1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/readahead.c - address_space-level file readahead.
4 *
5 * Copyright (C) 2002, Linus Torvalds
6 *
7 * 09Apr2002 Andrew Morton
8 * Initial version.
9 */
10
11 /**
12 * DOC: Readahead Overview
13 *
14 * Readahead is used to read content into the page cache before it is
15 * explicitly requested by the application. Readahead only ever
16 * attempts to read folios that are not yet in the page cache. If a
17 * folio is present but not up-to-date, readahead will not try to read
18 * it. In that case a simple ->read_folio() will be requested.
19 *
20 * Readahead is triggered when an application read request (whether a
21 * system call or a page fault) finds that the requested folio is not in
22 * the page cache, or that it is in the page cache and has the
23 * readahead flag set. This flag indicates that the folio was read
24 * as part of a previous readahead request and now that it has been
25 * accessed, it is time for the next readahead.
26 *
27 * Each readahead request is partly synchronous read, and partly async
28 * readahead. This is reflected in the struct file_ra_state which
29 * contains ->size being the total number of pages, and ->async_size
30 * which is the number of pages in the async section. The readahead
31 * flag will be set on the first folio in this async section to trigger
32 * a subsequent readahead. Once a series of sequential reads has been
33 * established, there should be no need for a synchronous component and
34 * all readahead request will be fully asynchronous.
35 *
36 * When either of the triggers causes a readahead, three numbers need
37 * to be determined: the start of the region to read, the size of the
38 * region, and the size of the async tail.
39 *
40 * The start of the region is simply the first page address at or after
41 * the accessed address, which is not currently populated in the page
42 * cache. This is found with a simple search in the page cache.
43 *
44 * The size of the async tail is determined by subtracting the size that
45 * was explicitly requested from the determined request size, unless
46 * this would be less than zero - then zero is used. NOTE THIS
47 * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED
48 * PAGE. ALSO THIS CALCULATION IS NOT USED CONSISTENTLY.
49 *
50 * The size of the region is normally determined from the size of the
51 * previous readahead which loaded the preceding pages. This may be
52 * discovered from the struct file_ra_state for simple sequential reads,
53 * or from examining the state of the page cache when multiple
54 * sequential reads are interleaved. Specifically: where the readahead
55 * was triggered by the readahead flag, the size of the previous
56 * readahead is assumed to be the number of pages from the triggering
57 * page to the start of the new readahead. In these cases, the size of
58 * the previous readahead is scaled, often doubled, for the new
59 * readahead, though see get_next_ra_size() for details.
60 *
61 * If the size of the previous read cannot be determined, the number of
62 * preceding pages in the page cache is used to estimate the size of
63 * a previous read. This estimate could easily be misled by random
64 * reads being coincidentally adjacent, so it is ignored unless it is
65 * larger than the current request, and it is not scaled up, unless it
66 * is at the start of file.
67 *
68 * In general readahead is accelerated at the start of the file, as
69 * reads from there are often sequential. There are other minor
70 * adjustments to the readahead size in various special cases and these
71 * are best discovered by reading the code.
72 *
73 * The above calculation, based on the previous readahead size,
74 * determines the size of the readahead, to which any requested read
75 * size may be added.
76 *
77 * Readahead requests are sent to the filesystem using the ->readahead()
78 * address space operation, for which mpage_readahead() is a canonical
79 * implementation. ->readahead() should normally initiate reads on all
80 * folios, but may fail to read any or all folios without causing an I/O
81 * error. The page cache reading code will issue a ->read_folio() request
82 * for any folio which ->readahead() did not read, and only an error
83 * from this will be final.
84 *
85 * ->readahead() will generally call readahead_folio() repeatedly to get
86 * each folio from those prepared for readahead. It may fail to read a
87 * folio by:
88 *
89 * * not calling readahead_folio() sufficiently many times, effectively
90 * ignoring some folios, as might be appropriate if the path to
91 * storage is congested.
92 *
93 * * failing to actually submit a read request for a given folio,
94 * possibly due to insufficient resources, or
95 *
96 * * getting an error during subsequent processing of a request.
97 *
98 * In the last two cases, the folio should be unlocked by the filesystem
99 * to indicate that the read attempt has failed. In the first case the
100 * folio will be unlocked by the VFS.
101 *
102 * Those folios not in the final ``async_size`` of the request should be
103 * considered to be important and ->readahead() should not fail them due
104 * to congestion or temporary resource unavailability, but should wait
105 * for necessary resources (e.g. memory or indexing information) to
106 * become available. Folios in the final ``async_size`` may be
107 * considered less urgent and failure to read them is more acceptable.
108 * In this case it is best to use filemap_remove_folio() to remove the
109 * folios from the page cache as is automatically done for folios that
110 * were not fetched with readahead_folio(). This will allow a
111 * subsequent synchronous readahead request to try them again. If they
112 * are left in the page cache, then they will be read individually using
113 * ->read_folio() which may be less efficient.
114 */
115
116 #include <linux/blkdev.h>
117 #include <linux/kernel.h>
118 #include <linux/dax.h>
119 #include <linux/gfp.h>
120 #include <linux/export.h>
121 #include <linux/backing-dev.h>
122 #include <linux/task_io_accounting_ops.h>
123 #include <linux/pagevec.h>
124 #include <linux/pagemap.h>
125 #include <linux/psi.h>
126 #include <linux/syscalls.h>
127 #include <linux/file.h>
128 #include <linux/mm_inline.h>
129 #include <linux/blk-cgroup.h>
130 #include <linux/fadvise.h>
131 #include <linux/sched/mm.h>
132
133 #include "internal.h"
134
135 /*
136 * Initialise a struct file's readahead state. Assumes that the caller has
137 * memset *ra to zero.
138 */
139 void
file_ra_state_init(struct file_ra_state * ra,struct address_space * mapping)140 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
141 {
142 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
143 ra->prev_pos = -1;
144 }
145 EXPORT_SYMBOL_GPL(file_ra_state_init);
146
read_pages(struct readahead_control * rac)147 static void read_pages(struct readahead_control *rac)
148 {
149 const struct address_space_operations *aops = rac->mapping->a_ops;
150 struct folio *folio;
151 struct blk_plug plug;
152
153 if (!readahead_count(rac))
154 return;
155
156 if (unlikely(rac->_workingset))
157 psi_memstall_enter(&rac->_pflags);
158 blk_start_plug(&plug);
159
160 if (aops->readahead) {
161 aops->readahead(rac);
162 /*
163 * Clean up the remaining folios. The sizes in ->ra
164 * may be used to size the next readahead, so make sure
165 * they accurately reflect what happened.
166 */
167 while ((folio = readahead_folio(rac)) != NULL) {
168 unsigned long nr = folio_nr_pages(folio);
169
170 folio_get(folio);
171 rac->ra->size -= nr;
172 if (rac->ra->async_size >= nr) {
173 rac->ra->async_size -= nr;
174 filemap_remove_folio(folio);
175 }
176 folio_unlock(folio);
177 folio_put(folio);
178 }
179 } else {
180 while ((folio = readahead_folio(rac)) != NULL)
181 aops->read_folio(rac->file, folio);
182 }
183
184 blk_finish_plug(&plug);
185 if (unlikely(rac->_workingset))
186 psi_memstall_leave(&rac->_pflags);
187 rac->_workingset = false;
188
189 BUG_ON(readahead_count(rac));
190 }
191
192 /**
193 * page_cache_ra_unbounded - Start unchecked readahead.
194 * @ractl: Readahead control.
195 * @nr_to_read: The number of pages to read.
196 * @lookahead_size: Where to start the next readahead.
197 *
198 * This function is for filesystems to call when they want to start
199 * readahead beyond a file's stated i_size. This is almost certainly
200 * not the function you want to call. Use page_cache_async_readahead()
201 * or page_cache_sync_readahead() instead.
202 *
203 * Context: File is referenced by caller. Mutexes may be held by caller.
204 * May sleep, but will not reenter filesystem to reclaim memory.
205 */
page_cache_ra_unbounded(struct readahead_control * ractl,unsigned long nr_to_read,unsigned long lookahead_size)206 void page_cache_ra_unbounded(struct readahead_control *ractl,
207 unsigned long nr_to_read, unsigned long lookahead_size)
208 {
209 struct address_space *mapping = ractl->mapping;
210 unsigned long index = readahead_index(ractl);
211 gfp_t gfp_mask = readahead_gfp_mask(mapping);
212 unsigned long i;
213
214 /*
215 * Partway through the readahead operation, we will have added
216 * locked pages to the page cache, but will not yet have submitted
217 * them for I/O. Adding another page may need to allocate memory,
218 * which can trigger memory reclaim. Telling the VM we're in
219 * the middle of a filesystem operation will cause it to not
220 * touch file-backed pages, preventing a deadlock. Most (all?)
221 * filesystems already specify __GFP_NOFS in their mapping's
222 * gfp_mask, but let's be explicit here.
223 */
224 unsigned int nofs = memalloc_nofs_save();
225
226 filemap_invalidate_lock_shared(mapping);
227 /*
228 * Preallocate as many pages as we will need.
229 */
230 for (i = 0; i < nr_to_read; i++) {
231 struct folio *folio = xa_load(&mapping->i_pages, index + i);
232
233 if (folio && !xa_is_value(folio)) {
234 /*
235 * Page already present? Kick off the current batch
236 * of contiguous pages before continuing with the
237 * next batch. This page may be the one we would
238 * have intended to mark as Readahead, but we don't
239 * have a stable reference to this page, and it's
240 * not worth getting one just for that.
241 */
242 read_pages(ractl);
243 ractl->_index++;
244 i = ractl->_index + ractl->_nr_pages - index - 1;
245 continue;
246 }
247
248 folio = filemap_alloc_folio(gfp_mask, 0);
249 if (!folio)
250 break;
251 if (filemap_add_folio(mapping, folio, index + i,
252 gfp_mask) < 0) {
253 folio_put(folio);
254 read_pages(ractl);
255 ractl->_index++;
256 i = ractl->_index + ractl->_nr_pages - index - 1;
257 continue;
258 }
259 if (i == nr_to_read - lookahead_size)
260 folio_set_readahead(folio);
261 ractl->_workingset |= folio_test_workingset(folio);
262 ractl->_nr_pages++;
263 }
264
265 /*
266 * Now start the IO. We ignore I/O errors - if the folio is not
267 * uptodate then the caller will launch read_folio again, and
268 * will then handle the error.
269 */
270 read_pages(ractl);
271 filemap_invalidate_unlock_shared(mapping);
272 memalloc_nofs_restore(nofs);
273 }
274 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
275
276 /*
277 * do_page_cache_ra() actually reads a chunk of disk. It allocates
278 * the pages first, then submits them for I/O. This avoids the very bad
279 * behaviour which would occur if page allocations are causing VM writeback.
280 * We really don't want to intermingle reads and writes like that.
281 */
do_page_cache_ra(struct readahead_control * ractl,unsigned long nr_to_read,unsigned long lookahead_size)282 static void do_page_cache_ra(struct readahead_control *ractl,
283 unsigned long nr_to_read, unsigned long lookahead_size)
284 {
285 struct inode *inode = ractl->mapping->host;
286 unsigned long index = readahead_index(ractl);
287 loff_t isize = i_size_read(inode);
288 pgoff_t end_index; /* The last page we want to read */
289
290 if (isize == 0)
291 return;
292
293 end_index = (isize - 1) >> PAGE_SHIFT;
294 if (index > end_index)
295 return;
296 /* Don't read past the page containing the last byte of the file */
297 if (nr_to_read > end_index - index)
298 nr_to_read = end_index - index + 1;
299
300 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
301 }
302
303 /*
304 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
305 * memory at once.
306 */
force_page_cache_ra(struct readahead_control * ractl,unsigned long nr_to_read)307 void force_page_cache_ra(struct readahead_control *ractl,
308 unsigned long nr_to_read)
309 {
310 struct address_space *mapping = ractl->mapping;
311 struct file_ra_state *ra = ractl->ra;
312 struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
313 unsigned long max_pages, index;
314
315 if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead))
316 return;
317
318 /*
319 * If the request exceeds the readahead window, allow the read to
320 * be up to the optimal hardware IO size
321 */
322 index = readahead_index(ractl);
323 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
324 nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
325 while (nr_to_read) {
326 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
327
328 if (this_chunk > nr_to_read)
329 this_chunk = nr_to_read;
330 ractl->_index = index;
331 do_page_cache_ra(ractl, this_chunk, 0);
332
333 index += this_chunk;
334 nr_to_read -= this_chunk;
335 }
336 }
337
338 /*
339 * Set the initial window size, round to next power of 2 and square
340 * for small size, x 4 for medium, and x 2 for large
341 * for 128k (32 page) max ra
342 * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial
343 */
get_init_ra_size(unsigned long size,unsigned long max)344 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
345 {
346 unsigned long newsize = roundup_pow_of_two(size);
347
348 if (newsize <= max / 32)
349 newsize = newsize * 4;
350 else if (newsize <= max / 4)
351 newsize = newsize * 2;
352 else
353 newsize = max;
354
355 return newsize;
356 }
357
358 /*
359 * Get the previous window size, ramp it up, and
360 * return it as the new window size.
361 */
get_next_ra_size(struct file_ra_state * ra,unsigned long max)362 static unsigned long get_next_ra_size(struct file_ra_state *ra,
363 unsigned long max)
364 {
365 unsigned long cur = ra->size;
366
367 if (cur < max / 16)
368 return 4 * cur;
369 if (cur <= max / 2)
370 return 2 * cur;
371 return max;
372 }
373
374 /*
375 * On-demand readahead design.
376 *
377 * The fields in struct file_ra_state represent the most-recently-executed
378 * readahead attempt:
379 *
380 * |<----- async_size ---------|
381 * |------------------- size -------------------->|
382 * |==================#===========================|
383 * ^start ^page marked with PG_readahead
384 *
385 * To overlap application thinking time and disk I/O time, we do
386 * `readahead pipelining': Do not wait until the application consumed all
387 * readahead pages and stalled on the missing page at readahead_index;
388 * Instead, submit an asynchronous readahead I/O as soon as there are
389 * only async_size pages left in the readahead window. Normally async_size
390 * will be equal to size, for maximum pipelining.
391 *
392 * In interleaved sequential reads, concurrent streams on the same fd can
393 * be invalidating each other's readahead state. So we flag the new readahead
394 * page at (start+size-async_size) with PG_readahead, and use it as readahead
395 * indicator. The flag won't be set on already cached pages, to avoid the
396 * readahead-for-nothing fuss, saving pointless page cache lookups.
397 *
398 * prev_pos tracks the last visited byte in the _previous_ read request.
399 * It should be maintained by the caller, and will be used for detecting
400 * small random reads. Note that the readahead algorithm checks loosely
401 * for sequential patterns. Hence interleaved reads might be served as
402 * sequential ones.
403 *
404 * There is a special-case: if the first page which the application tries to
405 * read happens to be the first page of the file, it is assumed that a linear
406 * read is about to happen and the window is immediately set to the initial size
407 * based on I/O request size and the max_readahead.
408 *
409 * The code ramps up the readahead size aggressively at first, but slow down as
410 * it approaches max_readhead.
411 */
412
413 /*
414 * Count contiguously cached pages from @index-1 to @index-@max,
415 * this count is a conservative estimation of
416 * - length of the sequential read sequence, or
417 * - thrashing threshold in memory tight systems
418 */
count_history_pages(struct address_space * mapping,pgoff_t index,unsigned long max)419 static pgoff_t count_history_pages(struct address_space *mapping,
420 pgoff_t index, unsigned long max)
421 {
422 pgoff_t head;
423
424 rcu_read_lock();
425 head = page_cache_prev_miss(mapping, index - 1, max);
426 rcu_read_unlock();
427
428 return index - 1 - head;
429 }
430
431 /*
432 * page cache context based readahead
433 */
try_context_readahead(struct address_space * mapping,struct file_ra_state * ra,pgoff_t index,unsigned long req_size,unsigned long max)434 static int try_context_readahead(struct address_space *mapping,
435 struct file_ra_state *ra,
436 pgoff_t index,
437 unsigned long req_size,
438 unsigned long max)
439 {
440 pgoff_t size;
441
442 size = count_history_pages(mapping, index, max);
443
444 /*
445 * not enough history pages:
446 * it could be a random read
447 */
448 if (size <= req_size)
449 return 0;
450
451 /*
452 * starts from beginning of file:
453 * it is a strong indication of long-run stream (or whole-file-read)
454 */
455 if (size >= index)
456 size *= 2;
457
458 ra->start = index;
459 ra->size = min(size + req_size, max);
460 ra->async_size = 1;
461
462 return 1;
463 }
464
465 /*
466 * There are some parts of the kernel which assume that PMD entries
467 * are exactly HPAGE_PMD_ORDER. Those should be fixed, but until then,
468 * limit the maximum allocation order to PMD size. I'm not aware of any
469 * assumptions about maximum order if THP are disabled, but 8 seems like
470 * a good order (that's 1MB if you're using 4kB pages)
471 */
472 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
473 #define MAX_PAGECACHE_ORDER HPAGE_PMD_ORDER
474 #else
475 #define MAX_PAGECACHE_ORDER 8
476 #endif
477
ra_alloc_folio(struct readahead_control * ractl,pgoff_t index,pgoff_t mark,unsigned int order,gfp_t gfp)478 static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index,
479 pgoff_t mark, unsigned int order, gfp_t gfp)
480 {
481 int err;
482 struct folio *folio = filemap_alloc_folio(gfp, order);
483
484 if (!folio)
485 return -ENOMEM;
486 mark = round_up(mark, 1UL << order);
487 if (index == mark)
488 folio_set_readahead(folio);
489 err = filemap_add_folio(ractl->mapping, folio, index, gfp);
490 if (err) {
491 folio_put(folio);
492 return err;
493 }
494
495 ractl->_nr_pages += 1UL << order;
496 ractl->_workingset |= folio_test_workingset(folio);
497 return 0;
498 }
499
page_cache_ra_order(struct readahead_control * ractl,struct file_ra_state * ra,unsigned int new_order)500 void page_cache_ra_order(struct readahead_control *ractl,
501 struct file_ra_state *ra, unsigned int new_order)
502 {
503 struct address_space *mapping = ractl->mapping;
504 pgoff_t index = readahead_index(ractl);
505 pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT;
506 pgoff_t mark = index + ra->size - ra->async_size;
507 int err = 0;
508 gfp_t gfp = readahead_gfp_mask(mapping);
509
510 if (!mapping_large_folio_support(mapping) || ra->size < 4)
511 goto fallback;
512
513 limit = min(limit, index + ra->size - 1);
514
515 if (new_order < MAX_PAGECACHE_ORDER) {
516 new_order += 2;
517 if (new_order > MAX_PAGECACHE_ORDER)
518 new_order = MAX_PAGECACHE_ORDER;
519 while ((1 << new_order) > ra->size)
520 new_order--;
521 }
522
523 filemap_invalidate_lock_shared(mapping);
524 while (index <= limit) {
525 unsigned int order = new_order;
526
527 /* Align with smaller pages if needed */
528 if (index & ((1UL << order) - 1)) {
529 order = __ffs(index);
530 if (order == 1)
531 order = 0;
532 }
533 /* Don't allocate pages past EOF */
534 while (index + (1UL << order) - 1 > limit) {
535 if (--order == 1)
536 order = 0;
537 }
538 err = ra_alloc_folio(ractl, index, mark, order, gfp);
539 if (err)
540 break;
541 index += 1UL << order;
542 }
543
544 if (index > limit) {
545 ra->size += index - limit - 1;
546 ra->async_size += index - limit - 1;
547 }
548
549 read_pages(ractl);
550 filemap_invalidate_unlock_shared(mapping);
551
552 /*
553 * If there were already pages in the page cache, then we may have
554 * left some gaps. Let the regular readahead code take care of this
555 * situation.
556 */
557 if (!err)
558 return;
559 fallback:
560 do_page_cache_ra(ractl, ra->size, ra->async_size);
561 }
562
563 /*
564 * A minimal readahead algorithm for trivial sequential/random reads.
565 */
ondemand_readahead(struct readahead_control * ractl,struct folio * folio,unsigned long req_size)566 static void ondemand_readahead(struct readahead_control *ractl,
567 struct folio *folio, unsigned long req_size)
568 {
569 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
570 struct file_ra_state *ra = ractl->ra;
571 unsigned long max_pages = ra->ra_pages;
572 unsigned long add_pages;
573 pgoff_t index = readahead_index(ractl);
574 pgoff_t expected, prev_index;
575 unsigned int order = folio ? folio_order(folio) : 0;
576
577 /*
578 * If the request exceeds the readahead window, allow the read to
579 * be up to the optimal hardware IO size
580 */
581 if (req_size > max_pages && bdi->io_pages > max_pages)
582 max_pages = min(req_size, bdi->io_pages);
583
584 /*
585 * start of file
586 */
587 if (!index)
588 goto initial_readahead;
589
590 /*
591 * It's the expected callback index, assume sequential access.
592 * Ramp up sizes, and push forward the readahead window.
593 */
594 expected = round_up(ra->start + ra->size - ra->async_size,
595 1UL << order);
596 if (index == expected || index == (ra->start + ra->size)) {
597 ra->start += ra->size;
598 ra->size = get_next_ra_size(ra, max_pages);
599 ra->async_size = ra->size;
600 goto readit;
601 }
602
603 /*
604 * Hit a marked folio without valid readahead state.
605 * E.g. interleaved reads.
606 * Query the pagecache for async_size, which normally equals to
607 * readahead size. Ramp it up and use it as the new readahead size.
608 */
609 if (folio) {
610 pgoff_t start;
611
612 rcu_read_lock();
613 start = page_cache_next_miss(ractl->mapping, index + 1,
614 max_pages);
615 rcu_read_unlock();
616
617 if (!start || start - index > max_pages)
618 return;
619
620 ra->start = start;
621 ra->size = start - index; /* old async_size */
622 ra->size += req_size;
623 ra->size = get_next_ra_size(ra, max_pages);
624 ra->async_size = ra->size;
625 goto readit;
626 }
627
628 /*
629 * oversize read
630 */
631 if (req_size > max_pages)
632 goto initial_readahead;
633
634 /*
635 * sequential cache miss
636 * trivial case: (index - prev_index) == 1
637 * unaligned reads: (index - prev_index) == 0
638 */
639 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
640 if (index - prev_index <= 1UL)
641 goto initial_readahead;
642
643 /*
644 * Query the page cache and look for the traces(cached history pages)
645 * that a sequential stream would leave behind.
646 */
647 if (try_context_readahead(ractl->mapping, ra, index, req_size,
648 max_pages))
649 goto readit;
650
651 /*
652 * standalone, small random read
653 * Read as is, and do not pollute the readahead state.
654 */
655 do_page_cache_ra(ractl, req_size, 0);
656 return;
657
658 initial_readahead:
659 ra->start = index;
660 ra->size = get_init_ra_size(req_size, max_pages);
661 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
662
663 readit:
664 /*
665 * Will this read hit the readahead marker made by itself?
666 * If so, trigger the readahead marker hit now, and merge
667 * the resulted next readahead window into the current one.
668 * Take care of maximum IO pages as above.
669 */
670 if (index == ra->start && ra->size == ra->async_size) {
671 add_pages = get_next_ra_size(ra, max_pages);
672 if (ra->size + add_pages <= max_pages) {
673 ra->async_size = add_pages;
674 ra->size += add_pages;
675 } else {
676 ra->size = max_pages;
677 ra->async_size = max_pages >> 1;
678 }
679 }
680
681 ractl->_index = ra->start;
682 page_cache_ra_order(ractl, ra, order);
683 }
684
page_cache_sync_ra(struct readahead_control * ractl,unsigned long req_count)685 void page_cache_sync_ra(struct readahead_control *ractl,
686 unsigned long req_count)
687 {
688 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
689
690 /*
691 * Even if readahead is disabled, issue this request as readahead
692 * as we'll need it to satisfy the requested range. The forced
693 * readahead will do the right thing and limit the read to just the
694 * requested range, which we'll set to 1 page for this case.
695 */
696 if (!ractl->ra->ra_pages || blk_cgroup_congested()) {
697 if (!ractl->file)
698 return;
699 req_count = 1;
700 do_forced_ra = true;
701 }
702
703 /* be dumb */
704 if (do_forced_ra) {
705 force_page_cache_ra(ractl, req_count);
706 return;
707 }
708
709 ondemand_readahead(ractl, NULL, req_count);
710 }
711 EXPORT_SYMBOL_GPL(page_cache_sync_ra);
712
page_cache_async_ra(struct readahead_control * ractl,struct folio * folio,unsigned long req_count)713 void page_cache_async_ra(struct readahead_control *ractl,
714 struct folio *folio, unsigned long req_count)
715 {
716 /* no readahead */
717 if (!ractl->ra->ra_pages)
718 return;
719
720 /*
721 * Same bit is used for PG_readahead and PG_reclaim.
722 */
723 if (folio_test_writeback(folio))
724 return;
725
726 folio_clear_readahead(folio);
727
728 if (blk_cgroup_congested())
729 return;
730
731 ondemand_readahead(ractl, folio, req_count);
732 }
733 EXPORT_SYMBOL_GPL(page_cache_async_ra);
734
ksys_readahead(int fd,loff_t offset,size_t count)735 ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
736 {
737 ssize_t ret;
738 struct fd f;
739
740 ret = -EBADF;
741 f = fdget(fd);
742 if (!f.file || !(f.file->f_mode & FMODE_READ))
743 goto out;
744
745 /*
746 * The readahead() syscall is intended to run only on files
747 * that can execute readahead. If readahead is not possible
748 * on this file, then we must return -EINVAL.
749 */
750 ret = -EINVAL;
751 if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
752 !S_ISREG(file_inode(f.file)->i_mode))
753 goto out;
754
755 ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
756 out:
757 fdput(f);
758 return ret;
759 }
760
SYSCALL_DEFINE3(readahead,int,fd,loff_t,offset,size_t,count)761 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
762 {
763 return ksys_readahead(fd, offset, count);
764 }
765
766 #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD)
COMPAT_SYSCALL_DEFINE4(readahead,int,fd,compat_arg_u64_dual (offset),size_t,count)767 COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count)
768 {
769 return ksys_readahead(fd, compat_arg_u64_glue(offset), count);
770 }
771 #endif
772
773 /**
774 * readahead_expand - Expand a readahead request
775 * @ractl: The request to be expanded
776 * @new_start: The revised start
777 * @new_len: The revised size of the request
778 *
779 * Attempt to expand a readahead request outwards from the current size to the
780 * specified size by inserting locked pages before and after the current window
781 * to increase the size to the new window. This may involve the insertion of
782 * THPs, in which case the window may get expanded even beyond what was
783 * requested.
784 *
785 * The algorithm will stop if it encounters a conflicting page already in the
786 * pagecache and leave a smaller expansion than requested.
787 *
788 * The caller must check for this by examining the revised @ractl object for a
789 * different expansion than was requested.
790 */
readahead_expand(struct readahead_control * ractl,loff_t new_start,size_t new_len)791 void readahead_expand(struct readahead_control *ractl,
792 loff_t new_start, size_t new_len)
793 {
794 struct address_space *mapping = ractl->mapping;
795 struct file_ra_state *ra = ractl->ra;
796 pgoff_t new_index, new_nr_pages;
797 gfp_t gfp_mask = readahead_gfp_mask(mapping);
798
799 new_index = new_start / PAGE_SIZE;
800
801 /* Expand the leading edge downwards */
802 while (ractl->_index > new_index) {
803 unsigned long index = ractl->_index - 1;
804 struct folio *folio = xa_load(&mapping->i_pages, index);
805
806 if (folio && !xa_is_value(folio))
807 return; /* Folio apparently present */
808
809 folio = filemap_alloc_folio(gfp_mask, 0);
810 if (!folio)
811 return;
812 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) {
813 folio_put(folio);
814 return;
815 }
816 if (unlikely(folio_test_workingset(folio)) &&
817 !ractl->_workingset) {
818 ractl->_workingset = true;
819 psi_memstall_enter(&ractl->_pflags);
820 }
821 ractl->_nr_pages++;
822 ractl->_index = folio->index;
823 }
824
825 new_len += new_start - readahead_pos(ractl);
826 new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
827
828 /* Expand the trailing edge upwards */
829 while (ractl->_nr_pages < new_nr_pages) {
830 unsigned long index = ractl->_index + ractl->_nr_pages;
831 struct folio *folio = xa_load(&mapping->i_pages, index);
832
833 if (folio && !xa_is_value(folio))
834 return; /* Folio apparently present */
835
836 folio = filemap_alloc_folio(gfp_mask, 0);
837 if (!folio)
838 return;
839 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) {
840 folio_put(folio);
841 return;
842 }
843 if (unlikely(folio_test_workingset(folio)) &&
844 !ractl->_workingset) {
845 ractl->_workingset = true;
846 psi_memstall_enter(&ractl->_pflags);
847 }
848 ractl->_nr_pages++;
849 if (ra) {
850 ra->size++;
851 ra->async_size++;
852 }
853 }
854 }
855 EXPORT_SYMBOL(readahead_expand);
856