1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * No idle tick implementation for low and high resolution timers
8 *
9 * Started by: Thomas Gleixner and Ingo Molnar
10 */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/sched/loadavg.h>
24 #include <linux/module.h>
25 #include <linux/irq_work.h>
26 #include <linux/posix-timers.h>
27 #include <linux/context_tracking.h>
28 #include <linux/mm.h>
29
30 #include <asm/irq_regs.h>
31
32 #include "tick-internal.h"
33
34 #include <trace/events/timer.h>
35
36 /*
37 * Per-CPU nohz control structure
38 */
39 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
40
tick_get_tick_sched(int cpu)41 struct tick_sched *tick_get_tick_sched(int cpu)
42 {
43 return &per_cpu(tick_cpu_sched, cpu);
44 }
45
46 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
47 /*
48 * The time, when the last jiffy update happened. Write access must hold
49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
50 * consistent view of jiffies and last_jiffies_update.
51 */
52 static ktime_t last_jiffies_update;
53
54 /*
55 * Must be called with interrupts disabled !
56 */
tick_do_update_jiffies64(ktime_t now)57 static void tick_do_update_jiffies64(ktime_t now)
58 {
59 unsigned long ticks = 1;
60 ktime_t delta, nextp;
61
62 /*
63 * 64bit can do a quick check without holding jiffies lock and
64 * without looking at the sequence count. The smp_load_acquire()
65 * pairs with the update done later in this function.
66 *
67 * 32bit cannot do that because the store of tick_next_period
68 * consists of two 32bit stores and the first store could move it
69 * to a random point in the future.
70 */
71 if (IS_ENABLED(CONFIG_64BIT)) {
72 if (ktime_before(now, smp_load_acquire(&tick_next_period)))
73 return;
74 } else {
75 unsigned int seq;
76
77 /*
78 * Avoid contention on jiffies_lock and protect the quick
79 * check with the sequence count.
80 */
81 do {
82 seq = read_seqcount_begin(&jiffies_seq);
83 nextp = tick_next_period;
84 } while (read_seqcount_retry(&jiffies_seq, seq));
85
86 if (ktime_before(now, nextp))
87 return;
88 }
89
90 /* Quick check failed, i.e. update is required. */
91 raw_spin_lock(&jiffies_lock);
92 /*
93 * Reevaluate with the lock held. Another CPU might have done the
94 * update already.
95 */
96 if (ktime_before(now, tick_next_period)) {
97 raw_spin_unlock(&jiffies_lock);
98 return;
99 }
100
101 write_seqcount_begin(&jiffies_seq);
102
103 delta = ktime_sub(now, tick_next_period);
104 if (unlikely(delta >= TICK_NSEC)) {
105 /* Slow path for long idle sleep times */
106 s64 incr = TICK_NSEC;
107
108 ticks += ktime_divns(delta, incr);
109
110 last_jiffies_update = ktime_add_ns(last_jiffies_update,
111 incr * ticks);
112 } else {
113 last_jiffies_update = ktime_add_ns(last_jiffies_update,
114 TICK_NSEC);
115 }
116
117 /* Advance jiffies to complete the jiffies_seq protected job */
118 jiffies_64 += ticks;
119
120 /*
121 * Keep the tick_next_period variable up to date.
122 */
123 nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
124
125 if (IS_ENABLED(CONFIG_64BIT)) {
126 /*
127 * Pairs with smp_load_acquire() in the lockless quick
128 * check above and ensures that the update to jiffies_64 is
129 * not reordered vs. the store to tick_next_period, neither
130 * by the compiler nor by the CPU.
131 */
132 smp_store_release(&tick_next_period, nextp);
133 } else {
134 /*
135 * A plain store is good enough on 32bit as the quick check
136 * above is protected by the sequence count.
137 */
138 tick_next_period = nextp;
139 }
140
141 /*
142 * Release the sequence count. calc_global_load() below is not
143 * protected by it, but jiffies_lock needs to be held to prevent
144 * concurrent invocations.
145 */
146 write_seqcount_end(&jiffies_seq);
147
148 calc_global_load();
149
150 raw_spin_unlock(&jiffies_lock);
151 update_wall_time();
152 }
153
154 /*
155 * Initialize and return retrieve the jiffies update.
156 */
tick_init_jiffy_update(void)157 static ktime_t tick_init_jiffy_update(void)
158 {
159 ktime_t period;
160
161 raw_spin_lock(&jiffies_lock);
162 write_seqcount_begin(&jiffies_seq);
163 /* Did we start the jiffies update yet ? */
164 if (last_jiffies_update == 0)
165 last_jiffies_update = tick_next_period;
166 period = last_jiffies_update;
167 write_seqcount_end(&jiffies_seq);
168 raw_spin_unlock(&jiffies_lock);
169 return period;
170 }
171
172 #define MAX_STALLED_JIFFIES 5
173
tick_sched_do_timer(struct tick_sched * ts,ktime_t now)174 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
175 {
176 int cpu = smp_processor_id();
177
178 #ifdef CONFIG_NO_HZ_COMMON
179 /*
180 * Check if the do_timer duty was dropped. We don't care about
181 * concurrency: This happens only when the CPU in charge went
182 * into a long sleep. If two CPUs happen to assign themselves to
183 * this duty, then the jiffies update is still serialized by
184 * jiffies_lock.
185 *
186 * If nohz_full is enabled, this should not happen because the
187 * tick_do_timer_cpu never relinquishes.
188 */
189 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
190 #ifdef CONFIG_NO_HZ_FULL
191 WARN_ON_ONCE(tick_nohz_full_running);
192 #endif
193 tick_do_timer_cpu = cpu;
194 }
195 #endif
196
197 /* Check, if the jiffies need an update */
198 if (tick_do_timer_cpu == cpu)
199 tick_do_update_jiffies64(now);
200
201 /*
202 * If jiffies update stalled for too long (timekeeper in stop_machine()
203 * or VMEXIT'ed for several msecs), force an update.
204 */
205 if (ts->last_tick_jiffies != jiffies) {
206 ts->stalled_jiffies = 0;
207 ts->last_tick_jiffies = READ_ONCE(jiffies);
208 } else {
209 if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
210 tick_do_update_jiffies64(now);
211 ts->stalled_jiffies = 0;
212 ts->last_tick_jiffies = READ_ONCE(jiffies);
213 }
214 }
215
216 if (ts->inidle)
217 ts->got_idle_tick = 1;
218 }
219
tick_sched_handle(struct tick_sched * ts,struct pt_regs * regs)220 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
221 {
222 #ifdef CONFIG_NO_HZ_COMMON
223 /*
224 * When we are idle and the tick is stopped, we have to touch
225 * the watchdog as we might not schedule for a really long
226 * time. This happens on complete idle SMP systems while
227 * waiting on the login prompt. We also increment the "start of
228 * idle" jiffy stamp so the idle accounting adjustment we do
229 * when we go busy again does not account too much ticks.
230 */
231 if (ts->tick_stopped) {
232 touch_softlockup_watchdog_sched();
233 if (is_idle_task(current))
234 ts->idle_jiffies++;
235 /*
236 * In case the current tick fired too early past its expected
237 * expiration, make sure we don't bypass the next clock reprogramming
238 * to the same deadline.
239 */
240 ts->next_tick = 0;
241 }
242 #endif
243 update_process_times(user_mode(regs));
244 profile_tick(CPU_PROFILING);
245 }
246 #endif
247
248 #ifdef CONFIG_NO_HZ_FULL
249 cpumask_var_t tick_nohz_full_mask;
250 EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
251 bool tick_nohz_full_running;
252 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
253 static atomic_t tick_dep_mask;
254
check_tick_dependency(atomic_t * dep)255 static bool check_tick_dependency(atomic_t *dep)
256 {
257 int val = atomic_read(dep);
258
259 if (val & TICK_DEP_MASK_POSIX_TIMER) {
260 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
261 return true;
262 }
263
264 if (val & TICK_DEP_MASK_PERF_EVENTS) {
265 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
266 return true;
267 }
268
269 if (val & TICK_DEP_MASK_SCHED) {
270 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
271 return true;
272 }
273
274 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
275 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
276 return true;
277 }
278
279 if (val & TICK_DEP_MASK_RCU) {
280 trace_tick_stop(0, TICK_DEP_MASK_RCU);
281 return true;
282 }
283
284 return false;
285 }
286
can_stop_full_tick(int cpu,struct tick_sched * ts)287 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
288 {
289 lockdep_assert_irqs_disabled();
290
291 if (unlikely(!cpu_online(cpu)))
292 return false;
293
294 if (check_tick_dependency(&tick_dep_mask))
295 return false;
296
297 if (check_tick_dependency(&ts->tick_dep_mask))
298 return false;
299
300 if (check_tick_dependency(¤t->tick_dep_mask))
301 return false;
302
303 if (check_tick_dependency(¤t->signal->tick_dep_mask))
304 return false;
305
306 return true;
307 }
308
nohz_full_kick_func(struct irq_work * work)309 static void nohz_full_kick_func(struct irq_work *work)
310 {
311 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
312 }
313
314 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
315 IRQ_WORK_INIT_HARD(nohz_full_kick_func);
316
317 /*
318 * Kick this CPU if it's full dynticks in order to force it to
319 * re-evaluate its dependency on the tick and restart it if necessary.
320 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
321 * is NMI safe.
322 */
tick_nohz_full_kick(void)323 static void tick_nohz_full_kick(void)
324 {
325 if (!tick_nohz_full_cpu(smp_processor_id()))
326 return;
327
328 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
329 }
330
331 /*
332 * Kick the CPU if it's full dynticks in order to force it to
333 * re-evaluate its dependency on the tick and restart it if necessary.
334 */
tick_nohz_full_kick_cpu(int cpu)335 void tick_nohz_full_kick_cpu(int cpu)
336 {
337 if (!tick_nohz_full_cpu(cpu))
338 return;
339
340 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
341 }
342
tick_nohz_kick_task(struct task_struct * tsk)343 static void tick_nohz_kick_task(struct task_struct *tsk)
344 {
345 int cpu;
346
347 /*
348 * If the task is not running, run_posix_cpu_timers()
349 * has nothing to elapse, IPI can then be spared.
350 *
351 * activate_task() STORE p->tick_dep_mask
352 * STORE p->on_rq
353 * __schedule() (switch to task 'p') smp_mb() (atomic_fetch_or())
354 * LOCK rq->lock LOAD p->on_rq
355 * smp_mb__after_spin_lock()
356 * tick_nohz_task_switch()
357 * LOAD p->tick_dep_mask
358 */
359 if (!sched_task_on_rq(tsk))
360 return;
361
362 /*
363 * If the task concurrently migrates to another CPU,
364 * we guarantee it sees the new tick dependency upon
365 * schedule.
366 *
367 * set_task_cpu(p, cpu);
368 * STORE p->cpu = @cpu
369 * __schedule() (switch to task 'p')
370 * LOCK rq->lock
371 * smp_mb__after_spin_lock() STORE p->tick_dep_mask
372 * tick_nohz_task_switch() smp_mb() (atomic_fetch_or())
373 * LOAD p->tick_dep_mask LOAD p->cpu
374 */
375 cpu = task_cpu(tsk);
376
377 preempt_disable();
378 if (cpu_online(cpu))
379 tick_nohz_full_kick_cpu(cpu);
380 preempt_enable();
381 }
382
383 /*
384 * Kick all full dynticks CPUs in order to force these to re-evaluate
385 * their dependency on the tick and restart it if necessary.
386 */
tick_nohz_full_kick_all(void)387 static void tick_nohz_full_kick_all(void)
388 {
389 int cpu;
390
391 if (!tick_nohz_full_running)
392 return;
393
394 preempt_disable();
395 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
396 tick_nohz_full_kick_cpu(cpu);
397 preempt_enable();
398 }
399
tick_nohz_dep_set_all(atomic_t * dep,enum tick_dep_bits bit)400 static void tick_nohz_dep_set_all(atomic_t *dep,
401 enum tick_dep_bits bit)
402 {
403 int prev;
404
405 prev = atomic_fetch_or(BIT(bit), dep);
406 if (!prev)
407 tick_nohz_full_kick_all();
408 }
409
410 /*
411 * Set a global tick dependency. Used by perf events that rely on freq and
412 * by unstable clock.
413 */
tick_nohz_dep_set(enum tick_dep_bits bit)414 void tick_nohz_dep_set(enum tick_dep_bits bit)
415 {
416 tick_nohz_dep_set_all(&tick_dep_mask, bit);
417 }
418
tick_nohz_dep_clear(enum tick_dep_bits bit)419 void tick_nohz_dep_clear(enum tick_dep_bits bit)
420 {
421 atomic_andnot(BIT(bit), &tick_dep_mask);
422 }
423
424 /*
425 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
426 * manage events throttling.
427 */
tick_nohz_dep_set_cpu(int cpu,enum tick_dep_bits bit)428 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
429 {
430 int prev;
431 struct tick_sched *ts;
432
433 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
434
435 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
436 if (!prev) {
437 preempt_disable();
438 /* Perf needs local kick that is NMI safe */
439 if (cpu == smp_processor_id()) {
440 tick_nohz_full_kick();
441 } else {
442 /* Remote irq work not NMI-safe */
443 if (!WARN_ON_ONCE(in_nmi()))
444 tick_nohz_full_kick_cpu(cpu);
445 }
446 preempt_enable();
447 }
448 }
449 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
450
tick_nohz_dep_clear_cpu(int cpu,enum tick_dep_bits bit)451 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
452 {
453 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
454
455 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
456 }
457 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
458
459 /*
460 * Set a per-task tick dependency. RCU need this. Also posix CPU timers
461 * in order to elapse per task timers.
462 */
tick_nohz_dep_set_task(struct task_struct * tsk,enum tick_dep_bits bit)463 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
464 {
465 if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
466 tick_nohz_kick_task(tsk);
467 }
468 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
469
tick_nohz_dep_clear_task(struct task_struct * tsk,enum tick_dep_bits bit)470 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
471 {
472 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
473 }
474 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
475
476 /*
477 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
478 * per process timers.
479 */
tick_nohz_dep_set_signal(struct task_struct * tsk,enum tick_dep_bits bit)480 void tick_nohz_dep_set_signal(struct task_struct *tsk,
481 enum tick_dep_bits bit)
482 {
483 int prev;
484 struct signal_struct *sig = tsk->signal;
485
486 prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
487 if (!prev) {
488 struct task_struct *t;
489
490 lockdep_assert_held(&tsk->sighand->siglock);
491 __for_each_thread(sig, t)
492 tick_nohz_kick_task(t);
493 }
494 }
495
tick_nohz_dep_clear_signal(struct signal_struct * sig,enum tick_dep_bits bit)496 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
497 {
498 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
499 }
500
501 /*
502 * Re-evaluate the need for the tick as we switch the current task.
503 * It might need the tick due to per task/process properties:
504 * perf events, posix CPU timers, ...
505 */
__tick_nohz_task_switch(void)506 void __tick_nohz_task_switch(void)
507 {
508 struct tick_sched *ts;
509
510 if (!tick_nohz_full_cpu(smp_processor_id()))
511 return;
512
513 ts = this_cpu_ptr(&tick_cpu_sched);
514
515 if (ts->tick_stopped) {
516 if (atomic_read(¤t->tick_dep_mask) ||
517 atomic_read(¤t->signal->tick_dep_mask))
518 tick_nohz_full_kick();
519 }
520 }
521
522 /* Get the boot-time nohz CPU list from the kernel parameters. */
tick_nohz_full_setup(cpumask_var_t cpumask)523 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
524 {
525 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
526 cpumask_copy(tick_nohz_full_mask, cpumask);
527 tick_nohz_full_running = true;
528 }
529
tick_nohz_cpu_down(unsigned int cpu)530 static int tick_nohz_cpu_down(unsigned int cpu)
531 {
532 /*
533 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
534 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
535 * CPUs. It must remain online when nohz full is enabled.
536 */
537 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
538 return -EBUSY;
539 return 0;
540 }
541
tick_nohz_init(void)542 void __init tick_nohz_init(void)
543 {
544 int cpu, ret;
545
546 if (!tick_nohz_full_running)
547 return;
548
549 /*
550 * Full dynticks uses irq work to drive the tick rescheduling on safe
551 * locking contexts. But then we need irq work to raise its own
552 * interrupts to avoid circular dependency on the tick
553 */
554 if (!arch_irq_work_has_interrupt()) {
555 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
556 cpumask_clear(tick_nohz_full_mask);
557 tick_nohz_full_running = false;
558 return;
559 }
560
561 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
562 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
563 cpu = smp_processor_id();
564
565 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
566 pr_warn("NO_HZ: Clearing %d from nohz_full range "
567 "for timekeeping\n", cpu);
568 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
569 }
570 }
571
572 for_each_cpu(cpu, tick_nohz_full_mask)
573 ct_cpu_track_user(cpu);
574
575 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
576 "kernel/nohz:predown", NULL,
577 tick_nohz_cpu_down);
578 WARN_ON(ret < 0);
579 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
580 cpumask_pr_args(tick_nohz_full_mask));
581 }
582 #endif
583
584 /*
585 * NOHZ - aka dynamic tick functionality
586 */
587 #ifdef CONFIG_NO_HZ_COMMON
588 /*
589 * NO HZ enabled ?
590 */
591 bool tick_nohz_enabled __read_mostly = true;
592 unsigned long tick_nohz_active __read_mostly;
593 /*
594 * Enable / Disable tickless mode
595 */
setup_tick_nohz(char * str)596 static int __init setup_tick_nohz(char *str)
597 {
598 return (kstrtobool(str, &tick_nohz_enabled) == 0);
599 }
600
601 __setup("nohz=", setup_tick_nohz);
602
tick_nohz_tick_stopped(void)603 bool tick_nohz_tick_stopped(void)
604 {
605 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
606
607 return ts->tick_stopped;
608 }
609
tick_nohz_tick_stopped_cpu(int cpu)610 bool tick_nohz_tick_stopped_cpu(int cpu)
611 {
612 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
613
614 return ts->tick_stopped;
615 }
616
617 /**
618 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
619 *
620 * Called from interrupt entry when the CPU was idle
621 *
622 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
623 * must be updated. Otherwise an interrupt handler could use a stale jiffy
624 * value. We do this unconditionally on any CPU, as we don't know whether the
625 * CPU, which has the update task assigned is in a long sleep.
626 */
tick_nohz_update_jiffies(ktime_t now)627 static void tick_nohz_update_jiffies(ktime_t now)
628 {
629 unsigned long flags;
630
631 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
632
633 local_irq_save(flags);
634 tick_do_update_jiffies64(now);
635 local_irq_restore(flags);
636
637 touch_softlockup_watchdog_sched();
638 }
639
640 /*
641 * Updates the per-CPU time idle statistics counters
642 */
643 static void
update_ts_time_stats(int cpu,struct tick_sched * ts,ktime_t now,u64 * last_update_time)644 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
645 {
646 ktime_t delta;
647
648 if (ts->idle_active) {
649 delta = ktime_sub(now, ts->idle_entrytime);
650 if (nr_iowait_cpu(cpu) > 0)
651 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
652 else
653 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
654 ts->idle_entrytime = now;
655 }
656
657 if (last_update_time)
658 *last_update_time = ktime_to_us(now);
659
660 }
661
tick_nohz_stop_idle(struct tick_sched * ts,ktime_t now)662 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
663 {
664 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
665 ts->idle_active = 0;
666
667 sched_clock_idle_wakeup_event();
668 }
669
tick_nohz_start_idle(struct tick_sched * ts)670 static void tick_nohz_start_idle(struct tick_sched *ts)
671 {
672 ts->idle_entrytime = ktime_get();
673 ts->idle_active = 1;
674 sched_clock_idle_sleep_event();
675 }
676
677 /**
678 * get_cpu_idle_time_us - get the total idle time of a CPU
679 * @cpu: CPU number to query
680 * @last_update_time: variable to store update time in. Do not update
681 * counters if NULL.
682 *
683 * Return the cumulative idle time (since boot) for a given
684 * CPU, in microseconds.
685 *
686 * This time is measured via accounting rather than sampling,
687 * and is as accurate as ktime_get() is.
688 *
689 * This function returns -1 if NOHZ is not enabled.
690 */
get_cpu_idle_time_us(int cpu,u64 * last_update_time)691 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
692 {
693 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
694 ktime_t now, idle;
695
696 if (!tick_nohz_active)
697 return -1;
698
699 now = ktime_get();
700 if (last_update_time) {
701 update_ts_time_stats(cpu, ts, now, last_update_time);
702 idle = ts->idle_sleeptime;
703 } else {
704 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
705 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
706
707 idle = ktime_add(ts->idle_sleeptime, delta);
708 } else {
709 idle = ts->idle_sleeptime;
710 }
711 }
712
713 return ktime_to_us(idle);
714
715 }
716 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
717
718 /**
719 * get_cpu_iowait_time_us - get the total iowait time of a CPU
720 * @cpu: CPU number to query
721 * @last_update_time: variable to store update time in. Do not update
722 * counters if NULL.
723 *
724 * Return the cumulative iowait time (since boot) for a given
725 * CPU, in microseconds.
726 *
727 * This time is measured via accounting rather than sampling,
728 * and is as accurate as ktime_get() is.
729 *
730 * This function returns -1 if NOHZ is not enabled.
731 */
get_cpu_iowait_time_us(int cpu,u64 * last_update_time)732 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
733 {
734 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
735 ktime_t now, iowait;
736
737 if (!tick_nohz_active)
738 return -1;
739
740 now = ktime_get();
741 if (last_update_time) {
742 update_ts_time_stats(cpu, ts, now, last_update_time);
743 iowait = ts->iowait_sleeptime;
744 } else {
745 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
746 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
747
748 iowait = ktime_add(ts->iowait_sleeptime, delta);
749 } else {
750 iowait = ts->iowait_sleeptime;
751 }
752 }
753
754 return ktime_to_us(iowait);
755 }
756 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
757
tick_nohz_restart(struct tick_sched * ts,ktime_t now)758 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
759 {
760 hrtimer_cancel(&ts->sched_timer);
761 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
762
763 /* Forward the time to expire in the future */
764 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
765
766 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
767 hrtimer_start_expires(&ts->sched_timer,
768 HRTIMER_MODE_ABS_PINNED_HARD);
769 } else {
770 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
771 }
772
773 /*
774 * Reset to make sure next tick stop doesn't get fooled by past
775 * cached clock deadline.
776 */
777 ts->next_tick = 0;
778 }
779
local_timer_softirq_pending(void)780 static inline bool local_timer_softirq_pending(void)
781 {
782 return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
783 }
784
tick_nohz_next_event(struct tick_sched * ts,int cpu)785 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
786 {
787 u64 basemono, next_tick, delta, expires;
788 unsigned long basejiff;
789 unsigned int seq;
790
791 /* Read jiffies and the time when jiffies were updated last */
792 do {
793 seq = read_seqcount_begin(&jiffies_seq);
794 basemono = last_jiffies_update;
795 basejiff = jiffies;
796 } while (read_seqcount_retry(&jiffies_seq, seq));
797 ts->last_jiffies = basejiff;
798 ts->timer_expires_base = basemono;
799
800 /*
801 * Keep the periodic tick, when RCU, architecture or irq_work
802 * requests it.
803 * Aside of that check whether the local timer softirq is
804 * pending. If so its a bad idea to call get_next_timer_interrupt()
805 * because there is an already expired timer, so it will request
806 * immediate expiry, which rearms the hardware timer with a
807 * minimal delta which brings us back to this place
808 * immediately. Lather, rinse and repeat...
809 */
810 if (rcu_needs_cpu() || arch_needs_cpu() ||
811 irq_work_needs_cpu() || local_timer_softirq_pending()) {
812 next_tick = basemono + TICK_NSEC;
813 } else {
814 /*
815 * Get the next pending timer. If high resolution
816 * timers are enabled this only takes the timer wheel
817 * timers into account. If high resolution timers are
818 * disabled this also looks at the next expiring
819 * hrtimer.
820 */
821 next_tick = get_next_timer_interrupt(basejiff, basemono);
822 ts->next_timer = next_tick;
823 }
824
825 /*
826 * If the tick is due in the next period, keep it ticking or
827 * force prod the timer.
828 */
829 delta = next_tick - basemono;
830 if (delta <= (u64)TICK_NSEC) {
831 /*
832 * Tell the timer code that the base is not idle, i.e. undo
833 * the effect of get_next_timer_interrupt():
834 */
835 timer_clear_idle();
836 /*
837 * We've not stopped the tick yet, and there's a timer in the
838 * next period, so no point in stopping it either, bail.
839 */
840 if (!ts->tick_stopped) {
841 ts->timer_expires = 0;
842 goto out;
843 }
844 }
845
846 /*
847 * If this CPU is the one which had the do_timer() duty last, we limit
848 * the sleep time to the timekeeping max_deferment value.
849 * Otherwise we can sleep as long as we want.
850 */
851 delta = timekeeping_max_deferment();
852 if (cpu != tick_do_timer_cpu &&
853 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
854 delta = KTIME_MAX;
855
856 /* Calculate the next expiry time */
857 if (delta < (KTIME_MAX - basemono))
858 expires = basemono + delta;
859 else
860 expires = KTIME_MAX;
861
862 ts->timer_expires = min_t(u64, expires, next_tick);
863
864 out:
865 return ts->timer_expires;
866 }
867
tick_nohz_stop_tick(struct tick_sched * ts,int cpu)868 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
869 {
870 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
871 u64 basemono = ts->timer_expires_base;
872 u64 expires = ts->timer_expires;
873 ktime_t tick = expires;
874
875 /* Make sure we won't be trying to stop it twice in a row. */
876 ts->timer_expires_base = 0;
877
878 /*
879 * If this CPU is the one which updates jiffies, then give up
880 * the assignment and let it be taken by the CPU which runs
881 * the tick timer next, which might be this CPU as well. If we
882 * don't drop this here the jiffies might be stale and
883 * do_timer() never invoked. Keep track of the fact that it
884 * was the one which had the do_timer() duty last.
885 */
886 if (cpu == tick_do_timer_cpu) {
887 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
888 ts->do_timer_last = 1;
889 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
890 ts->do_timer_last = 0;
891 }
892
893 /* Skip reprogram of event if its not changed */
894 if (ts->tick_stopped && (expires == ts->next_tick)) {
895 /* Sanity check: make sure clockevent is actually programmed */
896 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
897 return;
898
899 WARN_ON_ONCE(1);
900 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
901 basemono, ts->next_tick, dev->next_event,
902 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
903 }
904
905 /*
906 * nohz_stop_sched_tick can be called several times before
907 * the nohz_restart_sched_tick is called. This happens when
908 * interrupts arrive which do not cause a reschedule. In the
909 * first call we save the current tick time, so we can restart
910 * the scheduler tick in nohz_restart_sched_tick.
911 */
912 if (!ts->tick_stopped) {
913 calc_load_nohz_start();
914 quiet_vmstat();
915
916 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
917 ts->tick_stopped = 1;
918 trace_tick_stop(1, TICK_DEP_MASK_NONE);
919 }
920
921 ts->next_tick = tick;
922
923 /*
924 * If the expiration time == KTIME_MAX, then we simply stop
925 * the tick timer.
926 */
927 if (unlikely(expires == KTIME_MAX)) {
928 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
929 hrtimer_cancel(&ts->sched_timer);
930 else
931 tick_program_event(KTIME_MAX, 1);
932 return;
933 }
934
935 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
936 hrtimer_start(&ts->sched_timer, tick,
937 HRTIMER_MODE_ABS_PINNED_HARD);
938 } else {
939 hrtimer_set_expires(&ts->sched_timer, tick);
940 tick_program_event(tick, 1);
941 }
942 }
943
tick_nohz_retain_tick(struct tick_sched * ts)944 static void tick_nohz_retain_tick(struct tick_sched *ts)
945 {
946 ts->timer_expires_base = 0;
947 }
948
949 #ifdef CONFIG_NO_HZ_FULL
tick_nohz_stop_sched_tick(struct tick_sched * ts,int cpu)950 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
951 {
952 if (tick_nohz_next_event(ts, cpu))
953 tick_nohz_stop_tick(ts, cpu);
954 else
955 tick_nohz_retain_tick(ts);
956 }
957 #endif /* CONFIG_NO_HZ_FULL */
958
tick_nohz_restart_sched_tick(struct tick_sched * ts,ktime_t now)959 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
960 {
961 /* Update jiffies first */
962 tick_do_update_jiffies64(now);
963
964 /*
965 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
966 * the clock forward checks in the enqueue path:
967 */
968 timer_clear_idle();
969
970 calc_load_nohz_stop();
971 touch_softlockup_watchdog_sched();
972 /*
973 * Cancel the scheduled timer and restore the tick
974 */
975 ts->tick_stopped = 0;
976 tick_nohz_restart(ts, now);
977 }
978
__tick_nohz_full_update_tick(struct tick_sched * ts,ktime_t now)979 static void __tick_nohz_full_update_tick(struct tick_sched *ts,
980 ktime_t now)
981 {
982 #ifdef CONFIG_NO_HZ_FULL
983 int cpu = smp_processor_id();
984
985 if (can_stop_full_tick(cpu, ts))
986 tick_nohz_stop_sched_tick(ts, cpu);
987 else if (ts->tick_stopped)
988 tick_nohz_restart_sched_tick(ts, now);
989 #endif
990 }
991
tick_nohz_full_update_tick(struct tick_sched * ts)992 static void tick_nohz_full_update_tick(struct tick_sched *ts)
993 {
994 if (!tick_nohz_full_cpu(smp_processor_id()))
995 return;
996
997 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
998 return;
999
1000 __tick_nohz_full_update_tick(ts, ktime_get());
1001 }
1002
1003 /*
1004 * A pending softirq outside an IRQ (or softirq disabled section) context
1005 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
1006 * reach here due to the need_resched() early check in can_stop_idle_tick().
1007 *
1008 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
1009 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
1010 * triggering the below since wakep_softirqd() is ignored.
1011 *
1012 */
report_idle_softirq(void)1013 static bool report_idle_softirq(void)
1014 {
1015 static int ratelimit;
1016 unsigned int pending = local_softirq_pending();
1017
1018 if (likely(!pending))
1019 return false;
1020
1021 /* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
1022 if (!cpu_active(smp_processor_id())) {
1023 pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
1024 if (!pending)
1025 return false;
1026 }
1027
1028 if (ratelimit < 10)
1029 return false;
1030
1031 /* On RT, softirqs handling may be waiting on some lock */
1032 if (!local_bh_blocked())
1033 return false;
1034
1035 pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
1036 pending);
1037 ratelimit++;
1038
1039 return true;
1040 }
1041
can_stop_idle_tick(int cpu,struct tick_sched * ts)1042 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1043 {
1044 /*
1045 * If this CPU is offline and it is the one which updates
1046 * jiffies, then give up the assignment and let it be taken by
1047 * the CPU which runs the tick timer next. If we don't drop
1048 * this here the jiffies might be stale and do_timer() never
1049 * invoked.
1050 */
1051 if (unlikely(!cpu_online(cpu))) {
1052 if (cpu == tick_do_timer_cpu)
1053 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
1054 /*
1055 * Make sure the CPU doesn't get fooled by obsolete tick
1056 * deadline if it comes back online later.
1057 */
1058 ts->next_tick = 0;
1059 return false;
1060 }
1061
1062 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
1063 return false;
1064
1065 if (need_resched())
1066 return false;
1067
1068 if (unlikely(report_idle_softirq()))
1069 return false;
1070
1071 if (tick_nohz_full_enabled()) {
1072 /*
1073 * Keep the tick alive to guarantee timekeeping progression
1074 * if there are full dynticks CPUs around
1075 */
1076 if (tick_do_timer_cpu == cpu)
1077 return false;
1078
1079 /* Should not happen for nohz-full */
1080 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
1081 return false;
1082 }
1083
1084 return true;
1085 }
1086
__tick_nohz_idle_stop_tick(struct tick_sched * ts)1087 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
1088 {
1089 ktime_t expires;
1090 int cpu = smp_processor_id();
1091
1092 /*
1093 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1094 * tick timer expiration time is known already.
1095 */
1096 if (ts->timer_expires_base)
1097 expires = ts->timer_expires;
1098 else if (can_stop_idle_tick(cpu, ts))
1099 expires = tick_nohz_next_event(ts, cpu);
1100 else
1101 return;
1102
1103 ts->idle_calls++;
1104
1105 if (expires > 0LL) {
1106 int was_stopped = ts->tick_stopped;
1107
1108 tick_nohz_stop_tick(ts, cpu);
1109
1110 ts->idle_sleeps++;
1111 ts->idle_expires = expires;
1112
1113 if (!was_stopped && ts->tick_stopped) {
1114 ts->idle_jiffies = ts->last_jiffies;
1115 nohz_balance_enter_idle(cpu);
1116 }
1117 } else {
1118 tick_nohz_retain_tick(ts);
1119 }
1120 }
1121
1122 /**
1123 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1124 *
1125 * When the next event is more than a tick into the future, stop the idle tick
1126 */
tick_nohz_idle_stop_tick(void)1127 void tick_nohz_idle_stop_tick(void)
1128 {
1129 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1130 }
1131
tick_nohz_idle_retain_tick(void)1132 void tick_nohz_idle_retain_tick(void)
1133 {
1134 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1135 /*
1136 * Undo the effect of get_next_timer_interrupt() called from
1137 * tick_nohz_next_event().
1138 */
1139 timer_clear_idle();
1140 }
1141
1142 /**
1143 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1144 *
1145 * Called when we start the idle loop.
1146 */
tick_nohz_idle_enter(void)1147 void tick_nohz_idle_enter(void)
1148 {
1149 struct tick_sched *ts;
1150
1151 lockdep_assert_irqs_enabled();
1152
1153 local_irq_disable();
1154
1155 ts = this_cpu_ptr(&tick_cpu_sched);
1156
1157 WARN_ON_ONCE(ts->timer_expires_base);
1158
1159 ts->inidle = 1;
1160 tick_nohz_start_idle(ts);
1161
1162 local_irq_enable();
1163 }
1164
1165 /**
1166 * tick_nohz_irq_exit - update next tick event from interrupt exit
1167 *
1168 * When an interrupt fires while we are idle and it doesn't cause
1169 * a reschedule, it may still add, modify or delete a timer, enqueue
1170 * an RCU callback, etc...
1171 * So we need to re-calculate and reprogram the next tick event.
1172 */
tick_nohz_irq_exit(void)1173 void tick_nohz_irq_exit(void)
1174 {
1175 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1176
1177 if (ts->inidle)
1178 tick_nohz_start_idle(ts);
1179 else
1180 tick_nohz_full_update_tick(ts);
1181 }
1182
1183 /**
1184 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1185 */
tick_nohz_idle_got_tick(void)1186 bool tick_nohz_idle_got_tick(void)
1187 {
1188 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1189
1190 if (ts->got_idle_tick) {
1191 ts->got_idle_tick = 0;
1192 return true;
1193 }
1194 return false;
1195 }
1196
1197 /**
1198 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1199 * or the tick, whatever that expires first. Note that, if the tick has been
1200 * stopped, it returns the next hrtimer.
1201 *
1202 * Called from power state control code with interrupts disabled
1203 */
tick_nohz_get_next_hrtimer(void)1204 ktime_t tick_nohz_get_next_hrtimer(void)
1205 {
1206 return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1207 }
1208
1209 /**
1210 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1211 * @delta_next: duration until the next event if the tick cannot be stopped
1212 *
1213 * Called from power state control code with interrupts disabled.
1214 *
1215 * The return value of this function and/or the value returned by it through the
1216 * @delta_next pointer can be negative which must be taken into account by its
1217 * callers.
1218 */
tick_nohz_get_sleep_length(ktime_t * delta_next)1219 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1220 {
1221 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1222 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1223 int cpu = smp_processor_id();
1224 /*
1225 * The idle entry time is expected to be a sufficient approximation of
1226 * the current time at this point.
1227 */
1228 ktime_t now = ts->idle_entrytime;
1229 ktime_t next_event;
1230
1231 WARN_ON_ONCE(!ts->inidle);
1232
1233 *delta_next = ktime_sub(dev->next_event, now);
1234
1235 if (!can_stop_idle_tick(cpu, ts))
1236 return *delta_next;
1237
1238 next_event = tick_nohz_next_event(ts, cpu);
1239 if (!next_event)
1240 return *delta_next;
1241
1242 /*
1243 * If the next highres timer to expire is earlier than next_event, the
1244 * idle governor needs to know that.
1245 */
1246 next_event = min_t(u64, next_event,
1247 hrtimer_next_event_without(&ts->sched_timer));
1248
1249 return ktime_sub(next_event, now);
1250 }
1251
1252 /**
1253 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1254 * for a particular CPU.
1255 *
1256 * Called from the schedutil frequency scaling governor in scheduler context.
1257 */
tick_nohz_get_idle_calls_cpu(int cpu)1258 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1259 {
1260 struct tick_sched *ts = tick_get_tick_sched(cpu);
1261
1262 return ts->idle_calls;
1263 }
1264
1265 /**
1266 * tick_nohz_get_idle_calls - return the current idle calls counter value
1267 *
1268 * Called from the schedutil frequency scaling governor in scheduler context.
1269 */
tick_nohz_get_idle_calls(void)1270 unsigned long tick_nohz_get_idle_calls(void)
1271 {
1272 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1273
1274 return ts->idle_calls;
1275 }
1276
tick_nohz_account_idle_time(struct tick_sched * ts,ktime_t now)1277 static void tick_nohz_account_idle_time(struct tick_sched *ts,
1278 ktime_t now)
1279 {
1280 unsigned long ticks;
1281
1282 ts->idle_exittime = now;
1283
1284 if (vtime_accounting_enabled_this_cpu())
1285 return;
1286 /*
1287 * We stopped the tick in idle. Update process times would miss the
1288 * time we slept as update_process_times does only a 1 tick
1289 * accounting. Enforce that this is accounted to idle !
1290 */
1291 ticks = jiffies - ts->idle_jiffies;
1292 /*
1293 * We might be one off. Do not randomly account a huge number of ticks!
1294 */
1295 if (ticks && ticks < LONG_MAX)
1296 account_idle_ticks(ticks);
1297 }
1298
tick_nohz_idle_restart_tick(void)1299 void tick_nohz_idle_restart_tick(void)
1300 {
1301 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1302
1303 if (ts->tick_stopped) {
1304 ktime_t now = ktime_get();
1305 tick_nohz_restart_sched_tick(ts, now);
1306 tick_nohz_account_idle_time(ts, now);
1307 }
1308 }
1309
tick_nohz_idle_update_tick(struct tick_sched * ts,ktime_t now)1310 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1311 {
1312 if (tick_nohz_full_cpu(smp_processor_id()))
1313 __tick_nohz_full_update_tick(ts, now);
1314 else
1315 tick_nohz_restart_sched_tick(ts, now);
1316
1317 tick_nohz_account_idle_time(ts, now);
1318 }
1319
1320 /**
1321 * tick_nohz_idle_exit - restart the idle tick from the idle task
1322 *
1323 * Restart the idle tick when the CPU is woken up from idle
1324 * This also exit the RCU extended quiescent state. The CPU
1325 * can use RCU again after this function is called.
1326 */
tick_nohz_idle_exit(void)1327 void tick_nohz_idle_exit(void)
1328 {
1329 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1330 bool idle_active, tick_stopped;
1331 ktime_t now;
1332
1333 local_irq_disable();
1334
1335 WARN_ON_ONCE(!ts->inidle);
1336 WARN_ON_ONCE(ts->timer_expires_base);
1337
1338 ts->inidle = 0;
1339 idle_active = ts->idle_active;
1340 tick_stopped = ts->tick_stopped;
1341
1342 if (idle_active || tick_stopped)
1343 now = ktime_get();
1344
1345 if (idle_active)
1346 tick_nohz_stop_idle(ts, now);
1347
1348 if (tick_stopped)
1349 tick_nohz_idle_update_tick(ts, now);
1350
1351 local_irq_enable();
1352 }
1353
1354 /*
1355 * The nohz low res interrupt handler
1356 */
tick_nohz_handler(struct clock_event_device * dev)1357 static void tick_nohz_handler(struct clock_event_device *dev)
1358 {
1359 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1360 struct pt_regs *regs = get_irq_regs();
1361 ktime_t now = ktime_get();
1362
1363 dev->next_event = KTIME_MAX;
1364
1365 tick_sched_do_timer(ts, now);
1366 tick_sched_handle(ts, regs);
1367
1368 if (unlikely(ts->tick_stopped)) {
1369 /*
1370 * The clockevent device is not reprogrammed, so change the
1371 * clock event device to ONESHOT_STOPPED to avoid spurious
1372 * interrupts on devices which might not be truly one shot.
1373 */
1374 tick_program_event(KTIME_MAX, 1);
1375 return;
1376 }
1377
1378 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1379 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1380 }
1381
tick_nohz_activate(struct tick_sched * ts,int mode)1382 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1383 {
1384 if (!tick_nohz_enabled)
1385 return;
1386 ts->nohz_mode = mode;
1387 /* One update is enough */
1388 if (!test_and_set_bit(0, &tick_nohz_active))
1389 timers_update_nohz();
1390 }
1391
1392 /**
1393 * tick_nohz_switch_to_nohz - switch to nohz mode
1394 */
tick_nohz_switch_to_nohz(void)1395 static void tick_nohz_switch_to_nohz(void)
1396 {
1397 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1398 ktime_t next;
1399
1400 if (!tick_nohz_enabled)
1401 return;
1402
1403 if (tick_switch_to_oneshot(tick_nohz_handler))
1404 return;
1405
1406 /*
1407 * Recycle the hrtimer in ts, so we can share the
1408 * hrtimer_forward with the highres code.
1409 */
1410 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1411 /* Get the next period */
1412 next = tick_init_jiffy_update();
1413
1414 hrtimer_set_expires(&ts->sched_timer, next);
1415 hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1416 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1417 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1418 }
1419
tick_nohz_irq_enter(void)1420 static inline void tick_nohz_irq_enter(void)
1421 {
1422 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1423 ktime_t now;
1424
1425 if (!ts->idle_active && !ts->tick_stopped)
1426 return;
1427 now = ktime_get();
1428 if (ts->idle_active)
1429 tick_nohz_stop_idle(ts, now);
1430 /*
1431 * If all CPUs are idle. We may need to update a stale jiffies value.
1432 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1433 * alive but it might be busy looping with interrupts disabled in some
1434 * rare case (typically stop machine). So we must make sure we have a
1435 * last resort.
1436 */
1437 if (ts->tick_stopped)
1438 tick_nohz_update_jiffies(now);
1439 }
1440
1441 #else
1442
tick_nohz_switch_to_nohz(void)1443 static inline void tick_nohz_switch_to_nohz(void) { }
tick_nohz_irq_enter(void)1444 static inline void tick_nohz_irq_enter(void) { }
tick_nohz_activate(struct tick_sched * ts,int mode)1445 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1446
1447 #endif /* CONFIG_NO_HZ_COMMON */
1448
1449 /*
1450 * Called from irq_enter to notify about the possible interruption of idle()
1451 */
tick_irq_enter(void)1452 void tick_irq_enter(void)
1453 {
1454 tick_check_oneshot_broadcast_this_cpu();
1455 tick_nohz_irq_enter();
1456 }
1457
1458 /*
1459 * High resolution timer specific code
1460 */
1461 #ifdef CONFIG_HIGH_RES_TIMERS
1462 /*
1463 * We rearm the timer until we get disabled by the idle code.
1464 * Called with interrupts disabled.
1465 */
tick_sched_timer(struct hrtimer * timer)1466 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1467 {
1468 struct tick_sched *ts =
1469 container_of(timer, struct tick_sched, sched_timer);
1470 struct pt_regs *regs = get_irq_regs();
1471 ktime_t now = ktime_get();
1472
1473 tick_sched_do_timer(ts, now);
1474
1475 /*
1476 * Do not call, when we are not in irq context and have
1477 * no valid regs pointer
1478 */
1479 if (regs)
1480 tick_sched_handle(ts, regs);
1481 else
1482 ts->next_tick = 0;
1483
1484 /* No need to reprogram if we are in idle or full dynticks mode */
1485 if (unlikely(ts->tick_stopped))
1486 return HRTIMER_NORESTART;
1487
1488 hrtimer_forward(timer, now, TICK_NSEC);
1489
1490 return HRTIMER_RESTART;
1491 }
1492
1493 static int sched_skew_tick;
1494
skew_tick(char * str)1495 static int __init skew_tick(char *str)
1496 {
1497 get_option(&str, &sched_skew_tick);
1498
1499 return 0;
1500 }
1501 early_param("skew_tick", skew_tick);
1502
1503 /**
1504 * tick_setup_sched_timer - setup the tick emulation timer
1505 */
tick_setup_sched_timer(void)1506 void tick_setup_sched_timer(void)
1507 {
1508 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1509 ktime_t now = ktime_get();
1510
1511 /*
1512 * Emulate tick processing via per-CPU hrtimers:
1513 */
1514 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1515 ts->sched_timer.function = tick_sched_timer;
1516
1517 /* Get the next period (per-CPU) */
1518 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1519
1520 /* Offset the tick to avert jiffies_lock contention. */
1521 if (sched_skew_tick) {
1522 u64 offset = TICK_NSEC >> 1;
1523 do_div(offset, num_possible_cpus());
1524 offset *= smp_processor_id();
1525 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1526 }
1527
1528 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1529 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1530 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1531 }
1532 #endif /* HIGH_RES_TIMERS */
1533
1534 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
tick_cancel_sched_timer(int cpu)1535 void tick_cancel_sched_timer(int cpu)
1536 {
1537 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1538
1539 # ifdef CONFIG_HIGH_RES_TIMERS
1540 if (ts->sched_timer.base)
1541 hrtimer_cancel(&ts->sched_timer);
1542 # endif
1543
1544 memset(ts, 0, sizeof(*ts));
1545 }
1546 #endif
1547
1548 /*
1549 * Async notification about clocksource changes
1550 */
tick_clock_notify(void)1551 void tick_clock_notify(void)
1552 {
1553 int cpu;
1554
1555 for_each_possible_cpu(cpu)
1556 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1557 }
1558
1559 /*
1560 * Async notification about clock event changes
1561 */
tick_oneshot_notify(void)1562 void tick_oneshot_notify(void)
1563 {
1564 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1565
1566 set_bit(0, &ts->check_clocks);
1567 }
1568
1569 /*
1570 * Check, if a change happened, which makes oneshot possible.
1571 *
1572 * Called cyclic from the hrtimer softirq (driven by the timer
1573 * softirq) allow_nohz signals, that we can switch into low-res nohz
1574 * mode, because high resolution timers are disabled (either compile
1575 * or runtime). Called with interrupts disabled.
1576 */
tick_check_oneshot_change(int allow_nohz)1577 int tick_check_oneshot_change(int allow_nohz)
1578 {
1579 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1580
1581 if (!test_and_clear_bit(0, &ts->check_clocks))
1582 return 0;
1583
1584 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1585 return 0;
1586
1587 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1588 return 0;
1589
1590 if (!allow_nohz)
1591 return 1;
1592
1593 tick_nohz_switch_to_nohz();
1594 return 0;
1595 }
1596