1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for SiS7019 Audio Accelerator
4 *
5 * Copyright (C) 2004-2007, David Dillow
6 * Written by David Dillow <dave@thedillows.org>
7 * Inspired by the Trident 4D-WaveDX/NX driver.
8 *
9 * All rights reserved.
10 */
11
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/time.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/interrupt.h>
18 #include <linux/delay.h>
19 #include <sound/core.h>
20 #include <sound/ac97_codec.h>
21 #include <sound/initval.h>
22 #include "sis7019.h"
23
24 MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
25 MODULE_DESCRIPTION("SiS7019");
26 MODULE_LICENSE("GPL");
27
28 static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */
29 static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */
30 static bool enable = 1;
31 static int codecs = 1;
32
33 module_param(index, int, 0444);
34 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
35 module_param(id, charp, 0444);
36 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
37 module_param(enable, bool, 0444);
38 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
39 module_param(codecs, int, 0444);
40 MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
41
42 static const struct pci_device_id snd_sis7019_ids[] = {
43 { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
44 { 0, }
45 };
46
47 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
48
49 /* There are three timing modes for the voices.
50 *
51 * For both playback and capture, when the buffer is one or two periods long,
52 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
53 * to let us know when the periods have ended.
54 *
55 * When performing playback with more than two periods per buffer, we set
56 * the "Stop Sample Offset" and tell the hardware to interrupt us when we
57 * reach it. We then update the offset and continue on until we are
58 * interrupted for the next period.
59 *
60 * Capture channels do not have a SSO, so we allocate a playback channel to
61 * use as a timer for the capture periods. We use the SSO on the playback
62 * channel to clock out virtual periods, and adjust the virtual period length
63 * to maintain synchronization. This algorithm came from the Trident driver.
64 *
65 * FIXME: It'd be nice to make use of some of the synth features in the
66 * hardware, but a woeful lack of documentation is a significant roadblock.
67 */
68 struct voice {
69 u16 flags;
70 #define VOICE_IN_USE 1
71 #define VOICE_CAPTURE 2
72 #define VOICE_SSO_TIMING 4
73 #define VOICE_SYNC_TIMING 8
74 u16 sync_cso;
75 u16 period_size;
76 u16 buffer_size;
77 u16 sync_period_size;
78 u16 sync_buffer_size;
79 u32 sso;
80 u32 vperiod;
81 struct snd_pcm_substream *substream;
82 struct voice *timing;
83 void __iomem *ctrl_base;
84 void __iomem *wave_base;
85 void __iomem *sync_base;
86 int num;
87 };
88
89 /* We need four pages to store our wave parameters during a suspend. If
90 * we're not doing power management, we still need to allocate a page
91 * for the silence buffer.
92 */
93 #ifdef CONFIG_PM_SLEEP
94 #define SIS_SUSPEND_PAGES 4
95 #else
96 #define SIS_SUSPEND_PAGES 1
97 #endif
98
99 struct sis7019 {
100 unsigned long ioport;
101 void __iomem *ioaddr;
102 int irq;
103 int codecs_present;
104
105 struct pci_dev *pci;
106 struct snd_pcm *pcm;
107 struct snd_card *card;
108 struct snd_ac97 *ac97[3];
109
110 /* Protect against more than one thread hitting the AC97
111 * registers (in a more polite manner than pounding the hardware
112 * semaphore)
113 */
114 struct mutex ac97_mutex;
115
116 /* voice_lock protects allocation/freeing of the voice descriptions
117 */
118 spinlock_t voice_lock;
119
120 struct voice voices[64];
121 struct voice capture_voice;
122
123 /* Allocate pages to store the internal wave state during
124 * suspends. When we're operating, this can be used as a silence
125 * buffer for a timing channel.
126 */
127 void *suspend_state[SIS_SUSPEND_PAGES];
128
129 int silence_users;
130 dma_addr_t silence_dma_addr;
131 };
132
133 /* These values are also used by the module param 'codecs' to indicate
134 * which codecs should be present.
135 */
136 #define SIS_PRIMARY_CODEC_PRESENT 0x0001
137 #define SIS_SECONDARY_CODEC_PRESENT 0x0002
138 #define SIS_TERTIARY_CODEC_PRESENT 0x0004
139
140 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
141 * documented range of 8-0xfff8 samples. Given that they are 0-based,
142 * that places our period/buffer range at 9-0xfff9 samples. That makes the
143 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
144 * max samples / min samples gives us the max periods in a buffer.
145 *
146 * We'll add a constraint upon open that limits the period and buffer sample
147 * size to values that are legal for the hardware.
148 */
149 static const struct snd_pcm_hardware sis_playback_hw_info = {
150 .info = (SNDRV_PCM_INFO_MMAP |
151 SNDRV_PCM_INFO_MMAP_VALID |
152 SNDRV_PCM_INFO_INTERLEAVED |
153 SNDRV_PCM_INFO_BLOCK_TRANSFER |
154 SNDRV_PCM_INFO_SYNC_START |
155 SNDRV_PCM_INFO_RESUME),
156 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
157 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
158 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
159 .rate_min = 4000,
160 .rate_max = 48000,
161 .channels_min = 1,
162 .channels_max = 2,
163 .buffer_bytes_max = (0xfff9 * 4),
164 .period_bytes_min = 9,
165 .period_bytes_max = (0xfff9 * 4),
166 .periods_min = 1,
167 .periods_max = (0xfff9 / 9),
168 };
169
170 static const struct snd_pcm_hardware sis_capture_hw_info = {
171 .info = (SNDRV_PCM_INFO_MMAP |
172 SNDRV_PCM_INFO_MMAP_VALID |
173 SNDRV_PCM_INFO_INTERLEAVED |
174 SNDRV_PCM_INFO_BLOCK_TRANSFER |
175 SNDRV_PCM_INFO_SYNC_START |
176 SNDRV_PCM_INFO_RESUME),
177 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
178 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
179 .rates = SNDRV_PCM_RATE_48000,
180 .rate_min = 4000,
181 .rate_max = 48000,
182 .channels_min = 1,
183 .channels_max = 2,
184 .buffer_bytes_max = (0xfff9 * 4),
185 .period_bytes_min = 9,
186 .period_bytes_max = (0xfff9 * 4),
187 .periods_min = 1,
188 .periods_max = (0xfff9 / 9),
189 };
190
sis_update_sso(struct voice * voice,u16 period)191 static void sis_update_sso(struct voice *voice, u16 period)
192 {
193 void __iomem *base = voice->ctrl_base;
194
195 voice->sso += period;
196 if (voice->sso >= voice->buffer_size)
197 voice->sso -= voice->buffer_size;
198
199 /* Enforce the documented hardware minimum offset */
200 if (voice->sso < 8)
201 voice->sso = 8;
202
203 /* The SSO is in the upper 16 bits of the register. */
204 writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
205 }
206
sis_update_voice(struct voice * voice)207 static void sis_update_voice(struct voice *voice)
208 {
209 if (voice->flags & VOICE_SSO_TIMING) {
210 sis_update_sso(voice, voice->period_size);
211 } else if (voice->flags & VOICE_SYNC_TIMING) {
212 int sync;
213
214 /* If we've not hit the end of the virtual period, update
215 * our records and keep going.
216 */
217 if (voice->vperiod > voice->period_size) {
218 voice->vperiod -= voice->period_size;
219 if (voice->vperiod < voice->period_size)
220 sis_update_sso(voice, voice->vperiod);
221 else
222 sis_update_sso(voice, voice->period_size);
223 return;
224 }
225
226 /* Calculate our relative offset between the target and
227 * the actual CSO value. Since we're operating in a loop,
228 * if the value is more than half way around, we can
229 * consider ourselves wrapped.
230 */
231 sync = voice->sync_cso;
232 sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
233 if (sync > (voice->sync_buffer_size / 2))
234 sync -= voice->sync_buffer_size;
235
236 /* If sync is positive, then we interrupted too early, and
237 * we'll need to come back in a few samples and try again.
238 * There's a minimum wait, as it takes some time for the DMA
239 * engine to startup, etc...
240 */
241 if (sync > 0) {
242 if (sync < 16)
243 sync = 16;
244 sis_update_sso(voice, sync);
245 return;
246 }
247
248 /* Ok, we interrupted right on time, or (hopefully) just
249 * a bit late. We'll adjst our next waiting period based
250 * on how close we got.
251 *
252 * We need to stay just behind the actual channel to ensure
253 * it really is past a period when we get our interrupt --
254 * otherwise we'll fall into the early code above and have
255 * a minimum wait time, which makes us quite late here,
256 * eating into the user's time to refresh the buffer, esp.
257 * if using small periods.
258 *
259 * If we're less than 9 samples behind, we're on target.
260 * Otherwise, shorten the next vperiod by the amount we've
261 * been delayed.
262 */
263 if (sync > -9)
264 voice->vperiod = voice->sync_period_size + 1;
265 else
266 voice->vperiod = voice->sync_period_size + sync + 10;
267
268 if (voice->vperiod < voice->buffer_size) {
269 sis_update_sso(voice, voice->vperiod);
270 voice->vperiod = 0;
271 } else
272 sis_update_sso(voice, voice->period_size);
273
274 sync = voice->sync_cso + voice->sync_period_size;
275 if (sync >= voice->sync_buffer_size)
276 sync -= voice->sync_buffer_size;
277 voice->sync_cso = sync;
278 }
279
280 snd_pcm_period_elapsed(voice->substream);
281 }
282
sis_voice_irq(u32 status,struct voice * voice)283 static void sis_voice_irq(u32 status, struct voice *voice)
284 {
285 int bit;
286
287 while (status) {
288 bit = __ffs(status);
289 status >>= bit + 1;
290 voice += bit;
291 sis_update_voice(voice);
292 voice++;
293 }
294 }
295
sis_interrupt(int irq,void * dev)296 static irqreturn_t sis_interrupt(int irq, void *dev)
297 {
298 struct sis7019 *sis = dev;
299 unsigned long io = sis->ioport;
300 struct voice *voice;
301 u32 intr, status;
302
303 /* We only use the DMA interrupts, and we don't enable any other
304 * source of interrupts. But, it is possible to see an interrupt
305 * status that didn't actually interrupt us, so eliminate anything
306 * we're not expecting to avoid falsely claiming an IRQ, and an
307 * ensuing endless loop.
308 */
309 intr = inl(io + SIS_GISR);
310 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
311 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
312 if (!intr)
313 return IRQ_NONE;
314
315 do {
316 status = inl(io + SIS_PISR_A);
317 if (status) {
318 sis_voice_irq(status, sis->voices);
319 outl(status, io + SIS_PISR_A);
320 }
321
322 status = inl(io + SIS_PISR_B);
323 if (status) {
324 sis_voice_irq(status, &sis->voices[32]);
325 outl(status, io + SIS_PISR_B);
326 }
327
328 status = inl(io + SIS_RISR);
329 if (status) {
330 voice = &sis->capture_voice;
331 if (!voice->timing)
332 snd_pcm_period_elapsed(voice->substream);
333
334 outl(status, io + SIS_RISR);
335 }
336
337 outl(intr, io + SIS_GISR);
338 intr = inl(io + SIS_GISR);
339 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
340 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
341 } while (intr);
342
343 return IRQ_HANDLED;
344 }
345
sis_rate_to_delta(unsigned int rate)346 static u32 sis_rate_to_delta(unsigned int rate)
347 {
348 u32 delta;
349
350 /* This was copied from the trident driver, but it seems its gotten
351 * around a bit... nevertheless, it works well.
352 *
353 * We special case 44100 and 8000 since rounding with the equation
354 * does not give us an accurate enough value. For 11025 and 22050
355 * the equation gives us the best answer. All other frequencies will
356 * also use the equation. JDW
357 */
358 if (rate == 44100)
359 delta = 0xeb3;
360 else if (rate == 8000)
361 delta = 0x2ab;
362 else if (rate == 48000)
363 delta = 0x1000;
364 else
365 delta = DIV_ROUND_CLOSEST(rate << 12, 48000) & 0x0000ffff;
366 return delta;
367 }
368
__sis_map_silence(struct sis7019 * sis)369 static void __sis_map_silence(struct sis7019 *sis)
370 {
371 /* Helper function: must hold sis->voice_lock on entry */
372 if (!sis->silence_users)
373 sis->silence_dma_addr = dma_map_single(&sis->pci->dev,
374 sis->suspend_state[0],
375 4096, DMA_TO_DEVICE);
376 sis->silence_users++;
377 }
378
__sis_unmap_silence(struct sis7019 * sis)379 static void __sis_unmap_silence(struct sis7019 *sis)
380 {
381 /* Helper function: must hold sis->voice_lock on entry */
382 sis->silence_users--;
383 if (!sis->silence_users)
384 dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096,
385 DMA_TO_DEVICE);
386 }
387
sis_free_voice(struct sis7019 * sis,struct voice * voice)388 static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
389 {
390 unsigned long flags;
391
392 spin_lock_irqsave(&sis->voice_lock, flags);
393 if (voice->timing) {
394 __sis_unmap_silence(sis);
395 voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
396 VOICE_SYNC_TIMING);
397 voice->timing = NULL;
398 }
399 voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
400 spin_unlock_irqrestore(&sis->voice_lock, flags);
401 }
402
__sis_alloc_playback_voice(struct sis7019 * sis)403 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
404 {
405 /* Must hold the voice_lock on entry */
406 struct voice *voice;
407 int i;
408
409 for (i = 0; i < 64; i++) {
410 voice = &sis->voices[i];
411 if (voice->flags & VOICE_IN_USE)
412 continue;
413 voice->flags |= VOICE_IN_USE;
414 goto found_one;
415 }
416 voice = NULL;
417
418 found_one:
419 return voice;
420 }
421
sis_alloc_playback_voice(struct sis7019 * sis)422 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
423 {
424 struct voice *voice;
425 unsigned long flags;
426
427 spin_lock_irqsave(&sis->voice_lock, flags);
428 voice = __sis_alloc_playback_voice(sis);
429 spin_unlock_irqrestore(&sis->voice_lock, flags);
430
431 return voice;
432 }
433
sis_alloc_timing_voice(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * hw_params)434 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
435 struct snd_pcm_hw_params *hw_params)
436 {
437 struct sis7019 *sis = snd_pcm_substream_chip(substream);
438 struct snd_pcm_runtime *runtime = substream->runtime;
439 struct voice *voice = runtime->private_data;
440 unsigned int period_size, buffer_size;
441 unsigned long flags;
442 int needed;
443
444 /* If there are one or two periods per buffer, we don't need a
445 * timing voice, as we can use the capture channel's interrupts
446 * to clock out the periods.
447 */
448 period_size = params_period_size(hw_params);
449 buffer_size = params_buffer_size(hw_params);
450 needed = (period_size != buffer_size &&
451 period_size != (buffer_size / 2));
452
453 if (needed && !voice->timing) {
454 spin_lock_irqsave(&sis->voice_lock, flags);
455 voice->timing = __sis_alloc_playback_voice(sis);
456 if (voice->timing)
457 __sis_map_silence(sis);
458 spin_unlock_irqrestore(&sis->voice_lock, flags);
459 if (!voice->timing)
460 return -ENOMEM;
461 voice->timing->substream = substream;
462 } else if (!needed && voice->timing) {
463 sis_free_voice(sis, voice);
464 voice->timing = NULL;
465 }
466
467 return 0;
468 }
469
sis_playback_open(struct snd_pcm_substream * substream)470 static int sis_playback_open(struct snd_pcm_substream *substream)
471 {
472 struct sis7019 *sis = snd_pcm_substream_chip(substream);
473 struct snd_pcm_runtime *runtime = substream->runtime;
474 struct voice *voice;
475
476 voice = sis_alloc_playback_voice(sis);
477 if (!voice)
478 return -EAGAIN;
479
480 voice->substream = substream;
481 runtime->private_data = voice;
482 runtime->hw = sis_playback_hw_info;
483 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
484 9, 0xfff9);
485 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
486 9, 0xfff9);
487 snd_pcm_set_sync(substream);
488 return 0;
489 }
490
sis_substream_close(struct snd_pcm_substream * substream)491 static int sis_substream_close(struct snd_pcm_substream *substream)
492 {
493 struct sis7019 *sis = snd_pcm_substream_chip(substream);
494 struct snd_pcm_runtime *runtime = substream->runtime;
495 struct voice *voice = runtime->private_data;
496
497 sis_free_voice(sis, voice);
498 return 0;
499 }
500
sis_pcm_playback_prepare(struct snd_pcm_substream * substream)501 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
502 {
503 struct snd_pcm_runtime *runtime = substream->runtime;
504 struct voice *voice = runtime->private_data;
505 void __iomem *ctrl_base = voice->ctrl_base;
506 void __iomem *wave_base = voice->wave_base;
507 u32 format, dma_addr, control, sso_eso, delta, reg;
508 u16 leo;
509
510 /* We rely on the PCM core to ensure that the parameters for this
511 * substream do not change on us while we're programming the HW.
512 */
513 format = 0;
514 if (snd_pcm_format_width(runtime->format) == 8)
515 format |= SIS_PLAY_DMA_FORMAT_8BIT;
516 if (!snd_pcm_format_signed(runtime->format))
517 format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
518 if (runtime->channels == 1)
519 format |= SIS_PLAY_DMA_FORMAT_MONO;
520
521 /* The baseline setup is for a single period per buffer, and
522 * we add bells and whistles as needed from there.
523 */
524 dma_addr = runtime->dma_addr;
525 leo = runtime->buffer_size - 1;
526 control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
527 sso_eso = leo;
528
529 if (runtime->period_size == (runtime->buffer_size / 2)) {
530 control |= SIS_PLAY_DMA_INTR_AT_MLP;
531 } else if (runtime->period_size != runtime->buffer_size) {
532 voice->flags |= VOICE_SSO_TIMING;
533 voice->sso = runtime->period_size - 1;
534 voice->period_size = runtime->period_size;
535 voice->buffer_size = runtime->buffer_size;
536
537 control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
538 control |= SIS_PLAY_DMA_INTR_AT_SSO;
539 sso_eso |= (runtime->period_size - 1) << 16;
540 }
541
542 delta = sis_rate_to_delta(runtime->rate);
543
544 /* Ok, we're ready to go, set up the channel.
545 */
546 writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
547 writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
548 writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
549 writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
550
551 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
552 writel(0, wave_base + reg);
553
554 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
555 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
556 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
557 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
558 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
559 wave_base + SIS_WAVE_CHANNEL_CONTROL);
560
561 /* Force PCI writes to post. */
562 readl(ctrl_base);
563
564 return 0;
565 }
566
sis_pcm_trigger(struct snd_pcm_substream * substream,int cmd)567 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
568 {
569 struct sis7019 *sis = snd_pcm_substream_chip(substream);
570 unsigned long io = sis->ioport;
571 struct snd_pcm_substream *s;
572 struct voice *voice;
573 void *chip;
574 int starting;
575 u32 record = 0;
576 u32 play[2] = { 0, 0 };
577
578 /* No locks needed, as the PCM core will hold the locks on the
579 * substreams, and the HW will only start/stop the indicated voices
580 * without changing the state of the others.
581 */
582 switch (cmd) {
583 case SNDRV_PCM_TRIGGER_START:
584 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
585 case SNDRV_PCM_TRIGGER_RESUME:
586 starting = 1;
587 break;
588 case SNDRV_PCM_TRIGGER_STOP:
589 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
590 case SNDRV_PCM_TRIGGER_SUSPEND:
591 starting = 0;
592 break;
593 default:
594 return -EINVAL;
595 }
596
597 snd_pcm_group_for_each_entry(s, substream) {
598 /* Make sure it is for us... */
599 chip = snd_pcm_substream_chip(s);
600 if (chip != sis)
601 continue;
602
603 voice = s->runtime->private_data;
604 if (voice->flags & VOICE_CAPTURE) {
605 record |= 1 << voice->num;
606 voice = voice->timing;
607 }
608
609 /* voice could be NULL if this a recording stream, and it
610 * doesn't have an external timing channel.
611 */
612 if (voice)
613 play[voice->num / 32] |= 1 << (voice->num & 0x1f);
614
615 snd_pcm_trigger_done(s, substream);
616 }
617
618 if (starting) {
619 if (record)
620 outl(record, io + SIS_RECORD_START_REG);
621 if (play[0])
622 outl(play[0], io + SIS_PLAY_START_A_REG);
623 if (play[1])
624 outl(play[1], io + SIS_PLAY_START_B_REG);
625 } else {
626 if (record)
627 outl(record, io + SIS_RECORD_STOP_REG);
628 if (play[0])
629 outl(play[0], io + SIS_PLAY_STOP_A_REG);
630 if (play[1])
631 outl(play[1], io + SIS_PLAY_STOP_B_REG);
632 }
633 return 0;
634 }
635
sis_pcm_pointer(struct snd_pcm_substream * substream)636 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
637 {
638 struct snd_pcm_runtime *runtime = substream->runtime;
639 struct voice *voice = runtime->private_data;
640 u32 cso;
641
642 cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
643 cso &= 0xffff;
644 return cso;
645 }
646
sis_capture_open(struct snd_pcm_substream * substream)647 static int sis_capture_open(struct snd_pcm_substream *substream)
648 {
649 struct sis7019 *sis = snd_pcm_substream_chip(substream);
650 struct snd_pcm_runtime *runtime = substream->runtime;
651 struct voice *voice = &sis->capture_voice;
652 unsigned long flags;
653
654 /* FIXME: The driver only supports recording from one channel
655 * at the moment, but it could support more.
656 */
657 spin_lock_irqsave(&sis->voice_lock, flags);
658 if (voice->flags & VOICE_IN_USE)
659 voice = NULL;
660 else
661 voice->flags |= VOICE_IN_USE;
662 spin_unlock_irqrestore(&sis->voice_lock, flags);
663
664 if (!voice)
665 return -EAGAIN;
666
667 voice->substream = substream;
668 runtime->private_data = voice;
669 runtime->hw = sis_capture_hw_info;
670 runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
671 snd_pcm_limit_hw_rates(runtime);
672 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
673 9, 0xfff9);
674 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
675 9, 0xfff9);
676 snd_pcm_set_sync(substream);
677 return 0;
678 }
679
sis_capture_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * hw_params)680 static int sis_capture_hw_params(struct snd_pcm_substream *substream,
681 struct snd_pcm_hw_params *hw_params)
682 {
683 struct sis7019 *sis = snd_pcm_substream_chip(substream);
684 int rc;
685
686 rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
687 params_rate(hw_params));
688 if (rc)
689 goto out;
690
691 rc = sis_alloc_timing_voice(substream, hw_params);
692
693 out:
694 return rc;
695 }
696
sis_prepare_timing_voice(struct voice * voice,struct snd_pcm_substream * substream)697 static void sis_prepare_timing_voice(struct voice *voice,
698 struct snd_pcm_substream *substream)
699 {
700 struct sis7019 *sis = snd_pcm_substream_chip(substream);
701 struct snd_pcm_runtime *runtime = substream->runtime;
702 struct voice *timing = voice->timing;
703 void __iomem *play_base = timing->ctrl_base;
704 void __iomem *wave_base = timing->wave_base;
705 u16 buffer_size, period_size;
706 u32 format, control, sso_eso, delta;
707 u32 vperiod, sso, reg;
708
709 /* Set our initial buffer and period as large as we can given a
710 * single page of silence.
711 */
712 buffer_size = 4096 / runtime->channels;
713 buffer_size /= snd_pcm_format_size(runtime->format, 1);
714 period_size = buffer_size;
715
716 /* Initially, we want to interrupt just a bit behind the end of
717 * the period we're clocking out. 12 samples seems to give a good
718 * delay.
719 *
720 * We want to spread our interrupts throughout the virtual period,
721 * so that we don't end up with two interrupts back to back at the
722 * end -- this helps minimize the effects of any jitter. Adjust our
723 * clocking period size so that the last period is at least a fourth
724 * of a full period.
725 *
726 * This is all moot if we don't need to use virtual periods.
727 */
728 vperiod = runtime->period_size + 12;
729 if (vperiod > period_size) {
730 u16 tail = vperiod % period_size;
731 u16 quarter_period = period_size / 4;
732
733 if (tail && tail < quarter_period) {
734 u16 loops = vperiod / period_size;
735
736 tail = quarter_period - tail;
737 tail += loops - 1;
738 tail /= loops;
739 period_size -= tail;
740 }
741
742 sso = period_size - 1;
743 } else {
744 /* The initial period will fit inside the buffer, so we
745 * don't need to use virtual periods -- disable them.
746 */
747 period_size = runtime->period_size;
748 sso = vperiod - 1;
749 vperiod = 0;
750 }
751
752 /* The interrupt handler implements the timing synchronization, so
753 * setup its state.
754 */
755 timing->flags |= VOICE_SYNC_TIMING;
756 timing->sync_base = voice->ctrl_base;
757 timing->sync_cso = runtime->period_size;
758 timing->sync_period_size = runtime->period_size;
759 timing->sync_buffer_size = runtime->buffer_size;
760 timing->period_size = period_size;
761 timing->buffer_size = buffer_size;
762 timing->sso = sso;
763 timing->vperiod = vperiod;
764
765 /* Using unsigned samples with the all-zero silence buffer
766 * forces the output to the lower rail, killing playback.
767 * So ignore unsigned vs signed -- it doesn't change the timing.
768 */
769 format = 0;
770 if (snd_pcm_format_width(runtime->format) == 8)
771 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
772 if (runtime->channels == 1)
773 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
774
775 control = timing->buffer_size - 1;
776 control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
777 sso_eso = timing->buffer_size - 1;
778 sso_eso |= timing->sso << 16;
779
780 delta = sis_rate_to_delta(runtime->rate);
781
782 /* We've done the math, now configure the channel.
783 */
784 writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
785 writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
786 writel(control, play_base + SIS_PLAY_DMA_CONTROL);
787 writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
788
789 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
790 writel(0, wave_base + reg);
791
792 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
793 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
794 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
795 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
796 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
797 wave_base + SIS_WAVE_CHANNEL_CONTROL);
798 }
799
sis_pcm_capture_prepare(struct snd_pcm_substream * substream)800 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
801 {
802 struct snd_pcm_runtime *runtime = substream->runtime;
803 struct voice *voice = runtime->private_data;
804 void __iomem *rec_base = voice->ctrl_base;
805 u32 format, dma_addr, control;
806 u16 leo;
807
808 /* We rely on the PCM core to ensure that the parameters for this
809 * substream do not change on us while we're programming the HW.
810 */
811 format = 0;
812 if (snd_pcm_format_width(runtime->format) == 8)
813 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
814 if (!snd_pcm_format_signed(runtime->format))
815 format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
816 if (runtime->channels == 1)
817 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
818
819 dma_addr = runtime->dma_addr;
820 leo = runtime->buffer_size - 1;
821 control = leo | SIS_CAPTURE_DMA_LOOP;
822
823 /* If we've got more than two periods per buffer, then we have
824 * use a timing voice to clock out the periods. Otherwise, we can
825 * use the capture channel's interrupts.
826 */
827 if (voice->timing) {
828 sis_prepare_timing_voice(voice, substream);
829 } else {
830 control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
831 if (runtime->period_size != runtime->buffer_size)
832 control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
833 }
834
835 writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
836 writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
837 writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
838
839 /* Force the writes to post. */
840 readl(rec_base);
841
842 return 0;
843 }
844
845 static const struct snd_pcm_ops sis_playback_ops = {
846 .open = sis_playback_open,
847 .close = sis_substream_close,
848 .prepare = sis_pcm_playback_prepare,
849 .trigger = sis_pcm_trigger,
850 .pointer = sis_pcm_pointer,
851 };
852
853 static const struct snd_pcm_ops sis_capture_ops = {
854 .open = sis_capture_open,
855 .close = sis_substream_close,
856 .hw_params = sis_capture_hw_params,
857 .prepare = sis_pcm_capture_prepare,
858 .trigger = sis_pcm_trigger,
859 .pointer = sis_pcm_pointer,
860 };
861
sis_pcm_create(struct sis7019 * sis)862 static int sis_pcm_create(struct sis7019 *sis)
863 {
864 struct snd_pcm *pcm;
865 int rc;
866
867 /* We have 64 voices, and the driver currently records from
868 * only one channel, though that could change in the future.
869 */
870 rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
871 if (rc)
872 return rc;
873
874 pcm->private_data = sis;
875 strcpy(pcm->name, "SiS7019");
876 sis->pcm = pcm;
877
878 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
879 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
880
881 /* Try to preallocate some memory, but it's not the end of the
882 * world if this fails.
883 */
884 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
885 &sis->pci->dev, 64*1024, 128*1024);
886
887 return 0;
888 }
889
sis_ac97_rw(struct sis7019 * sis,int codec,u32 cmd)890 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
891 {
892 unsigned long io = sis->ioport;
893 unsigned short val = 0xffff;
894 u16 status;
895 u16 rdy;
896 int count;
897 static const u16 codec_ready[3] = {
898 SIS_AC97_STATUS_CODEC_READY,
899 SIS_AC97_STATUS_CODEC2_READY,
900 SIS_AC97_STATUS_CODEC3_READY,
901 };
902
903 rdy = codec_ready[codec];
904
905
906 /* Get the AC97 semaphore -- software first, so we don't spin
907 * pounding out IO reads on the hardware semaphore...
908 */
909 mutex_lock(&sis->ac97_mutex);
910
911 count = 0xffff;
912 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
913 udelay(1);
914
915 if (!count)
916 goto timeout;
917
918 /* ... and wait for any outstanding commands to complete ...
919 */
920 count = 0xffff;
921 do {
922 status = inw(io + SIS_AC97_STATUS);
923 if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
924 break;
925
926 udelay(1);
927 } while (--count);
928
929 if (!count)
930 goto timeout_sema;
931
932 /* ... before sending our command and waiting for it to finish ...
933 */
934 outl(cmd, io + SIS_AC97_CMD);
935 udelay(10);
936
937 count = 0xffff;
938 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
939 udelay(1);
940
941 /* ... and reading the results (if any).
942 */
943 val = inl(io + SIS_AC97_CMD) >> 16;
944
945 timeout_sema:
946 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
947 timeout:
948 mutex_unlock(&sis->ac97_mutex);
949
950 if (!count) {
951 dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
952 codec, cmd);
953 }
954
955 return val;
956 }
957
sis_ac97_write(struct snd_ac97 * ac97,unsigned short reg,unsigned short val)958 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
959 unsigned short val)
960 {
961 static const u32 cmd[3] = {
962 SIS_AC97_CMD_CODEC_WRITE,
963 SIS_AC97_CMD_CODEC2_WRITE,
964 SIS_AC97_CMD_CODEC3_WRITE,
965 };
966 sis_ac97_rw(ac97->private_data, ac97->num,
967 (val << 16) | (reg << 8) | cmd[ac97->num]);
968 }
969
sis_ac97_read(struct snd_ac97 * ac97,unsigned short reg)970 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
971 {
972 static const u32 cmd[3] = {
973 SIS_AC97_CMD_CODEC_READ,
974 SIS_AC97_CMD_CODEC2_READ,
975 SIS_AC97_CMD_CODEC3_READ,
976 };
977 return sis_ac97_rw(ac97->private_data, ac97->num,
978 (reg << 8) | cmd[ac97->num]);
979 }
980
sis_mixer_create(struct sis7019 * sis)981 static int sis_mixer_create(struct sis7019 *sis)
982 {
983 struct snd_ac97_bus *bus;
984 struct snd_ac97_template ac97;
985 static const struct snd_ac97_bus_ops ops = {
986 .write = sis_ac97_write,
987 .read = sis_ac97_read,
988 };
989 int rc;
990
991 memset(&ac97, 0, sizeof(ac97));
992 ac97.private_data = sis;
993
994 rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
995 if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
996 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
997 ac97.num = 1;
998 if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
999 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1000 ac97.num = 2;
1001 if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1002 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1003
1004 /* If we return an error here, then snd_card_free() should
1005 * free up any ac97 codecs that got created, as well as the bus.
1006 */
1007 return rc;
1008 }
1009
sis_chip_free(struct snd_card * card)1010 static void sis_chip_free(struct snd_card *card)
1011 {
1012 struct sis7019 *sis = card->private_data;
1013
1014 /* Reset the chip, and disable all interrputs.
1015 */
1016 outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1017 udelay(25);
1018 outl(0, sis->ioport + SIS_GCR);
1019 outl(0, sis->ioport + SIS_GIER);
1020
1021 /* Now, free everything we allocated.
1022 */
1023 if (sis->irq >= 0)
1024 free_irq(sis->irq, sis);
1025 }
1026
sis_chip_init(struct sis7019 * sis)1027 static int sis_chip_init(struct sis7019 *sis)
1028 {
1029 unsigned long io = sis->ioport;
1030 void __iomem *ioaddr = sis->ioaddr;
1031 unsigned long timeout;
1032 u16 status;
1033 int count;
1034 int i;
1035
1036 /* Reset the audio controller
1037 */
1038 outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1039 udelay(25);
1040 outl(0, io + SIS_GCR);
1041
1042 /* Get the AC-link semaphore, and reset the codecs
1043 */
1044 count = 0xffff;
1045 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1046 udelay(1);
1047
1048 if (!count)
1049 return -EIO;
1050
1051 outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1052 udelay(250);
1053
1054 count = 0xffff;
1055 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1056 udelay(1);
1057
1058 /* Command complete, we can let go of the semaphore now.
1059 */
1060 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1061 if (!count)
1062 return -EIO;
1063
1064 /* Now that we've finished the reset, find out what's attached.
1065 * There are some codec/board combinations that take an extremely
1066 * long time to come up. 350+ ms has been observed in the field,
1067 * so we'll give them up to 500ms.
1068 */
1069 sis->codecs_present = 0;
1070 timeout = msecs_to_jiffies(500) + jiffies;
1071 while (time_before_eq(jiffies, timeout)) {
1072 status = inl(io + SIS_AC97_STATUS);
1073 if (status & SIS_AC97_STATUS_CODEC_READY)
1074 sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1075 if (status & SIS_AC97_STATUS_CODEC2_READY)
1076 sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1077 if (status & SIS_AC97_STATUS_CODEC3_READY)
1078 sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1079
1080 if (sis->codecs_present == codecs)
1081 break;
1082
1083 msleep(1);
1084 }
1085
1086 /* All done, check for errors.
1087 */
1088 if (!sis->codecs_present) {
1089 dev_err(&sis->pci->dev, "could not find any codecs\n");
1090 return -EIO;
1091 }
1092
1093 if (sis->codecs_present != codecs) {
1094 dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
1095 sis->codecs_present, codecs);
1096 }
1097
1098 /* Let the hardware know that the audio driver is alive,
1099 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1100 * record channels. We're going to want to use Variable Rate Audio
1101 * for recording, to avoid needlessly resampling from 48kHZ.
1102 */
1103 outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1104 outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1105 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1106 SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1107 SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1108
1109 /* All AC97 PCM slots should be sourced from sub-mixer 0.
1110 */
1111 outl(0, io + SIS_AC97_PSR);
1112
1113 /* There is only one valid DMA setup for a PCI environment.
1114 */
1115 outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1116
1117 /* Reset the synchronization groups for all of the channels
1118 * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
1119 * we'll need to change how we handle these. Until then, we just
1120 * assign sub-mixer 0 to all playback channels, and avoid any
1121 * attenuation on the audio.
1122 */
1123 outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1124 outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1125 outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1126 outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1127 outl(0, io + SIS_MIXER_SYNC_GROUP);
1128
1129 for (i = 0; i < 64; i++) {
1130 writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1131 writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1132 SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1133 }
1134
1135 /* Don't attenuate any audio set for the wave amplifier.
1136 *
1137 * FIXME: Maximum attenuation is set for the music amp, which will
1138 * need to change if we start using the synth engine.
1139 */
1140 outl(0xffff0000, io + SIS_WEVCR);
1141
1142 /* Ensure that the wave engine is in normal operating mode.
1143 */
1144 outl(0, io + SIS_WECCR);
1145
1146 /* Go ahead and enable the DMA interrupts. They won't go live
1147 * until we start a channel.
1148 */
1149 outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1150 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1151
1152 return 0;
1153 }
1154
1155 #ifdef CONFIG_PM_SLEEP
sis_suspend(struct device * dev)1156 static int sis_suspend(struct device *dev)
1157 {
1158 struct snd_card *card = dev_get_drvdata(dev);
1159 struct sis7019 *sis = card->private_data;
1160 void __iomem *ioaddr = sis->ioaddr;
1161 int i;
1162
1163 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1164 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1165 snd_ac97_suspend(sis->ac97[0]);
1166 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1167 snd_ac97_suspend(sis->ac97[1]);
1168 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1169 snd_ac97_suspend(sis->ac97[2]);
1170
1171 /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1172 */
1173 if (sis->irq >= 0) {
1174 free_irq(sis->irq, sis);
1175 sis->irq = -1;
1176 }
1177
1178 /* Save the internal state away
1179 */
1180 for (i = 0; i < 4; i++) {
1181 memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1182 ioaddr += 4096;
1183 }
1184
1185 return 0;
1186 }
1187
sis_resume(struct device * dev)1188 static int sis_resume(struct device *dev)
1189 {
1190 struct pci_dev *pci = to_pci_dev(dev);
1191 struct snd_card *card = dev_get_drvdata(dev);
1192 struct sis7019 *sis = card->private_data;
1193 void __iomem *ioaddr = sis->ioaddr;
1194 int i;
1195
1196 if (sis_chip_init(sis)) {
1197 dev_err(&pci->dev, "unable to re-init controller\n");
1198 goto error;
1199 }
1200
1201 if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
1202 KBUILD_MODNAME, sis)) {
1203 dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
1204 goto error;
1205 }
1206
1207 /* Restore saved state, then clear out the page we use for the
1208 * silence buffer.
1209 */
1210 for (i = 0; i < 4; i++) {
1211 memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1212 ioaddr += 4096;
1213 }
1214
1215 memset(sis->suspend_state[0], 0, 4096);
1216
1217 sis->irq = pci->irq;
1218
1219 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1220 snd_ac97_resume(sis->ac97[0]);
1221 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1222 snd_ac97_resume(sis->ac97[1]);
1223 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1224 snd_ac97_resume(sis->ac97[2]);
1225
1226 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1227 return 0;
1228
1229 error:
1230 snd_card_disconnect(card);
1231 return -EIO;
1232 }
1233
1234 static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
1235 #define SIS_PM_OPS &sis_pm
1236 #else
1237 #define SIS_PM_OPS NULL
1238 #endif /* CONFIG_PM_SLEEP */
1239
sis_alloc_suspend(struct sis7019 * sis)1240 static int sis_alloc_suspend(struct sis7019 *sis)
1241 {
1242 int i;
1243
1244 /* We need 16K to store the internal wave engine state during a
1245 * suspend, but we don't need it to be contiguous, so play nice
1246 * with the memory system. We'll also use this area for a silence
1247 * buffer.
1248 */
1249 for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1250 sis->suspend_state[i] = devm_kmalloc(&sis->pci->dev, 4096,
1251 GFP_KERNEL);
1252 if (!sis->suspend_state[i])
1253 return -ENOMEM;
1254 }
1255 memset(sis->suspend_state[0], 0, 4096);
1256
1257 return 0;
1258 }
1259
sis_chip_create(struct snd_card * card,struct pci_dev * pci)1260 static int sis_chip_create(struct snd_card *card,
1261 struct pci_dev *pci)
1262 {
1263 struct sis7019 *sis = card->private_data;
1264 struct voice *voice;
1265 int rc;
1266 int i;
1267
1268 rc = pcim_enable_device(pci);
1269 if (rc)
1270 return rc;
1271
1272 rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30));
1273 if (rc < 0) {
1274 dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
1275 return -ENXIO;
1276 }
1277
1278 mutex_init(&sis->ac97_mutex);
1279 spin_lock_init(&sis->voice_lock);
1280 sis->card = card;
1281 sis->pci = pci;
1282 sis->irq = -1;
1283 sis->ioport = pci_resource_start(pci, 0);
1284
1285 rc = pci_request_regions(pci, "SiS7019");
1286 if (rc) {
1287 dev_err(&pci->dev, "unable request regions\n");
1288 return rc;
1289 }
1290
1291 sis->ioaddr = devm_ioremap(&pci->dev, pci_resource_start(pci, 1), 0x4000);
1292 if (!sis->ioaddr) {
1293 dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
1294 return -EIO;
1295 }
1296
1297 rc = sis_alloc_suspend(sis);
1298 if (rc < 0) {
1299 dev_err(&pci->dev, "unable to allocate state storage\n");
1300 return rc;
1301 }
1302
1303 rc = sis_chip_init(sis);
1304 if (rc)
1305 return rc;
1306 card->private_free = sis_chip_free;
1307
1308 rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
1309 sis);
1310 if (rc) {
1311 dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
1312 return rc;
1313 }
1314
1315 sis->irq = pci->irq;
1316 card->sync_irq = sis->irq;
1317 pci_set_master(pci);
1318
1319 for (i = 0; i < 64; i++) {
1320 voice = &sis->voices[i];
1321 voice->num = i;
1322 voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1323 voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1324 }
1325
1326 voice = &sis->capture_voice;
1327 voice->flags = VOICE_CAPTURE;
1328 voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1329 voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1330
1331 return 0;
1332 }
1333
__snd_sis7019_probe(struct pci_dev * pci,const struct pci_device_id * pci_id)1334 static int __snd_sis7019_probe(struct pci_dev *pci,
1335 const struct pci_device_id *pci_id)
1336 {
1337 struct snd_card *card;
1338 struct sis7019 *sis;
1339 int rc;
1340
1341 if (!enable)
1342 return -ENOENT;
1343
1344 /* The user can specify which codecs should be present so that we
1345 * can wait for them to show up if they are slow to recover from
1346 * the AC97 cold reset. We default to a single codec, the primary.
1347 *
1348 * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1349 */
1350 codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
1351 SIS_TERTIARY_CODEC_PRESENT;
1352 if (!codecs)
1353 codecs = SIS_PRIMARY_CODEC_PRESENT;
1354
1355 rc = snd_devm_card_new(&pci->dev, index, id, THIS_MODULE,
1356 sizeof(*sis), &card);
1357 if (rc < 0)
1358 return rc;
1359
1360 strcpy(card->driver, "SiS7019");
1361 strcpy(card->shortname, "SiS7019");
1362 rc = sis_chip_create(card, pci);
1363 if (rc)
1364 return rc;
1365
1366 sis = card->private_data;
1367
1368 rc = sis_mixer_create(sis);
1369 if (rc)
1370 return rc;
1371
1372 rc = sis_pcm_create(sis);
1373 if (rc)
1374 return rc;
1375
1376 snprintf(card->longname, sizeof(card->longname),
1377 "%s Audio Accelerator with %s at 0x%lx, irq %d",
1378 card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1379 sis->ioport, sis->irq);
1380
1381 rc = snd_card_register(card);
1382 if (rc)
1383 return rc;
1384
1385 pci_set_drvdata(pci, card);
1386 return 0;
1387 }
1388
snd_sis7019_probe(struct pci_dev * pci,const struct pci_device_id * pci_id)1389 static int snd_sis7019_probe(struct pci_dev *pci,
1390 const struct pci_device_id *pci_id)
1391 {
1392 return snd_card_free_on_error(&pci->dev, __snd_sis7019_probe(pci, pci_id));
1393 }
1394
1395 static struct pci_driver sis7019_driver = {
1396 .name = KBUILD_MODNAME,
1397 .id_table = snd_sis7019_ids,
1398 .probe = snd_sis7019_probe,
1399 .driver = {
1400 .pm = SIS_PM_OPS,
1401 },
1402 };
1403
1404 module_pci_driver(sis7019_driver);
1405