;
3667 }
3668 late_initcall(printk_late_init);
3669
3670 #if defined CONFIG_PRINTK
3671 /* If @con is specified, only wait for that console. Otherwise wait for all. */
__pr_flush(struct console * con,int timeout_ms,bool reset_on_progress)3672 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress)
3673 {
3674 int remaining = timeout_ms;
3675 struct console *c;
3676 u64 last_diff = 0;
3677 u64 printk_seq;
3678 int cookie;
3679 u64 diff;
3680 u64 seq;
3681
3682 might_sleep();
3683
3684 seq = prb_next_seq(prb);
3685
3686 for (;;) {
3687 diff = 0;
3688
3689 /*
3690 * Hold the console_lock to guarantee safe access to
3691 * console->seq and to prevent changes to @console_suspended
3692 * until all consoles have been processed.
3693 */
3694 console_lock();
3695
3696 cookie = console_srcu_read_lock();
3697 for_each_console_srcu(c) {
3698 if (con && con != c)
3699 continue;
3700 if (!console_is_usable(c))
3701 continue;
3702 printk_seq = c->seq;
3703 if (printk_seq < seq)
3704 diff += seq - printk_seq;
3705 }
3706 console_srcu_read_unlock(cookie);
3707
3708 /*
3709 * If consoles are suspended, it cannot be expected that they
3710 * make forward progress, so timeout immediately. @diff is
3711 * still used to return a valid flush status.
3712 */
3713 if (console_suspended)
3714 remaining = 0;
3715 else if (diff != last_diff && reset_on_progress)
3716 remaining = timeout_ms;
3717
3718 console_unlock();
3719
3720 if (diff == 0 || remaining == 0)
3721 break;
3722
3723 if (remaining < 0) {
3724 /* no timeout limit */
3725 msleep(100);
3726 } else if (remaining < 100) {
3727 msleep(remaining);
3728 remaining = 0;
3729 } else {
3730 msleep(100);
3731 remaining -= 100;
3732 }
3733
3734 last_diff = diff;
3735 }
3736
3737 return (diff == 0);
3738 }
3739
3740 /**
3741 * pr_flush() - Wait for printing threads to catch up.
3742 *
3743 * @timeout_ms: The maximum time (in ms) to wait.
3744 * @reset_on_progress: Reset the timeout if forward progress is seen.
3745 *
3746 * A value of 0 for @timeout_ms means no waiting will occur. A value of -1
3747 * represents infinite waiting.
3748 *
3749 * If @reset_on_progress is true, the timeout will be reset whenever any
3750 * printer has been seen to make some forward progress.
3751 *
3752 * Context: Process context. May sleep while acquiring console lock.
3753 * Return: true if all enabled printers are caught up.
3754 */
pr_flush(int timeout_ms,bool reset_on_progress)3755 static bool pr_flush(int timeout_ms, bool reset_on_progress)
3756 {
3757 return __pr_flush(NULL, timeout_ms, reset_on_progress);
3758 }
3759
3760 /*
3761 * Delayed printk version, for scheduler-internal messages:
3762 */
3763 #define PRINTK_PENDING_WAKEUP 0x01
3764 #define PRINTK_PENDING_OUTPUT 0x02
3765
3766 static DEFINE_PER_CPU(int, printk_pending);
3767
wake_up_klogd_work_func(struct irq_work * irq_work)3768 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3769 {
3770 int pending = this_cpu_xchg(printk_pending, 0);
3771
3772 if (pending & PRINTK_PENDING_OUTPUT) {
3773 /* If trylock fails, someone else is doing the printing */
3774 if (console_trylock())
3775 console_unlock();
3776 }
3777
3778 if (pending & PRINTK_PENDING_WAKEUP)
3779 wake_up_interruptible(&log_wait);
3780 }
3781
3782 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3783 IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
3784
__wake_up_klogd(int val)3785 static void __wake_up_klogd(int val)
3786 {
3787 if (!printk_percpu_data_ready())
3788 return;
3789
3790 preempt_disable();
3791 /*
3792 * Guarantee any new records can be seen by tasks preparing to wait
3793 * before this context checks if the wait queue is empty.
3794 *
3795 * The full memory barrier within wq_has_sleeper() pairs with the full
3796 * memory barrier within set_current_state() of
3797 * prepare_to_wait_event(), which is called after ___wait_event() adds
3798 * the waiter but before it has checked the wait condition.
3799 *
3800 * This pairs with devkmsg_read:A and syslog_print:A.
3801 */
3802 if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
3803 (val & PRINTK_PENDING_OUTPUT)) {
3804 this_cpu_or(printk_pending, val);
3805 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3806 }
3807 preempt_enable();
3808 }
3809
wake_up_klogd(void)3810 void wake_up_klogd(void)
3811 {
3812 __wake_up_klogd(PRINTK_PENDING_WAKEUP);
3813 }
3814
defer_console_output(void)3815 void defer_console_output(void)
3816 {
3817 /*
3818 * New messages may have been added directly to the ringbuffer
3819 * using vprintk_store(), so wake any waiters as well.
3820 */
3821 __wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
3822 }
3823
printk_trigger_flush(void)3824 void printk_trigger_flush(void)
3825 {
3826 defer_console_output();
3827 }
3828
vprintk_deferred(const char * fmt,va_list args)3829 int vprintk_deferred(const char *fmt, va_list args)
3830 {
3831 int r;
3832
3833 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3834 defer_console_output();
3835
3836 return r;
3837 }
3838
_printk_deferred(const char * fmt,...)3839 int _printk_deferred(const char *fmt, ...)
3840 {
3841 va_list args;
3842 int r;
3843
3844 va_start(args, fmt);
3845 r = vprintk_deferred(fmt, args);
3846 va_end(args);
3847
3848 return r;
3849 }
3850
3851 /*
3852 * printk rate limiting, lifted from the networking subsystem.
3853 *
3854 * This enforces a rate limit: not more than 10 kernel messages
3855 * every 5s to make a denial-of-service attack impossible.
3856 */
3857 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3858
__printk_ratelimit(const char * func)3859 int __printk_ratelimit(const char *func)
3860 {
3861 return ___ratelimit(&printk_ratelimit_state, func);
3862 }
3863 EXPORT_SYMBOL(__printk_ratelimit);
3864
3865 /**
3866 * printk_timed_ratelimit - caller-controlled printk ratelimiting
3867 * @caller_jiffies: pointer to caller's state
3868 * @interval_msecs: minimum interval between prints
3869 *
3870 * printk_timed_ratelimit() returns true if more than @interval_msecs
3871 * milliseconds have elapsed since the last time printk_timed_ratelimit()
3872 * returned true.
3873 */
printk_timed_ratelimit(unsigned long * caller_jiffies,unsigned int interval_msecs)3874 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3875 unsigned int interval_msecs)
3876 {
3877 unsigned long elapsed = jiffies - *caller_jiffies;
3878
3879 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3880 return false;
3881
3882 *caller_jiffies = jiffies;
3883 return true;
3884 }
3885 EXPORT_SYMBOL(printk_timed_ratelimit);
3886
3887 static DEFINE_SPINLOCK(dump_list_lock);
3888 static LIST_HEAD(dump_list);
3889
3890 /**
3891 * kmsg_dump_register - register a kernel log dumper.
3892 * @dumper: pointer to the kmsg_dumper structure
3893 *
3894 * Adds a kernel log dumper to the system. The dump callback in the
3895 * structure will be called when the kernel oopses or panics and must be
3896 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3897 */
kmsg_dump_register(struct kmsg_dumper * dumper)3898 int kmsg_dump_register(struct kmsg_dumper *dumper)
3899 {
3900 unsigned long flags;
3901 int err = -EBUSY;
3902
3903 /* The dump callback needs to be set */
3904 if (!dumper->dump)
3905 return -EINVAL;
3906
3907 spin_lock_irqsave(&dump_list_lock, flags);
3908 /* Don't allow registering multiple times */
3909 if (!dumper->registered) {
3910 dumper->registered = 1;
3911 list_add_tail_rcu(&dumper->list, &dump_list);
3912 err = 0;
3913 }
3914 spin_unlock_irqrestore(&dump_list_lock, flags);
3915
3916 return err;
3917 }
3918 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3919
3920 /**
3921 * kmsg_dump_unregister - unregister a kmsg dumper.
3922 * @dumper: pointer to the kmsg_dumper structure
3923 *
3924 * Removes a dump device from the system. Returns zero on success and
3925 * %-EINVAL otherwise.
3926 */
kmsg_dump_unregister(struct kmsg_dumper * dumper)3927 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3928 {
3929 unsigned long flags;
3930 int err = -EINVAL;
3931
3932 spin_lock_irqsave(&dump_list_lock, flags);
3933 if (dumper->registered) {
3934 dumper->registered = 0;
3935 list_del_rcu(&dumper->list);
3936 err = 0;
3937 }
3938 spin_unlock_irqrestore(&dump_list_lock, flags);
3939 synchronize_rcu();
3940
3941 return err;
3942 }
3943 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3944
3945 static bool always_kmsg_dump;
3946 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3947
kmsg_dump_reason_str(enum kmsg_dump_reason reason)3948 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
3949 {
3950 switch (reason) {
3951 case KMSG_DUMP_PANIC:
3952 return "Panic";
3953 case KMSG_DUMP_OOPS:
3954 return "Oops";
3955 case KMSG_DUMP_EMERG:
3956 return "Emergency";
3957 case KMSG_DUMP_SHUTDOWN:
3958 return "Shutdown";
3959 default:
3960 return "Unknown";
3961 }
3962 }
3963 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
3964
3965 /**
3966 * kmsg_dump - dump kernel log to kernel message dumpers.
3967 * @reason: the reason (oops, panic etc) for dumping
3968 *
3969 * Call each of the registered dumper's dump() callback, which can
3970 * retrieve the kmsg records with kmsg_dump_get_line() or
3971 * kmsg_dump_get_buffer().
3972 */
kmsg_dump(enum kmsg_dump_reason reason)3973 void kmsg_dump(enum kmsg_dump_reason reason)
3974 {
3975 struct kmsg_dumper *dumper;
3976
3977 rcu_read_lock();
3978 list_for_each_entry_rcu(dumper, &dump_list, list) {
3979 enum kmsg_dump_reason max_reason = dumper->max_reason;
3980
3981 /*
3982 * If client has not provided a specific max_reason, default
3983 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
3984 */
3985 if (max_reason == KMSG_DUMP_UNDEF) {
3986 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
3987 KMSG_DUMP_OOPS;
3988 }
3989 if (reason > max_reason)
3990 continue;
3991
3992 /* invoke dumper which will iterate over records */
3993 dumper->dump(dumper, reason);
3994 }
3995 rcu_read_unlock();
3996 }
3997
3998 /**
3999 * kmsg_dump_get_line - retrieve one kmsg log line
4000 * @iter: kmsg dump iterator
4001 * @syslog: include the "<4>" prefixes
4002 * @line: buffer to copy the line to
4003 * @size: maximum size of the buffer
4004 * @len: length of line placed into buffer
4005 *
4006 * Start at the beginning of the kmsg buffer, with the oldest kmsg
4007 * record, and copy one record into the provided buffer.
4008 *
4009 * Consecutive calls will return the next available record moving
4010 * towards the end of the buffer with the youngest messages.
4011 *
4012 * A return value of FALSE indicates that there are no more records to
4013 * read.
4014 */
kmsg_dump_get_line(struct kmsg_dump_iter * iter,bool syslog,char * line,size_t size,size_t * len)4015 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
4016 char *line, size_t size, size_t *len)
4017 {
4018 u64 min_seq = latched_seq_read_nolock(&clear_seq);
4019 struct printk_info info;
4020 unsigned int line_count;
4021 struct printk_record r;
4022 size_t l = 0;
4023 bool ret = false;
4024
4025 if (iter->cur_seq < min_seq)
4026 iter->cur_seq = min_seq;
4027
4028 prb_rec_init_rd(&r, &info, line, size);
4029
4030 /* Read text or count text lines? */
4031 if (line) {
4032 if (!prb_read_valid(prb, iter->cur_seq, &r))
4033 goto out;
4034 l = record_print_text(&r, syslog, printk_time);
4035 } else {
4036 if (!prb_read_valid_info(prb, iter->cur_seq,
4037 &info, &line_count)) {
4038 goto out;
4039 }
4040 l = get_record_print_text_size(&info, line_count, syslog,
4041 printk_time);
4042
4043 }
4044
4045 iter->cur_seq = r.info->seq + 1;
4046 ret = true;
4047 out:
4048 if (len)
4049 *len = l;
4050 return ret;
4051 }
4052 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
4053
4054 /**
4055 * kmsg_dump_get_buffer - copy kmsg log lines
4056 * @iter: kmsg dump iterator
4057 * @syslog: include the "<4>" prefixes
4058 * @buf: buffer to copy the line to
4059 * @size: maximum size of the buffer
4060 * @len_out: length of line placed into buffer
4061 *
4062 * Start at the end of the kmsg buffer and fill the provided buffer
4063 * with as many of the *youngest* kmsg records that fit into it.
4064 * If the buffer is large enough, all available kmsg records will be
4065 * copied with a single call.
4066 *
4067 * Consecutive calls will fill the buffer with the next block of
4068 * available older records, not including the earlier retrieved ones.
4069 *
4070 * A return value of FALSE indicates that there are no more records to
4071 * read.
4072 */
kmsg_dump_get_buffer(struct kmsg_dump_iter * iter,bool syslog,char * buf,size_t size,size_t * len_out)4073 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
4074 char *buf, size_t size, size_t *len_out)
4075 {
4076 u64 min_seq = latched_seq_read_nolock(&clear_seq);
4077 struct printk_info info;
4078 struct printk_record r;
4079 u64 seq;
4080 u64 next_seq;
4081 size_t len = 0;
4082 bool ret = false;
4083 bool time = printk_time;
4084
4085 if (!buf || !size)
4086 goto out;
4087
4088 if (iter->cur_seq < min_seq)
4089 iter->cur_seq = min_seq;
4090
4091 if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
4092 if (info.seq != iter->cur_seq) {
4093 /* messages are gone, move to first available one */
4094 iter->cur_seq = info.seq;
4095 }
4096 }
4097
4098 /* last entry */
4099 if (iter->cur_seq >= iter->next_seq)
4100 goto out;
4101
4102 /*
4103 * Find first record that fits, including all following records,
4104 * into the user-provided buffer for this dump. Pass in size-1
4105 * because this function (by way of record_print_text()) will
4106 * not write more than size-1 bytes of text into @buf.
4107 */
4108 seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
4109 size - 1, syslog, time);
4110
4111 /*
4112 * Next kmsg_dump_get_buffer() invocation will dump block of
4113 * older records stored right before this one.
4114 */
4115 next_seq = seq;
4116
4117 prb_rec_init_rd(&r, &info, buf, size);
4118
4119 len = 0;
4120 prb_for_each_record(seq, prb, seq, &r) {
4121 if (r.info->seq >= iter->next_seq)
4122 break;
4123
4124 len += record_print_text(&r, syslog, time);
4125
4126 /* Adjust record to store to remaining buffer space. */
4127 prb_rec_init_rd(&r, &info, buf + len, size - len);
4128 }
4129
4130 iter->next_seq = next_seq;
4131 ret = true;
4132 out:
4133 if (len_out)
4134 *len_out = len;
4135 return ret;
4136 }
4137 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
4138
4139 /**
4140 * kmsg_dump_rewind - reset the iterator
4141 * @iter: kmsg dump iterator
4142 *
4143 * Reset the dumper's iterator so that kmsg_dump_get_line() and
4144 * kmsg_dump_get_buffer() can be called again and used multiple
4145 * times within the same dumper.dump() callback.
4146 */
kmsg_dump_rewind(struct kmsg_dump_iter * iter)4147 void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
4148 {
4149 iter->cur_seq = latched_seq_read_nolock(&clear_seq);
4150 iter->next_seq = prb_next_seq(prb);
4151 }
4152 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
4153
4154 #endif
4155
4156 #ifdef CONFIG_SMP
4157 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1);
4158 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0);
4159
4160 /**
4161 * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant
4162 * spinning lock is not owned by any CPU.
4163 *
4164 * Context: Any context.
4165 */
__printk_cpu_sync_wait(void)4166 void __printk_cpu_sync_wait(void)
4167 {
4168 do {
4169 cpu_relax();
4170 } while (atomic_read(&printk_cpu_sync_owner) != -1);
4171 }
4172 EXPORT_SYMBOL(__printk_cpu_sync_wait);
4173
4174 /**
4175 * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant
4176 * spinning lock.
4177 *
4178 * If no processor has the lock, the calling processor takes the lock and
4179 * becomes the owner. If the calling processor is already the owner of the
4180 * lock, this function succeeds immediately.
4181 *
4182 * Context: Any context. Expects interrupts to be disabled.
4183 * Return: 1 on success, otherwise 0.
4184 */
__printk_cpu_sync_try_get(void)4185 int __printk_cpu_sync_try_get(void)
4186 {
4187 int cpu;
4188 int old;
4189
4190 cpu = smp_processor_id();
4191
4192 /*
4193 * Guarantee loads and stores from this CPU when it is the lock owner
4194 * are _not_ visible to the previous lock owner. This pairs with
4195 * __printk_cpu_sync_put:B.
4196 *
4197 * Memory barrier involvement:
4198 *
4199 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4200 * then __printk_cpu_sync_put:A can never read from
4201 * __printk_cpu_sync_try_get:B.
4202 *
4203 * Relies on:
4204 *
4205 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4206 * of the previous CPU
4207 * matching
4208 * ACQUIRE from __printk_cpu_sync_try_get:A to
4209 * __printk_cpu_sync_try_get:B of this CPU
4210 */
4211 old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1,
4212 cpu); /* LMM(__printk_cpu_sync_try_get:A) */
4213 if (old == -1) {
4214 /*
4215 * This CPU is now the owner and begins loading/storing
4216 * data: LMM(__printk_cpu_sync_try_get:B)
4217 */
4218 return 1;
4219
4220 } else if (old == cpu) {
4221 /* This CPU is already the owner. */
4222 atomic_inc(&printk_cpu_sync_nested);
4223 return 1;
4224 }
4225
4226 return 0;
4227 }
4228 EXPORT_SYMBOL(__printk_cpu_sync_try_get);
4229
4230 /**
4231 * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock.
4232 *
4233 * The calling processor must be the owner of the lock.
4234 *
4235 * Context: Any context. Expects interrupts to be disabled.
4236 */
__printk_cpu_sync_put(void)4237 void __printk_cpu_sync_put(void)
4238 {
4239 if (atomic_read(&printk_cpu_sync_nested)) {
4240 atomic_dec(&printk_cpu_sync_nested);
4241 return;
4242 }
4243
4244 /*
4245 * This CPU is finished loading/storing data:
4246 * LMM(__printk_cpu_sync_put:A)
4247 */
4248
4249 /*
4250 * Guarantee loads and stores from this CPU when it was the
4251 * lock owner are visible to the next lock owner. This pairs
4252 * with __printk_cpu_sync_try_get:A.
4253 *
4254 * Memory barrier involvement:
4255 *
4256 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4257 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A.
4258 *
4259 * Relies on:
4260 *
4261 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4262 * of this CPU
4263 * matching
4264 * ACQUIRE from __printk_cpu_sync_try_get:A to
4265 * __printk_cpu_sync_try_get:B of the next CPU
4266 */
4267 atomic_set_release(&printk_cpu_sync_owner,
4268 -1); /* LMM(__printk_cpu_sync_put:B) */
4269 }
4270 EXPORT_SYMBOL(__printk_cpu_sync_put);
4271 #endif /* CONFIG_SMP */
4272