1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26
27 #include <linux/uaccess.h>
28
29 #include "internal.h"
30 #include "swap.h"
31
32 /**
33 * kfree_const - conditionally free memory
34 * @x: pointer to the memory
35 *
36 * Function calls kfree only if @x is not in .rodata section.
37 */
kfree_const(const void * x)38 void kfree_const(const void *x)
39 {
40 if (!is_kernel_rodata((unsigned long)x))
41 kfree(x);
42 }
43 EXPORT_SYMBOL(kfree_const);
44
45 /**
46 * kstrdup - allocate space for and copy an existing string
47 * @s: the string to duplicate
48 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
49 *
50 * Return: newly allocated copy of @s or %NULL in case of error
51 */
kstrdup(const char * s,gfp_t gfp)52 char *kstrdup(const char *s, gfp_t gfp)
53 {
54 size_t len;
55 char *buf;
56
57 if (!s)
58 return NULL;
59
60 len = strlen(s) + 1;
61 buf = kmalloc_track_caller(len, gfp);
62 if (buf)
63 memcpy(buf, s, len);
64 return buf;
65 }
66 EXPORT_SYMBOL(kstrdup);
67
68 /**
69 * kstrdup_const - conditionally duplicate an existing const string
70 * @s: the string to duplicate
71 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
72 *
73 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
74 * must not be passed to krealloc().
75 *
76 * Return: source string if it is in .rodata section otherwise
77 * fallback to kstrdup.
78 */
kstrdup_const(const char * s,gfp_t gfp)79 const char *kstrdup_const(const char *s, gfp_t gfp)
80 {
81 if (is_kernel_rodata((unsigned long)s))
82 return s;
83
84 return kstrdup(s, gfp);
85 }
86 EXPORT_SYMBOL(kstrdup_const);
87
88 /**
89 * kstrndup - allocate space for and copy an existing string
90 * @s: the string to duplicate
91 * @max: read at most @max chars from @s
92 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
93 *
94 * Note: Use kmemdup_nul() instead if the size is known exactly.
95 *
96 * Return: newly allocated copy of @s or %NULL in case of error
97 */
kstrndup(const char * s,size_t max,gfp_t gfp)98 char *kstrndup(const char *s, size_t max, gfp_t gfp)
99 {
100 size_t len;
101 char *buf;
102
103 if (!s)
104 return NULL;
105
106 len = strnlen(s, max);
107 buf = kmalloc_track_caller(len+1, gfp);
108 if (buf) {
109 memcpy(buf, s, len);
110 buf[len] = '\0';
111 }
112 return buf;
113 }
114 EXPORT_SYMBOL(kstrndup);
115
116 /**
117 * kmemdup - duplicate region of memory
118 *
119 * @src: memory region to duplicate
120 * @len: memory region length
121 * @gfp: GFP mask to use
122 *
123 * Return: newly allocated copy of @src or %NULL in case of error,
124 * result is physically contiguous. Use kfree() to free.
125 */
kmemdup(const void * src,size_t len,gfp_t gfp)126 void *kmemdup(const void *src, size_t len, gfp_t gfp)
127 {
128 void *p;
129
130 p = kmalloc_track_caller(len, gfp);
131 if (p)
132 memcpy(p, src, len);
133 return p;
134 }
135 EXPORT_SYMBOL(kmemdup);
136
137 /**
138 * kvmemdup - duplicate region of memory
139 *
140 * @src: memory region to duplicate
141 * @len: memory region length
142 * @gfp: GFP mask to use
143 *
144 * Return: newly allocated copy of @src or %NULL in case of error,
145 * result may be not physically contiguous. Use kvfree() to free.
146 */
kvmemdup(const void * src,size_t len,gfp_t gfp)147 void *kvmemdup(const void *src, size_t len, gfp_t gfp)
148 {
149 void *p;
150
151 p = kvmalloc(len, gfp);
152 if (p)
153 memcpy(p, src, len);
154 return p;
155 }
156 EXPORT_SYMBOL(kvmemdup);
157
158 /**
159 * kmemdup_nul - Create a NUL-terminated string from unterminated data
160 * @s: The data to stringify
161 * @len: The size of the data
162 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
163 *
164 * Return: newly allocated copy of @s with NUL-termination or %NULL in
165 * case of error
166 */
kmemdup_nul(const char * s,size_t len,gfp_t gfp)167 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
168 {
169 char *buf;
170
171 if (!s)
172 return NULL;
173
174 buf = kmalloc_track_caller(len + 1, gfp);
175 if (buf) {
176 memcpy(buf, s, len);
177 buf[len] = '\0';
178 }
179 return buf;
180 }
181 EXPORT_SYMBOL(kmemdup_nul);
182
183 /**
184 * memdup_user - duplicate memory region from user space
185 *
186 * @src: source address in user space
187 * @len: number of bytes to copy
188 *
189 * Return: an ERR_PTR() on failure. Result is physically
190 * contiguous, to be freed by kfree().
191 */
memdup_user(const void __user * src,size_t len)192 void *memdup_user(const void __user *src, size_t len)
193 {
194 void *p;
195
196 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
197 if (!p)
198 return ERR_PTR(-ENOMEM);
199
200 if (copy_from_user(p, src, len)) {
201 kfree(p);
202 return ERR_PTR(-EFAULT);
203 }
204
205 return p;
206 }
207 EXPORT_SYMBOL(memdup_user);
208
209 /**
210 * vmemdup_user - duplicate memory region from user space
211 *
212 * @src: source address in user space
213 * @len: number of bytes to copy
214 *
215 * Return: an ERR_PTR() on failure. Result may be not
216 * physically contiguous. Use kvfree() to free.
217 */
vmemdup_user(const void __user * src,size_t len)218 void *vmemdup_user(const void __user *src, size_t len)
219 {
220 void *p;
221
222 p = kvmalloc(len, GFP_USER);
223 if (!p)
224 return ERR_PTR(-ENOMEM);
225
226 if (copy_from_user(p, src, len)) {
227 kvfree(p);
228 return ERR_PTR(-EFAULT);
229 }
230
231 return p;
232 }
233 EXPORT_SYMBOL(vmemdup_user);
234
235 /**
236 * strndup_user - duplicate an existing string from user space
237 * @s: The string to duplicate
238 * @n: Maximum number of bytes to copy, including the trailing NUL.
239 *
240 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
241 */
strndup_user(const char __user * s,long n)242 char *strndup_user(const char __user *s, long n)
243 {
244 char *p;
245 long length;
246
247 length = strnlen_user(s, n);
248
249 if (!length)
250 return ERR_PTR(-EFAULT);
251
252 if (length > n)
253 return ERR_PTR(-EINVAL);
254
255 p = memdup_user(s, length);
256
257 if (IS_ERR(p))
258 return p;
259
260 p[length - 1] = '\0';
261
262 return p;
263 }
264 EXPORT_SYMBOL(strndup_user);
265
266 /**
267 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
268 *
269 * @src: source address in user space
270 * @len: number of bytes to copy
271 *
272 * Return: an ERR_PTR() on failure.
273 */
memdup_user_nul(const void __user * src,size_t len)274 void *memdup_user_nul(const void __user *src, size_t len)
275 {
276 char *p;
277
278 /*
279 * Always use GFP_KERNEL, since copy_from_user() can sleep and
280 * cause pagefault, which makes it pointless to use GFP_NOFS
281 * or GFP_ATOMIC.
282 */
283 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
284 if (!p)
285 return ERR_PTR(-ENOMEM);
286
287 if (copy_from_user(p, src, len)) {
288 kfree(p);
289 return ERR_PTR(-EFAULT);
290 }
291 p[len] = '\0';
292
293 return p;
294 }
295 EXPORT_SYMBOL(memdup_user_nul);
296
297 /* Check if the vma is being used as a stack by this task */
vma_is_stack_for_current(struct vm_area_struct * vma)298 int vma_is_stack_for_current(struct vm_area_struct *vma)
299 {
300 struct task_struct * __maybe_unused t = current;
301
302 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
303 }
304
305 /*
306 * Change backing file, only valid to use during initial VMA setup.
307 */
vma_set_file(struct vm_area_struct * vma,struct file * file)308 void vma_set_file(struct vm_area_struct *vma, struct file *file)
309 {
310 /* Changing an anonymous vma with this is illegal */
311 get_file(file);
312 swap(vma->vm_file, file);
313 fput(file);
314 }
315 EXPORT_SYMBOL(vma_set_file);
316
317 #ifndef STACK_RND_MASK
318 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
319 #endif
320
randomize_stack_top(unsigned long stack_top)321 unsigned long randomize_stack_top(unsigned long stack_top)
322 {
323 unsigned long random_variable = 0;
324
325 if (current->flags & PF_RANDOMIZE) {
326 random_variable = get_random_long();
327 random_variable &= STACK_RND_MASK;
328 random_variable <<= PAGE_SHIFT;
329 }
330 #ifdef CONFIG_STACK_GROWSUP
331 return PAGE_ALIGN(stack_top) + random_variable;
332 #else
333 return PAGE_ALIGN(stack_top) - random_variable;
334 #endif
335 }
336
337 /**
338 * randomize_page - Generate a random, page aligned address
339 * @start: The smallest acceptable address the caller will take.
340 * @range: The size of the area, starting at @start, within which the
341 * random address must fall.
342 *
343 * If @start + @range would overflow, @range is capped.
344 *
345 * NOTE: Historical use of randomize_range, which this replaces, presumed that
346 * @start was already page aligned. We now align it regardless.
347 *
348 * Return: A page aligned address within [start, start + range). On error,
349 * @start is returned.
350 */
randomize_page(unsigned long start,unsigned long range)351 unsigned long randomize_page(unsigned long start, unsigned long range)
352 {
353 if (!PAGE_ALIGNED(start)) {
354 range -= PAGE_ALIGN(start) - start;
355 start = PAGE_ALIGN(start);
356 }
357
358 if (start > ULONG_MAX - range)
359 range = ULONG_MAX - start;
360
361 range >>= PAGE_SHIFT;
362
363 if (range == 0)
364 return start;
365
366 return start + (get_random_long() % range << PAGE_SHIFT);
367 }
368
369 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
arch_randomize_brk(struct mm_struct * mm)370 unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
371 {
372 /* Is the current task 32bit ? */
373 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
374 return randomize_page(mm->brk, SZ_32M);
375
376 return randomize_page(mm->brk, SZ_1G);
377 }
378
arch_mmap_rnd(void)379 unsigned long arch_mmap_rnd(void)
380 {
381 unsigned long rnd;
382
383 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
384 if (is_compat_task())
385 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
386 else
387 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
388 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
389
390 return rnd << PAGE_SHIFT;
391 }
392
mmap_is_legacy(struct rlimit * rlim_stack)393 static int mmap_is_legacy(struct rlimit *rlim_stack)
394 {
395 if (current->personality & ADDR_COMPAT_LAYOUT)
396 return 1;
397
398 if (rlim_stack->rlim_cur == RLIM_INFINITY)
399 return 1;
400
401 return sysctl_legacy_va_layout;
402 }
403
404 /*
405 * Leave enough space between the mmap area and the stack to honour ulimit in
406 * the face of randomisation.
407 */
408 #define MIN_GAP (SZ_128M)
409 #define MAX_GAP (STACK_TOP / 6 * 5)
410
mmap_base(unsigned long rnd,struct rlimit * rlim_stack)411 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
412 {
413 unsigned long gap = rlim_stack->rlim_cur;
414 unsigned long pad = stack_guard_gap;
415
416 /* Account for stack randomization if necessary */
417 if (current->flags & PF_RANDOMIZE)
418 pad += (STACK_RND_MASK << PAGE_SHIFT);
419
420 /* Values close to RLIM_INFINITY can overflow. */
421 if (gap + pad > gap)
422 gap += pad;
423
424 if (gap < MIN_GAP)
425 gap = MIN_GAP;
426 else if (gap > MAX_GAP)
427 gap = MAX_GAP;
428
429 return PAGE_ALIGN(STACK_TOP - gap - rnd);
430 }
431
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)432 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
433 {
434 unsigned long random_factor = 0UL;
435
436 if (current->flags & PF_RANDOMIZE)
437 random_factor = arch_mmap_rnd();
438
439 if (mmap_is_legacy(rlim_stack)) {
440 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
441 mm->get_unmapped_area = arch_get_unmapped_area;
442 } else {
443 mm->mmap_base = mmap_base(random_factor, rlim_stack);
444 mm->get_unmapped_area = arch_get_unmapped_area_topdown;
445 }
446 }
447 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)448 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
449 {
450 mm->mmap_base = TASK_UNMAPPED_BASE;
451 mm->get_unmapped_area = arch_get_unmapped_area;
452 }
453 #endif
454
455 /**
456 * __account_locked_vm - account locked pages to an mm's locked_vm
457 * @mm: mm to account against
458 * @pages: number of pages to account
459 * @inc: %true if @pages should be considered positive, %false if not
460 * @task: task used to check RLIMIT_MEMLOCK
461 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
462 *
463 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
464 * that mmap_lock is held as writer.
465 *
466 * Return:
467 * * 0 on success
468 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
469 */
__account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc,struct task_struct * task,bool bypass_rlim)470 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
471 struct task_struct *task, bool bypass_rlim)
472 {
473 unsigned long locked_vm, limit;
474 int ret = 0;
475
476 mmap_assert_write_locked(mm);
477
478 locked_vm = mm->locked_vm;
479 if (inc) {
480 if (!bypass_rlim) {
481 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
482 if (locked_vm + pages > limit)
483 ret = -ENOMEM;
484 }
485 if (!ret)
486 mm->locked_vm = locked_vm + pages;
487 } else {
488 WARN_ON_ONCE(pages > locked_vm);
489 mm->locked_vm = locked_vm - pages;
490 }
491
492 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
493 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
494 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
495 ret ? " - exceeded" : "");
496
497 return ret;
498 }
499 EXPORT_SYMBOL_GPL(__account_locked_vm);
500
501 /**
502 * account_locked_vm - account locked pages to an mm's locked_vm
503 * @mm: mm to account against, may be NULL
504 * @pages: number of pages to account
505 * @inc: %true if @pages should be considered positive, %false if not
506 *
507 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
508 *
509 * Return:
510 * * 0 on success, or if mm is NULL
511 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
512 */
account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc)513 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
514 {
515 int ret;
516
517 if (pages == 0 || !mm)
518 return 0;
519
520 mmap_write_lock(mm);
521 ret = __account_locked_vm(mm, pages, inc, current,
522 capable(CAP_IPC_LOCK));
523 mmap_write_unlock(mm);
524
525 return ret;
526 }
527 EXPORT_SYMBOL_GPL(account_locked_vm);
528
vm_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long pgoff)529 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
530 unsigned long len, unsigned long prot,
531 unsigned long flag, unsigned long pgoff)
532 {
533 unsigned long ret;
534 struct mm_struct *mm = current->mm;
535 unsigned long populate;
536 LIST_HEAD(uf);
537
538 ret = security_mmap_file(file, prot, flag);
539 if (!ret) {
540 if (mmap_write_lock_killable(mm))
541 return -EINTR;
542 ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate,
543 &uf);
544 mmap_write_unlock(mm);
545 userfaultfd_unmap_complete(mm, &uf);
546 if (populate)
547 mm_populate(ret, populate);
548 }
549 return ret;
550 }
551
vm_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long offset)552 unsigned long vm_mmap(struct file *file, unsigned long addr,
553 unsigned long len, unsigned long prot,
554 unsigned long flag, unsigned long offset)
555 {
556 if (unlikely(offset + PAGE_ALIGN(len) < offset))
557 return -EINVAL;
558 if (unlikely(offset_in_page(offset)))
559 return -EINVAL;
560
561 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
562 }
563 EXPORT_SYMBOL(vm_mmap);
564
565 /**
566 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
567 * failure, fall back to non-contiguous (vmalloc) allocation.
568 * @size: size of the request.
569 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
570 * @node: numa node to allocate from
571 *
572 * Uses kmalloc to get the memory but if the allocation fails then falls back
573 * to the vmalloc allocator. Use kvfree for freeing the memory.
574 *
575 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
576 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
577 * preferable to the vmalloc fallback, due to visible performance drawbacks.
578 *
579 * Return: pointer to the allocated memory of %NULL in case of failure
580 */
kvmalloc_node(size_t size,gfp_t flags,int node)581 void *kvmalloc_node(size_t size, gfp_t flags, int node)
582 {
583 gfp_t kmalloc_flags = flags;
584 void *ret;
585
586 /*
587 * We want to attempt a large physically contiguous block first because
588 * it is less likely to fragment multiple larger blocks and therefore
589 * contribute to a long term fragmentation less than vmalloc fallback.
590 * However make sure that larger requests are not too disruptive - no
591 * OOM killer and no allocation failure warnings as we have a fallback.
592 */
593 if (size > PAGE_SIZE) {
594 kmalloc_flags |= __GFP_NOWARN;
595
596 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
597 kmalloc_flags |= __GFP_NORETRY;
598
599 /* nofail semantic is implemented by the vmalloc fallback */
600 kmalloc_flags &= ~__GFP_NOFAIL;
601 }
602
603 ret = kmalloc_node(size, kmalloc_flags, node);
604
605 /*
606 * It doesn't really make sense to fallback to vmalloc for sub page
607 * requests
608 */
609 if (ret || size <= PAGE_SIZE)
610 return ret;
611
612 /* non-sleeping allocations are not supported by vmalloc */
613 if (!gfpflags_allow_blocking(flags))
614 return NULL;
615
616 /* Don't even allow crazy sizes */
617 if (unlikely(size > INT_MAX)) {
618 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
619 return NULL;
620 }
621
622 /*
623 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
624 * since the callers already cannot assume anything
625 * about the resulting pointer, and cannot play
626 * protection games.
627 */
628 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
629 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
630 node, __builtin_return_address(0));
631 }
632 EXPORT_SYMBOL(kvmalloc_node);
633
634 /**
635 * kvfree() - Free memory.
636 * @addr: Pointer to allocated memory.
637 *
638 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
639 * It is slightly more efficient to use kfree() or vfree() if you are certain
640 * that you know which one to use.
641 *
642 * Context: Either preemptible task context or not-NMI interrupt.
643 */
kvfree(const void * addr)644 void kvfree(const void *addr)
645 {
646 if (is_vmalloc_addr(addr))
647 vfree(addr);
648 else
649 kfree(addr);
650 }
651 EXPORT_SYMBOL(kvfree);
652
653 /**
654 * kvfree_sensitive - Free a data object containing sensitive information.
655 * @addr: address of the data object to be freed.
656 * @len: length of the data object.
657 *
658 * Use the special memzero_explicit() function to clear the content of a
659 * kvmalloc'ed object containing sensitive data to make sure that the
660 * compiler won't optimize out the data clearing.
661 */
kvfree_sensitive(const void * addr,size_t len)662 void kvfree_sensitive(const void *addr, size_t len)
663 {
664 if (likely(!ZERO_OR_NULL_PTR(addr))) {
665 memzero_explicit((void *)addr, len);
666 kvfree(addr);
667 }
668 }
669 EXPORT_SYMBOL(kvfree_sensitive);
670
kvrealloc(const void * p,size_t oldsize,size_t newsize,gfp_t flags)671 void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
672 {
673 void *newp;
674
675 if (oldsize >= newsize)
676 return (void *)p;
677 newp = kvmalloc(newsize, flags);
678 if (!newp)
679 return NULL;
680 memcpy(newp, p, oldsize);
681 kvfree(p);
682 return newp;
683 }
684 EXPORT_SYMBOL(kvrealloc);
685
686 /**
687 * __vmalloc_array - allocate memory for a virtually contiguous array.
688 * @n: number of elements.
689 * @size: element size.
690 * @flags: the type of memory to allocate (see kmalloc).
691 */
__vmalloc_array(size_t n,size_t size,gfp_t flags)692 void *__vmalloc_array(size_t n, size_t size, gfp_t flags)
693 {
694 size_t bytes;
695
696 if (unlikely(check_mul_overflow(n, size, &bytes)))
697 return NULL;
698 return __vmalloc(bytes, flags);
699 }
700 EXPORT_SYMBOL(__vmalloc_array);
701
702 /**
703 * vmalloc_array - allocate memory for a virtually contiguous array.
704 * @n: number of elements.
705 * @size: element size.
706 */
vmalloc_array(size_t n,size_t size)707 void *vmalloc_array(size_t n, size_t size)
708 {
709 return __vmalloc_array(n, size, GFP_KERNEL);
710 }
711 EXPORT_SYMBOL(vmalloc_array);
712
713 /**
714 * __vcalloc - allocate and zero memory for a virtually contiguous array.
715 * @n: number of elements.
716 * @size: element size.
717 * @flags: the type of memory to allocate (see kmalloc).
718 */
__vcalloc(size_t n,size_t size,gfp_t flags)719 void *__vcalloc(size_t n, size_t size, gfp_t flags)
720 {
721 return __vmalloc_array(n, size, flags | __GFP_ZERO);
722 }
723 EXPORT_SYMBOL(__vcalloc);
724
725 /**
726 * vcalloc - allocate and zero memory for a virtually contiguous array.
727 * @n: number of elements.
728 * @size: element size.
729 */
vcalloc(size_t n,size_t size)730 void *vcalloc(size_t n, size_t size)
731 {
732 return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO);
733 }
734 EXPORT_SYMBOL(vcalloc);
735
736 /* Neutral page->mapping pointer to address_space or anon_vma or other */
page_rmapping(struct page * page)737 void *page_rmapping(struct page *page)
738 {
739 return folio_raw_mapping(page_folio(page));
740 }
741
folio_anon_vma(struct folio * folio)742 struct anon_vma *folio_anon_vma(struct folio *folio)
743 {
744 unsigned long mapping = (unsigned long)folio->mapping;
745
746 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
747 return NULL;
748 return (void *)(mapping - PAGE_MAPPING_ANON);
749 }
750
751 /**
752 * folio_mapping - Find the mapping where this folio is stored.
753 * @folio: The folio.
754 *
755 * For folios which are in the page cache, return the mapping that this
756 * page belongs to. Folios in the swap cache return the swap mapping
757 * this page is stored in (which is different from the mapping for the
758 * swap file or swap device where the data is stored).
759 *
760 * You can call this for folios which aren't in the swap cache or page
761 * cache and it will return NULL.
762 */
folio_mapping(struct folio * folio)763 struct address_space *folio_mapping(struct folio *folio)
764 {
765 struct address_space *mapping;
766
767 /* This happens if someone calls flush_dcache_page on slab page */
768 if (unlikely(folio_test_slab(folio)))
769 return NULL;
770
771 if (unlikely(folio_test_swapcache(folio)))
772 return swap_address_space(folio_swap_entry(folio));
773
774 mapping = folio->mapping;
775 if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
776 return NULL;
777
778 return mapping;
779 }
780 EXPORT_SYMBOL(folio_mapping);
781
782 /**
783 * folio_copy - Copy the contents of one folio to another.
784 * @dst: Folio to copy to.
785 * @src: Folio to copy from.
786 *
787 * The bytes in the folio represented by @src are copied to @dst.
788 * Assumes the caller has validated that @dst is at least as large as @src.
789 * Can be called in atomic context for order-0 folios, but if the folio is
790 * larger, it may sleep.
791 */
folio_copy(struct folio * dst,struct folio * src)792 void folio_copy(struct folio *dst, struct folio *src)
793 {
794 long i = 0;
795 long nr = folio_nr_pages(src);
796
797 for (;;) {
798 copy_highpage(folio_page(dst, i), folio_page(src, i));
799 if (++i == nr)
800 break;
801 cond_resched();
802 }
803 }
804
805 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
806 int sysctl_overcommit_ratio __read_mostly = 50;
807 unsigned long sysctl_overcommit_kbytes __read_mostly;
808 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
809 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
810 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
811
overcommit_ratio_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)812 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
813 size_t *lenp, loff_t *ppos)
814 {
815 int ret;
816
817 ret = proc_dointvec(table, write, buffer, lenp, ppos);
818 if (ret == 0 && write)
819 sysctl_overcommit_kbytes = 0;
820 return ret;
821 }
822
sync_overcommit_as(struct work_struct * dummy)823 static void sync_overcommit_as(struct work_struct *dummy)
824 {
825 percpu_counter_sync(&vm_committed_as);
826 }
827
overcommit_policy_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)828 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
829 size_t *lenp, loff_t *ppos)
830 {
831 struct ctl_table t;
832 int new_policy = -1;
833 int ret;
834
835 /*
836 * The deviation of sync_overcommit_as could be big with loose policy
837 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
838 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
839 * with the strict "NEVER", and to avoid possible race condition (even
840 * though user usually won't too frequently do the switching to policy
841 * OVERCOMMIT_NEVER), the switch is done in the following order:
842 * 1. changing the batch
843 * 2. sync percpu count on each CPU
844 * 3. switch the policy
845 */
846 if (write) {
847 t = *table;
848 t.data = &new_policy;
849 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
850 if (ret || new_policy == -1)
851 return ret;
852
853 mm_compute_batch(new_policy);
854 if (new_policy == OVERCOMMIT_NEVER)
855 schedule_on_each_cpu(sync_overcommit_as);
856 sysctl_overcommit_memory = new_policy;
857 } else {
858 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
859 }
860
861 return ret;
862 }
863
overcommit_kbytes_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)864 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
865 size_t *lenp, loff_t *ppos)
866 {
867 int ret;
868
869 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
870 if (ret == 0 && write)
871 sysctl_overcommit_ratio = 0;
872 return ret;
873 }
874
875 /*
876 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
877 */
vm_commit_limit(void)878 unsigned long vm_commit_limit(void)
879 {
880 unsigned long allowed;
881
882 if (sysctl_overcommit_kbytes)
883 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
884 else
885 allowed = ((totalram_pages() - hugetlb_total_pages())
886 * sysctl_overcommit_ratio / 100);
887 allowed += total_swap_pages;
888
889 return allowed;
890 }
891
892 /*
893 * Make sure vm_committed_as in one cacheline and not cacheline shared with
894 * other variables. It can be updated by several CPUs frequently.
895 */
896 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
897
898 /*
899 * The global memory commitment made in the system can be a metric
900 * that can be used to drive ballooning decisions when Linux is hosted
901 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
902 * balancing memory across competing virtual machines that are hosted.
903 * Several metrics drive this policy engine including the guest reported
904 * memory commitment.
905 *
906 * The time cost of this is very low for small platforms, and for big
907 * platform like a 2S/36C/72T Skylake server, in worst case where
908 * vm_committed_as's spinlock is under severe contention, the time cost
909 * could be about 30~40 microseconds.
910 */
vm_memory_committed(void)911 unsigned long vm_memory_committed(void)
912 {
913 return percpu_counter_sum_positive(&vm_committed_as);
914 }
915 EXPORT_SYMBOL_GPL(vm_memory_committed);
916
917 /*
918 * Check that a process has enough memory to allocate a new virtual
919 * mapping. 0 means there is enough memory for the allocation to
920 * succeed and -ENOMEM implies there is not.
921 *
922 * We currently support three overcommit policies, which are set via the
923 * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst
924 *
925 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
926 * Additional code 2002 Jul 20 by Robert Love.
927 *
928 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
929 *
930 * Note this is a helper function intended to be used by LSMs which
931 * wish to use this logic.
932 */
__vm_enough_memory(struct mm_struct * mm,long pages,int cap_sys_admin)933 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
934 {
935 long allowed;
936
937 vm_acct_memory(pages);
938
939 /*
940 * Sometimes we want to use more memory than we have
941 */
942 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
943 return 0;
944
945 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
946 if (pages > totalram_pages() + total_swap_pages)
947 goto error;
948 return 0;
949 }
950
951 allowed = vm_commit_limit();
952 /*
953 * Reserve some for root
954 */
955 if (!cap_sys_admin)
956 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
957
958 /*
959 * Don't let a single process grow so big a user can't recover
960 */
961 if (mm) {
962 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
963
964 allowed -= min_t(long, mm->total_vm / 32, reserve);
965 }
966
967 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
968 return 0;
969 error:
970 pr_warn_ratelimited("%s: pid: %d, comm: %s, not enough memory for the allocation\n",
971 __func__, current->pid, current->comm);
972 vm_unacct_memory(pages);
973
974 return -ENOMEM;
975 }
976
977 /**
978 * get_cmdline() - copy the cmdline value to a buffer.
979 * @task: the task whose cmdline value to copy.
980 * @buffer: the buffer to copy to.
981 * @buflen: the length of the buffer. Larger cmdline values are truncated
982 * to this length.
983 *
984 * Return: the size of the cmdline field copied. Note that the copy does
985 * not guarantee an ending NULL byte.
986 */
get_cmdline(struct task_struct * task,char * buffer,int buflen)987 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
988 {
989 int res = 0;
990 unsigned int len;
991 struct mm_struct *mm = get_task_mm(task);
992 unsigned long arg_start, arg_end, env_start, env_end;
993 if (!mm)
994 goto out;
995 if (!mm->arg_end)
996 goto out_mm; /* Shh! No looking before we're done */
997
998 spin_lock(&mm->arg_lock);
999 arg_start = mm->arg_start;
1000 arg_end = mm->arg_end;
1001 env_start = mm->env_start;
1002 env_end = mm->env_end;
1003 spin_unlock(&mm->arg_lock);
1004
1005 len = arg_end - arg_start;
1006
1007 if (len > buflen)
1008 len = buflen;
1009
1010 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
1011
1012 /*
1013 * If the nul at the end of args has been overwritten, then
1014 * assume application is using setproctitle(3).
1015 */
1016 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1017 len = strnlen(buffer, res);
1018 if (len < res) {
1019 res = len;
1020 } else {
1021 len = env_end - env_start;
1022 if (len > buflen - res)
1023 len = buflen - res;
1024 res += access_process_vm(task, env_start,
1025 buffer+res, len,
1026 FOLL_FORCE);
1027 res = strnlen(buffer, res);
1028 }
1029 }
1030 out_mm:
1031 mmput(mm);
1032 out:
1033 return res;
1034 }
1035
memcmp_pages(struct page * page1,struct page * page2)1036 int __weak memcmp_pages(struct page *page1, struct page *page2)
1037 {
1038 char *addr1, *addr2;
1039 int ret;
1040
1041 addr1 = kmap_atomic(page1);
1042 addr2 = kmap_atomic(page2);
1043 ret = memcmp(addr1, addr2, PAGE_SIZE);
1044 kunmap_atomic(addr2);
1045 kunmap_atomic(addr1);
1046 return ret;
1047 }
1048
1049 #ifdef CONFIG_PRINTK
1050 /**
1051 * mem_dump_obj - Print available provenance information
1052 * @object: object for which to find provenance information.
1053 *
1054 * This function uses pr_cont(), so that the caller is expected to have
1055 * printed out whatever preamble is appropriate. The provenance information
1056 * depends on the type of object and on how much debugging is enabled.
1057 * For example, for a slab-cache object, the slab name is printed, and,
1058 * if available, the return address and stack trace from the allocation
1059 * and last free path of that object.
1060 */
mem_dump_obj(void * object)1061 void mem_dump_obj(void *object)
1062 {
1063 const char *type;
1064
1065 if (kmem_valid_obj(object)) {
1066 kmem_dump_obj(object);
1067 return;
1068 }
1069
1070 if (vmalloc_dump_obj(object))
1071 return;
1072
1073 if (virt_addr_valid(object))
1074 type = "non-slab/vmalloc memory";
1075 else if (object == NULL)
1076 type = "NULL pointer";
1077 else if (object == ZERO_SIZE_PTR)
1078 type = "zero-size pointer";
1079 else
1080 type = "non-paged memory";
1081
1082 pr_cont(" %s\n", type);
1083 }
1084 EXPORT_SYMBOL_GPL(mem_dump_obj);
1085 #endif
1086
1087 /*
1088 * A driver might set a page logically offline -- PageOffline() -- and
1089 * turn the page inaccessible in the hypervisor; after that, access to page
1090 * content can be fatal.
1091 *
1092 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1093 * pages after checking PageOffline(); however, these PFN walkers can race
1094 * with drivers that set PageOffline().
1095 *
1096 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1097 * synchronize with such drivers, achieving that a page cannot be set
1098 * PageOffline() while frozen.
1099 *
1100 * page_offline_begin()/page_offline_end() is used by drivers that care about
1101 * such races when setting a page PageOffline().
1102 */
1103 static DECLARE_RWSEM(page_offline_rwsem);
1104
page_offline_freeze(void)1105 void page_offline_freeze(void)
1106 {
1107 down_read(&page_offline_rwsem);
1108 }
1109
page_offline_thaw(void)1110 void page_offline_thaw(void)
1111 {
1112 up_read(&page_offline_rwsem);
1113 }
1114
page_offline_begin(void)1115 void page_offline_begin(void)
1116 {
1117 down_write(&page_offline_rwsem);
1118 }
1119 EXPORT_SYMBOL(page_offline_begin);
1120
page_offline_end(void)1121 void page_offline_end(void)
1122 {
1123 up_write(&page_offline_rwsem);
1124 }
1125 EXPORT_SYMBOL(page_offline_end);
1126
1127 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_FOLIO
flush_dcache_folio(struct folio * folio)1128 void flush_dcache_folio(struct folio *folio)
1129 {
1130 long i, nr = folio_nr_pages(folio);
1131
1132 for (i = 0; i < nr; i++)
1133 flush_dcache_page(folio_page(folio, i));
1134 }
1135 EXPORT_SYMBOL(flush_dcache_folio);
1136 #endif
1137