1 /**
2  * \file ecp_internal_alt.h
3  *
4  * \brief Function declarations for alternative implementation of elliptic curve
5  * point arithmetic.
6  */
7 /*
8  *  Copyright The Mbed TLS Contributors
9  *  SPDX-License-Identifier: Apache-2.0
10  *
11  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
12  *  not use this file except in compliance with the License.
13  *  You may obtain a copy of the License at
14  *
15  *  http://www.apache.org/licenses/LICENSE-2.0
16  *
17  *  Unless required by applicable law or agreed to in writing, software
18  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
19  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
20  *  See the License for the specific language governing permissions and
21  *  limitations under the License.
22  */
23 
24 /*
25  * References:
26  *
27  * [1] BERNSTEIN, Daniel J. Curve25519: new Diffie-Hellman speed records.
28  *     <http://cr.yp.to/ecdh/curve25519-20060209.pdf>
29  *
30  * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
31  *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
32  *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
33  *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
34  *
35  * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
36  *     render ECC resistant against Side Channel Attacks. IACR Cryptology
37  *     ePrint Archive, 2004, vol. 2004, p. 342.
38  *     <http://eprint.iacr.org/2004/342.pdf>
39  *
40  * [4] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters.
41  *     <http://www.secg.org/sec2-v2.pdf>
42  *
43  * [5] HANKERSON, Darrel, MENEZES, Alfred J., VANSTONE, Scott. Guide to Elliptic
44  *     Curve Cryptography.
45  *
46  * [6] Digital Signature Standard (DSS), FIPS 186-4.
47  *     <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf>
48  *
49  * [7] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer
50  *     Security (TLS), RFC 4492.
51  *     <https://tools.ietf.org/search/rfc4492>
52  *
53  * [8] <http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html>
54  *
55  * [9] COHEN, Henri. A Course in Computational Algebraic Number Theory.
56  *     Springer Science & Business Media, 1 Aug 2000
57  */
58 
59 #ifndef MBEDTLS_ECP_INTERNAL_H
60 #define MBEDTLS_ECP_INTERNAL_H
61 
62 #include "mbedtls/build_info.h"
63 
64 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
65 
66 /**
67  * \brief           Indicate if the Elliptic Curve Point module extension can
68  *                  handle the group.
69  *
70  * \param grp       The pointer to the elliptic curve group that will be the
71  *                  basis of the cryptographic computations.
72  *
73  * \return          Non-zero if successful.
74  */
75 unsigned char mbedtls_internal_ecp_grp_capable( const mbedtls_ecp_group *grp );
76 
77 /**
78  * \brief           Initialise the Elliptic Curve Point module extension.
79  *
80  *                  If mbedtls_internal_ecp_grp_capable returns true for a
81  *                  group, this function has to be able to initialise the
82  *                  module for it.
83  *
84  *                  This module can be a driver to a crypto hardware
85  *                  accelerator, for which this could be an initialise function.
86  *
87  * \param grp       The pointer to the group the module needs to be
88  *                  initialised for.
89  *
90  * \return          0 if successful.
91  */
92 int mbedtls_internal_ecp_init( const mbedtls_ecp_group *grp );
93 
94 /**
95  * \brief           Frees and deallocates the Elliptic Curve Point module
96  *                  extension.
97  *
98  * \param grp       The pointer to the group the module was initialised for.
99  */
100 void mbedtls_internal_ecp_free( const mbedtls_ecp_group *grp );
101 
102 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
103 
104 #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
105 /**
106  * \brief           Randomize jacobian coordinates:
107  *                  (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l.
108  *
109  * \param grp       Pointer to the group representing the curve.
110  *
111  * \param pt        The point on the curve to be randomised, given with Jacobian
112  *                  coordinates.
113  *
114  * \param f_rng     A function pointer to the random number generator.
115  *
116  * \param p_rng     A pointer to the random number generator state.
117  *
118  * \return          0 if successful.
119  */
120 int mbedtls_internal_ecp_randomize_jac( const mbedtls_ecp_group *grp,
121         mbedtls_ecp_point *pt, int (*f_rng)(void *, unsigned char *, size_t),
122         void *p_rng );
123 #endif
124 
125 #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
126 /**
127  * \brief           Addition: R = P + Q, mixed affine-Jacobian coordinates.
128  *
129  *                  The coordinates of Q must be normalized (= affine),
130  *                  but those of P don't need to. R is not normalized.
131  *
132  *                  This function is used only as a subrutine of
133  *                  ecp_mul_comb().
134  *
135  *                  Special cases: (1) P or Q is zero, (2) R is zero,
136  *                      (3) P == Q.
137  *                  None of these cases can happen as intermediate step in
138  *                  ecp_mul_comb():
139  *                      - at each step, P, Q and R are multiples of the base
140  *                      point, the factor being less than its order, so none of
141  *                      them is zero;
142  *                      - Q is an odd multiple of the base point, P an even
143  *                      multiple, due to the choice of precomputed points in the
144  *                      modified comb method.
145  *                  So branches for these cases do not leak secret information.
146  *
147  *                  We accept Q->Z being unset (saving memory in tables) as
148  *                  meaning 1.
149  *
150  *                  Cost in field operations if done by [5] 3.22:
151  *                      1A := 8M + 3S
152  *
153  * \param grp       Pointer to the group representing the curve.
154  *
155  * \param R         Pointer to a point structure to hold the result.
156  *
157  * \param P         Pointer to the first summand, given with Jacobian
158  *                  coordinates
159  *
160  * \param Q         Pointer to the second summand, given with affine
161  *                  coordinates.
162  *
163  * \return          0 if successful.
164  */
165 int mbedtls_internal_ecp_add_mixed( const mbedtls_ecp_group *grp,
166         mbedtls_ecp_point *R, const mbedtls_ecp_point *P,
167         const mbedtls_ecp_point *Q );
168 #endif
169 
170 /**
171  * \brief           Point doubling R = 2 P, Jacobian coordinates.
172  *
173  *                  Cost:   1D := 3M + 4S    (A ==  0)
174  *                          4M + 4S          (A == -3)
175  *                          3M + 6S + 1a     otherwise
176  *                  when the implementation is based on the "dbl-1998-cmo-2"
177  *                  doubling formulas in [8] and standard optimizations are
178  *                  applied when curve parameter A is one of { 0, -3 }.
179  *
180  * \param grp       Pointer to the group representing the curve.
181  *
182  * \param R         Pointer to a point structure to hold the result.
183  *
184  * \param P         Pointer to the point that has to be doubled, given with
185  *                  Jacobian coordinates.
186  *
187  * \return          0 if successful.
188  */
189 #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
190 int mbedtls_internal_ecp_double_jac( const mbedtls_ecp_group *grp,
191         mbedtls_ecp_point *R, const mbedtls_ecp_point *P );
192 #endif
193 
194 /**
195  * \brief           Normalize jacobian coordinates of an array of (pointers to)
196  *                  points.
197  *
198  *                  Using Montgomery's trick to perform only one inversion mod P
199  *                  the cost is:
200  *                      1N(t) := 1I + (6t - 3)M + 1S
201  *                  (See for example Algorithm 10.3.4. in [9])
202  *
203  *                  This function is used only as a subrutine of
204  *                  ecp_mul_comb().
205  *
206  *                  Warning: fails (returning an error) if one of the points is
207  *                  zero!
208  *                  This should never happen, see choice of w in ecp_mul_comb().
209  *
210  * \param grp       Pointer to the group representing the curve.
211  *
212  * \param T         Array of pointers to the points to normalise.
213  *
214  * \param t_len     Number of elements in the array.
215  *
216  * \return          0 if successful,
217  *                      an error if one of the points is zero.
218  */
219 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
220 int mbedtls_internal_ecp_normalize_jac_many( const mbedtls_ecp_group *grp,
221         mbedtls_ecp_point *T[], size_t t_len );
222 #endif
223 
224 /**
225  * \brief           Normalize jacobian coordinates so that Z == 0 || Z == 1.
226  *
227  *                  Cost in field operations if done by [5] 3.2.1:
228  *                      1N := 1I + 3M + 1S
229  *
230  * \param grp       Pointer to the group representing the curve.
231  *
232  * \param pt        pointer to the point to be normalised. This is an
233  *                  input/output parameter.
234  *
235  * \return          0 if successful.
236  */
237 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
238 int mbedtls_internal_ecp_normalize_jac( const mbedtls_ecp_group *grp,
239         mbedtls_ecp_point *pt );
240 #endif
241 
242 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
243 
244 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
245 
246 #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
247 int mbedtls_internal_ecp_double_add_mxz( const mbedtls_ecp_group *grp,
248         mbedtls_ecp_point *R, mbedtls_ecp_point *S, const mbedtls_ecp_point *P,
249         const mbedtls_ecp_point *Q, const mbedtls_mpi *d );
250 #endif
251 
252 /**
253  * \brief           Randomize projective x/z coordinates:
254  *                      (X, Z) -> (l X, l Z) for random l
255  *
256  * \param grp       pointer to the group representing the curve
257  *
258  * \param P         the point on the curve to be randomised given with
259  *                  projective coordinates. This is an input/output parameter.
260  *
261  * \param f_rng     a function pointer to the random number generator
262  *
263  * \param p_rng     a pointer to the random number generator state
264  *
265  * \return          0 if successful
266  */
267 #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
268 int mbedtls_internal_ecp_randomize_mxz( const mbedtls_ecp_group *grp,
269         mbedtls_ecp_point *P, int (*f_rng)(void *, unsigned char *, size_t),
270         void *p_rng );
271 #endif
272 
273 /**
274  * \brief           Normalize Montgomery x/z coordinates: X = X/Z, Z = 1.
275  *
276  * \param grp       pointer to the group representing the curve
277  *
278  * \param P         pointer to the point to be normalised. This is an
279  *                  input/output parameter.
280  *
281  * \return          0 if successful
282  */
283 #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
284 int mbedtls_internal_ecp_normalize_mxz( const mbedtls_ecp_group *grp,
285         mbedtls_ecp_point *P );
286 #endif
287 
288 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
289 
290 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
291 
292 #endif /* ecp_internal_alt.h */
293 
294