1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis */
2 /* SPDX-License-Identifier: Unlicense */
3 
4 /* AES implementation by Tom St Denis
5  *
6  * Derived from the Public Domain source code by
7 
8 ---
9   * rijndael-alg-fst.c
10   *
11   * @version 3.0 (December 2000)
12   *
13   * Optimised ANSI C code for the Rijndael cipher (now AES)
14   *
15   * @author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be>
16   * @author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be>
17   * @author Paulo Barreto <paulo.barreto@terra.com.br>
18 ---
19  */
20 /**
21   @file aes.c
22   Implementation of AES
23 */
24 
25 #include "tomcrypt_private.h"
26 
27 #ifdef LTC_RIJNDAEL
28 
29 #ifndef ENCRYPT_ONLY
30 
31 #define SETUP    rijndael_setup
32 #define ECB_ENC  rijndael_ecb_encrypt
33 #define ECB_DEC  rijndael_ecb_decrypt
34 #define ECB_DONE rijndael_done
35 #define ECB_TEST rijndael_test
36 #define ECB_KS   rijndael_keysize
37 
38 const struct ltc_cipher_descriptor rijndael_desc =
39 {
40     "rijndael",
41     6,
42     16, 32, 16, 10,
43     SETUP, ECB_ENC, ECB_DEC, ECB_TEST, ECB_DONE, ECB_KS,
44     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
45 };
46 
47 const struct ltc_cipher_descriptor aes_desc =
48 {
49     "aes",
50     6,
51     16, 32, 16, 10,
52     SETUP, ECB_ENC, ECB_DEC, ECB_TEST, ECB_DONE, ECB_KS,
53     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
54 };
55 
56 #else
57 
58 #define SETUP    rijndael_enc_setup
59 #define ECB_ENC  rijndael_enc_ecb_encrypt
60 #define ECB_KS   rijndael_enc_keysize
61 #define ECB_DONE rijndael_enc_done
62 
63 const struct ltc_cipher_descriptor rijndael_enc_desc =
64 {
65     "rijndael",
66     6,
67     16, 32, 16, 10,
68     SETUP, ECB_ENC, NULL, NULL, ECB_DONE, ECB_KS,
69     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
70 };
71 
72 const struct ltc_cipher_descriptor aes_enc_desc =
73 {
74     "aes",
75     6,
76     16, 32, 16, 10,
77     SETUP, ECB_ENC, NULL, NULL, ECB_DONE, ECB_KS,
78     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
79 };
80 
81 #endif
82 
83 #define LTC_AES_TAB_C
84 #include "aes_tab.c"
85 
setup_mix(ulong32 temp)86 static ulong32 setup_mix(ulong32 temp)
87 {
88    return (Te4_3[LTC_BYTE(temp, 2)]) ^
89           (Te4_2[LTC_BYTE(temp, 1)]) ^
90           (Te4_1[LTC_BYTE(temp, 0)]) ^
91           (Te4_0[LTC_BYTE(temp, 3)]);
92 }
93 
94 #ifndef ENCRYPT_ONLY
95 #ifdef LTC_SMALL_CODE
setup_mix2(ulong32 temp)96 static ulong32 setup_mix2(ulong32 temp)
97 {
98    return Td0(255 & Te4[LTC_BYTE(temp, 3)]) ^
99           Td1(255 & Te4[LTC_BYTE(temp, 2)]) ^
100           Td2(255 & Te4[LTC_BYTE(temp, 1)]) ^
101           Td3(255 & Te4[LTC_BYTE(temp, 0)]);
102 }
103 #endif
104 #endif
105 
106  /**
107     Initialize the AES (Rijndael) block cipher
108     @param key The symmetric key you wish to pass
109     @param keylen The key length in bytes
110     @param num_rounds The number of rounds desired (0 for default)
111     @param skey The key in as scheduled by this function.
112     @return CRYPT_OK if successful
113  */
SETUP(const unsigned char * key,int keylen,int num_rounds,symmetric_key * skey)114 int SETUP(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
115 {
116     int i;
117     ulong32 temp, *rk;
118 #ifndef ENCRYPT_ONLY
119     ulong32 *rrk;
120 #endif
121     LTC_ARGCHK(key  != NULL);
122     LTC_ARGCHK(skey != NULL);
123 
124     if (keylen != 16 && keylen != 24 && keylen != 32) {
125        return CRYPT_INVALID_KEYSIZE;
126     }
127 
128     if (num_rounds != 0 && num_rounds != (10 + ((keylen/8)-2)*2)) {
129        return CRYPT_INVALID_ROUNDS;
130     }
131 
132     skey->rijndael.Nr = 10 + ((keylen/8)-2)*2;
133 
134     /* setup the forward key */
135     i                 = 0;
136     rk                = skey->rijndael.eK;
137     LOAD32H(rk[0], key     );
138     LOAD32H(rk[1], key +  4);
139     LOAD32H(rk[2], key +  8);
140     LOAD32H(rk[3], key + 12);
141     if (keylen == 16) {
142         for (;;) {
143             temp  = rk[3];
144             rk[4] = rk[0] ^ setup_mix(temp) ^ rcon[i];
145             rk[5] = rk[1] ^ rk[4];
146             rk[6] = rk[2] ^ rk[5];
147             rk[7] = rk[3] ^ rk[6];
148             if (++i == 10) {
149                break;
150             }
151             rk += 4;
152         }
153     } else if (keylen == 24) {
154         LOAD32H(rk[4], key + 16);
155         LOAD32H(rk[5], key + 20);
156         for (;;) {
157         #ifdef _MSC_VER
158             temp = skey->rijndael.eK[rk - skey->rijndael.eK + 5];
159         #else
160             temp = rk[5];
161         #endif
162             rk[ 6] = rk[ 0] ^ setup_mix(temp) ^ rcon[i];
163             rk[ 7] = rk[ 1] ^ rk[ 6];
164             rk[ 8] = rk[ 2] ^ rk[ 7];
165             rk[ 9] = rk[ 3] ^ rk[ 8];
166             if (++i == 8) {
167                 break;
168             }
169             rk[10] = rk[ 4] ^ rk[ 9];
170             rk[11] = rk[ 5] ^ rk[10];
171             rk += 6;
172         }
173     } else if (keylen == 32) {
174         LOAD32H(rk[4], key + 16);
175         LOAD32H(rk[5], key + 20);
176         LOAD32H(rk[6], key + 24);
177         LOAD32H(rk[7], key + 28);
178         for (;;) {
179         #ifdef _MSC_VER
180             temp = skey->rijndael.eK[rk - skey->rijndael.eK + 7];
181         #else
182             temp = rk[7];
183         #endif
184             rk[ 8] = rk[ 0] ^ setup_mix(temp) ^ rcon[i];
185             rk[ 9] = rk[ 1] ^ rk[ 8];
186             rk[10] = rk[ 2] ^ rk[ 9];
187             rk[11] = rk[ 3] ^ rk[10];
188             if (++i == 7) {
189                 break;
190             }
191             temp = rk[11];
192             rk[12] = rk[ 4] ^ setup_mix(RORc(temp, 8));
193             rk[13] = rk[ 5] ^ rk[12];
194             rk[14] = rk[ 6] ^ rk[13];
195             rk[15] = rk[ 7] ^ rk[14];
196             rk += 8;
197         }
198     } else {
199        /* this can't happen */
200        /* coverity[dead_error_line] */
201        return CRYPT_ERROR;
202     }
203 
204 #ifndef ENCRYPT_ONLY
205     /* setup the inverse key now */
206     rk   = skey->rijndael.dK;
207     rrk  = skey->rijndael.eK + (28 + keylen) - 4;
208 
209     /* apply the inverse MixColumn transform to all round keys but the first and the last: */
210     /* copy first */
211     *rk++ = *rrk++;
212     *rk++ = *rrk++;
213     *rk++ = *rrk++;
214     *rk   = *rrk;
215     rk -= 3; rrk -= 3;
216 
217     for (i = 1; i < skey->rijndael.Nr; i++) {
218         rrk -= 4;
219         rk  += 4;
220     #ifdef LTC_SMALL_CODE
221         temp = rrk[0];
222         rk[0] = setup_mix2(temp);
223         temp = rrk[1];
224         rk[1] = setup_mix2(temp);
225         temp = rrk[2];
226         rk[2] = setup_mix2(temp);
227         temp = rrk[3];
228         rk[3] = setup_mix2(temp);
229      #else
230         temp = rrk[0];
231         rk[0] =
232             Tks0[LTC_BYTE(temp, 3)] ^
233             Tks1[LTC_BYTE(temp, 2)] ^
234             Tks2[LTC_BYTE(temp, 1)] ^
235             Tks3[LTC_BYTE(temp, 0)];
236         temp = rrk[1];
237         rk[1] =
238             Tks0[LTC_BYTE(temp, 3)] ^
239             Tks1[LTC_BYTE(temp, 2)] ^
240             Tks2[LTC_BYTE(temp, 1)] ^
241             Tks3[LTC_BYTE(temp, 0)];
242         temp = rrk[2];
243         rk[2] =
244             Tks0[LTC_BYTE(temp, 3)] ^
245             Tks1[LTC_BYTE(temp, 2)] ^
246             Tks2[LTC_BYTE(temp, 1)] ^
247             Tks3[LTC_BYTE(temp, 0)];
248         temp = rrk[3];
249         rk[3] =
250             Tks0[LTC_BYTE(temp, 3)] ^
251             Tks1[LTC_BYTE(temp, 2)] ^
252             Tks2[LTC_BYTE(temp, 1)] ^
253             Tks3[LTC_BYTE(temp, 0)];
254       #endif
255 
256     }
257 
258     /* copy last */
259     rrk -= 4;
260     rk  += 4;
261     *rk++ = *rrk++;
262     *rk++ = *rrk++;
263     *rk++ = *rrk++;
264     *rk   = *rrk;
265 #endif /* ENCRYPT_ONLY */
266 
267     return CRYPT_OK;
268 }
269 
270 /**
271   Encrypts a block of text with AES
272   @param pt The input plaintext (16 bytes)
273   @param ct The output ciphertext (16 bytes)
274   @param skey The key as scheduled
275   @return CRYPT_OK if successful
276 */
277 #ifdef LTC_CLEAN_STACK
s_rijndael_ecb_encrypt(const unsigned char * pt,unsigned char * ct,const symmetric_key * skey)278 static int s_rijndael_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
279 #else
280 int ECB_ENC(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
281 #endif
282 {
283     ulong32 s0, s1, s2, s3, t0, t1, t2, t3;
284     const ulong32 *rk;
285     int Nr, r;
286 
287     LTC_ARGCHK(pt != NULL);
288     LTC_ARGCHK(ct != NULL);
289     LTC_ARGCHK(skey != NULL);
290 
291     Nr = skey->rijndael.Nr;
292 
293     if (Nr < 2 || Nr > 16)
294         return CRYPT_INVALID_ROUNDS;
295 
296     rk = skey->rijndael.eK;
297 
298     /*
299      * map byte array block to cipher state
300      * and add initial round key:
301      */
302     LOAD32H(s0, pt      ); s0 ^= rk[0];
303     LOAD32H(s1, pt  +  4); s1 ^= rk[1];
304     LOAD32H(s2, pt  +  8); s2 ^= rk[2];
305     LOAD32H(s3, pt  + 12); s3 ^= rk[3];
306 
307 #ifdef LTC_SMALL_CODE
308 
309     for (r = 0; ; r++) {
310         rk += 4;
311         t0 =
312             Te0(LTC_BYTE(s0, 3)) ^
313             Te1(LTC_BYTE(s1, 2)) ^
314             Te2(LTC_BYTE(s2, 1)) ^
315             Te3(LTC_BYTE(s3, 0)) ^
316             rk[0];
317         t1 =
318             Te0(LTC_BYTE(s1, 3)) ^
319             Te1(LTC_BYTE(s2, 2)) ^
320             Te2(LTC_BYTE(s3, 1)) ^
321             Te3(LTC_BYTE(s0, 0)) ^
322             rk[1];
323         t2 =
324             Te0(LTC_BYTE(s2, 3)) ^
325             Te1(LTC_BYTE(s3, 2)) ^
326             Te2(LTC_BYTE(s0, 1)) ^
327             Te3(LTC_BYTE(s1, 0)) ^
328             rk[2];
329         t3 =
330             Te0(LTC_BYTE(s3, 3)) ^
331             Te1(LTC_BYTE(s0, 2)) ^
332             Te2(LTC_BYTE(s1, 1)) ^
333             Te3(LTC_BYTE(s2, 0)) ^
334             rk[3];
335         if (r == Nr-2) {
336            break;
337         }
338         s0 = t0; s1 = t1; s2 = t2; s3 = t3;
339     }
340     rk += 4;
341 
342 #else
343 
344     /*
345      * Nr - 1 full rounds:
346      */
347     r = Nr >> 1;
348     for (;;) {
349         t0 =
350             Te0(LTC_BYTE(s0, 3)) ^
351             Te1(LTC_BYTE(s1, 2)) ^
352             Te2(LTC_BYTE(s2, 1)) ^
353             Te3(LTC_BYTE(s3, 0)) ^
354             rk[4];
355         t1 =
356             Te0(LTC_BYTE(s1, 3)) ^
357             Te1(LTC_BYTE(s2, 2)) ^
358             Te2(LTC_BYTE(s3, 1)) ^
359             Te3(LTC_BYTE(s0, 0)) ^
360             rk[5];
361         t2 =
362             Te0(LTC_BYTE(s2, 3)) ^
363             Te1(LTC_BYTE(s3, 2)) ^
364             Te2(LTC_BYTE(s0, 1)) ^
365             Te3(LTC_BYTE(s1, 0)) ^
366             rk[6];
367         t3 =
368             Te0(LTC_BYTE(s3, 3)) ^
369             Te1(LTC_BYTE(s0, 2)) ^
370             Te2(LTC_BYTE(s1, 1)) ^
371             Te3(LTC_BYTE(s2, 0)) ^
372             rk[7];
373 
374         rk += 8;
375         if (--r == 0) {
376             break;
377         }
378 
379         s0 =
380             Te0(LTC_BYTE(t0, 3)) ^
381             Te1(LTC_BYTE(t1, 2)) ^
382             Te2(LTC_BYTE(t2, 1)) ^
383             Te3(LTC_BYTE(t3, 0)) ^
384             rk[0];
385         s1 =
386             Te0(LTC_BYTE(t1, 3)) ^
387             Te1(LTC_BYTE(t2, 2)) ^
388             Te2(LTC_BYTE(t3, 1)) ^
389             Te3(LTC_BYTE(t0, 0)) ^
390             rk[1];
391         s2 =
392             Te0(LTC_BYTE(t2, 3)) ^
393             Te1(LTC_BYTE(t3, 2)) ^
394             Te2(LTC_BYTE(t0, 1)) ^
395             Te3(LTC_BYTE(t1, 0)) ^
396             rk[2];
397         s3 =
398             Te0(LTC_BYTE(t3, 3)) ^
399             Te1(LTC_BYTE(t0, 2)) ^
400             Te2(LTC_BYTE(t1, 1)) ^
401             Te3(LTC_BYTE(t2, 0)) ^
402             rk[3];
403     }
404 
405 #endif
406 
407     /*
408      * apply last round and
409      * map cipher state to byte array block:
410      */
411     s0 =
412         (Te4_3[LTC_BYTE(t0, 3)]) ^
413         (Te4_2[LTC_BYTE(t1, 2)]) ^
414         (Te4_1[LTC_BYTE(t2, 1)]) ^
415         (Te4_0[LTC_BYTE(t3, 0)]) ^
416         rk[0];
417     STORE32H(s0, ct);
418     s1 =
419         (Te4_3[LTC_BYTE(t1, 3)]) ^
420         (Te4_2[LTC_BYTE(t2, 2)]) ^
421         (Te4_1[LTC_BYTE(t3, 1)]) ^
422         (Te4_0[LTC_BYTE(t0, 0)]) ^
423         rk[1];
424     STORE32H(s1, ct+4);
425     s2 =
426         (Te4_3[LTC_BYTE(t2, 3)]) ^
427         (Te4_2[LTC_BYTE(t3, 2)]) ^
428         (Te4_1[LTC_BYTE(t0, 1)]) ^
429         (Te4_0[LTC_BYTE(t1, 0)]) ^
430         rk[2];
431     STORE32H(s2, ct+8);
432     s3 =
433         (Te4_3[LTC_BYTE(t3, 3)]) ^
434         (Te4_2[LTC_BYTE(t0, 2)]) ^
435         (Te4_1[LTC_BYTE(t1, 1)]) ^
436         (Te4_0[LTC_BYTE(t2, 0)]) ^
437         rk[3];
438     STORE32H(s3, ct+12);
439 
440     return CRYPT_OK;
441 }
442 
443 #ifdef LTC_CLEAN_STACK
ECB_ENC(const unsigned char * pt,unsigned char * ct,const symmetric_key * skey)444 int ECB_ENC(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
445 {
446    int err = s_rijndael_ecb_encrypt(pt, ct, skey);
447    burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2);
448    return err;
449 }
450 #endif
451 
452 #ifndef ENCRYPT_ONLY
453 
454 /**
455   Decrypts a block of text with AES
456   @param ct The input ciphertext (16 bytes)
457   @param pt The output plaintext (16 bytes)
458   @param skey The key as scheduled
459   @return CRYPT_OK if successful
460 */
461 #ifdef LTC_CLEAN_STACK
s_rijndael_ecb_decrypt(const unsigned char * ct,unsigned char * pt,const symmetric_key * skey)462 static int s_rijndael_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
463 #else
464 int ECB_DEC(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
465 #endif
466 {
467     ulong32 s0, s1, s2, s3, t0, t1, t2, t3;
468     const ulong32 *rk;
469     int Nr, r;
470 
471     LTC_ARGCHK(pt != NULL);
472     LTC_ARGCHK(ct != NULL);
473     LTC_ARGCHK(skey != NULL);
474 
475     Nr = skey->rijndael.Nr;
476 
477     if (Nr < 2 || Nr > 16)
478         return CRYPT_INVALID_ROUNDS;
479 
480     rk = skey->rijndael.dK;
481 
482     /*
483      * map byte array block to cipher state
484      * and add initial round key:
485      */
486     LOAD32H(s0, ct      ); s0 ^= rk[0];
487     LOAD32H(s1, ct  +  4); s1 ^= rk[1];
488     LOAD32H(s2, ct  +  8); s2 ^= rk[2];
489     LOAD32H(s3, ct  + 12); s3 ^= rk[3];
490 
491 #ifdef LTC_SMALL_CODE
492     for (r = 0; ; r++) {
493         rk += 4;
494         t0 =
495             Td0(LTC_BYTE(s0, 3)) ^
496             Td1(LTC_BYTE(s3, 2)) ^
497             Td2(LTC_BYTE(s2, 1)) ^
498             Td3(LTC_BYTE(s1, 0)) ^
499             rk[0];
500         t1 =
501             Td0(LTC_BYTE(s1, 3)) ^
502             Td1(LTC_BYTE(s0, 2)) ^
503             Td2(LTC_BYTE(s3, 1)) ^
504             Td3(LTC_BYTE(s2, 0)) ^
505             rk[1];
506         t2 =
507             Td0(LTC_BYTE(s2, 3)) ^
508             Td1(LTC_BYTE(s1, 2)) ^
509             Td2(LTC_BYTE(s0, 1)) ^
510             Td3(LTC_BYTE(s3, 0)) ^
511             rk[2];
512         t3 =
513             Td0(LTC_BYTE(s3, 3)) ^
514             Td1(LTC_BYTE(s2, 2)) ^
515             Td2(LTC_BYTE(s1, 1)) ^
516             Td3(LTC_BYTE(s0, 0)) ^
517             rk[3];
518         if (r == Nr-2) {
519            break;
520         }
521         s0 = t0; s1 = t1; s2 = t2; s3 = t3;
522     }
523     rk += 4;
524 
525 #else
526 
527     /*
528      * Nr - 1 full rounds:
529      */
530     r = Nr >> 1;
531     for (;;) {
532 
533         t0 =
534             Td0(LTC_BYTE(s0, 3)) ^
535             Td1(LTC_BYTE(s3, 2)) ^
536             Td2(LTC_BYTE(s2, 1)) ^
537             Td3(LTC_BYTE(s1, 0)) ^
538             rk[4];
539         t1 =
540             Td0(LTC_BYTE(s1, 3)) ^
541             Td1(LTC_BYTE(s0, 2)) ^
542             Td2(LTC_BYTE(s3, 1)) ^
543             Td3(LTC_BYTE(s2, 0)) ^
544             rk[5];
545         t2 =
546             Td0(LTC_BYTE(s2, 3)) ^
547             Td1(LTC_BYTE(s1, 2)) ^
548             Td2(LTC_BYTE(s0, 1)) ^
549             Td3(LTC_BYTE(s3, 0)) ^
550             rk[6];
551         t3 =
552             Td0(LTC_BYTE(s3, 3)) ^
553             Td1(LTC_BYTE(s2, 2)) ^
554             Td2(LTC_BYTE(s1, 1)) ^
555             Td3(LTC_BYTE(s0, 0)) ^
556             rk[7];
557 
558         rk += 8;
559         if (--r == 0) {
560             break;
561         }
562 
563 
564         s0 =
565             Td0(LTC_BYTE(t0, 3)) ^
566             Td1(LTC_BYTE(t3, 2)) ^
567             Td2(LTC_BYTE(t2, 1)) ^
568             Td3(LTC_BYTE(t1, 0)) ^
569             rk[0];
570         s1 =
571             Td0(LTC_BYTE(t1, 3)) ^
572             Td1(LTC_BYTE(t0, 2)) ^
573             Td2(LTC_BYTE(t3, 1)) ^
574             Td3(LTC_BYTE(t2, 0)) ^
575             rk[1];
576         s2 =
577             Td0(LTC_BYTE(t2, 3)) ^
578             Td1(LTC_BYTE(t1, 2)) ^
579             Td2(LTC_BYTE(t0, 1)) ^
580             Td3(LTC_BYTE(t3, 0)) ^
581             rk[2];
582         s3 =
583             Td0(LTC_BYTE(t3, 3)) ^
584             Td1(LTC_BYTE(t2, 2)) ^
585             Td2(LTC_BYTE(t1, 1)) ^
586             Td3(LTC_BYTE(t0, 0)) ^
587             rk[3];
588     }
589 #endif
590 
591     /*
592      * apply last round and
593      * map cipher state to byte array block:
594      */
595     s0 =
596         (Td4[LTC_BYTE(t0, 3)] & 0xff000000) ^
597         (Td4[LTC_BYTE(t3, 2)] & 0x00ff0000) ^
598         (Td4[LTC_BYTE(t2, 1)] & 0x0000ff00) ^
599         (Td4[LTC_BYTE(t1, 0)] & 0x000000ff) ^
600         rk[0];
601     STORE32H(s0, pt);
602     s1 =
603         (Td4[LTC_BYTE(t1, 3)] & 0xff000000) ^
604         (Td4[LTC_BYTE(t0, 2)] & 0x00ff0000) ^
605         (Td4[LTC_BYTE(t3, 1)] & 0x0000ff00) ^
606         (Td4[LTC_BYTE(t2, 0)] & 0x000000ff) ^
607         rk[1];
608     STORE32H(s1, pt+4);
609     s2 =
610         (Td4[LTC_BYTE(t2, 3)] & 0xff000000) ^
611         (Td4[LTC_BYTE(t1, 2)] & 0x00ff0000) ^
612         (Td4[LTC_BYTE(t0, 1)] & 0x0000ff00) ^
613         (Td4[LTC_BYTE(t3, 0)] & 0x000000ff) ^
614         rk[2];
615     STORE32H(s2, pt+8);
616     s3 =
617         (Td4[LTC_BYTE(t3, 3)] & 0xff000000) ^
618         (Td4[LTC_BYTE(t2, 2)] & 0x00ff0000) ^
619         (Td4[LTC_BYTE(t1, 1)] & 0x0000ff00) ^
620         (Td4[LTC_BYTE(t0, 0)] & 0x000000ff) ^
621         rk[3];
622     STORE32H(s3, pt+12);
623 
624     return CRYPT_OK;
625 }
626 
627 
628 #ifdef LTC_CLEAN_STACK
ECB_DEC(const unsigned char * ct,unsigned char * pt,const symmetric_key * skey)629 int ECB_DEC(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
630 {
631    int err = s_rijndael_ecb_decrypt(ct, pt, skey);
632    burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2);
633    return err;
634 }
635 #endif
636 
637 /**
638   Performs a self-test of the AES block cipher
639   @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
640 */
ECB_TEST(void)641 int ECB_TEST(void)
642 {
643  #ifndef LTC_TEST
644     return CRYPT_NOP;
645  #else
646  int err;
647  static const struct {
648      int keylen;
649      unsigned char key[32], pt[16], ct[16];
650  } tests[] = {
651     { 16,
652       { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
653         0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
654       { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
655         0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
656       { 0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30,
657         0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a }
658     }, {
659       24,
660       { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
661         0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
662         0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 },
663       { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
664         0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
665       { 0xdd, 0xa9, 0x7c, 0xa4, 0x86, 0x4c, 0xdf, 0xe0,
666         0x6e, 0xaf, 0x70, 0xa0, 0xec, 0x0d, 0x71, 0x91 }
667     }, {
668       32,
669       { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
670         0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
671         0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
672         0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f },
673       { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
674         0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
675       { 0x8e, 0xa2, 0xb7, 0xca, 0x51, 0x67, 0x45, 0xbf,
676         0xea, 0xfc, 0x49, 0x90, 0x4b, 0x49, 0x60, 0x89 }
677     }
678  };
679 
680   symmetric_key key;
681   unsigned char tmp[2][16];
682   int i, y;
683 
684   for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
685     zeromem(&key, sizeof(key));
686     if ((err = rijndael_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
687        return err;
688     }
689 
690     rijndael_ecb_encrypt(tests[i].pt, tmp[0], &key);
691     rijndael_ecb_decrypt(tmp[0], tmp[1], &key);
692     if (compare_testvector(tmp[0], 16, tests[i].ct, 16, "AES Encrypt", i) ||
693           compare_testvector(tmp[1], 16, tests[i].pt, 16, "AES Decrypt", i)) {
694         return CRYPT_FAIL_TESTVECTOR;
695     }
696 
697     /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
698     for (y = 0; y < 16; y++) tmp[0][y] = 0;
699     for (y = 0; y < 1000; y++) rijndael_ecb_encrypt(tmp[0], tmp[0], &key);
700     for (y = 0; y < 1000; y++) rijndael_ecb_decrypt(tmp[0], tmp[0], &key);
701     for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
702   }
703   return CRYPT_OK;
704  #endif
705 }
706 
707 #endif /* ENCRYPT_ONLY */
708 
709 
710 /** Terminate the context
711    @param skey    The scheduled key
712 */
ECB_DONE(symmetric_key * skey)713 void ECB_DONE(symmetric_key *skey)
714 {
715   LTC_UNUSED_PARAM(skey);
716 }
717 
718 
719 /**
720   Gets suitable key size
721   @param keysize [in/out] The length of the recommended key (in bytes).  This function will store the suitable size back in this variable.
722   @return CRYPT_OK if the input key size is acceptable.
723 */
ECB_KS(int * keysize)724 int ECB_KS(int *keysize)
725 {
726    LTC_ARGCHK(keysize != NULL);
727 
728    if (*keysize < 16) {
729       return CRYPT_INVALID_KEYSIZE;
730    }
731    if (*keysize < 24) {
732       *keysize = 16;
733       return CRYPT_OK;
734    }
735    if (*keysize < 32) {
736       *keysize = 24;
737       return CRYPT_OK;
738    }
739    *keysize = 32;
740    return CRYPT_OK;
741 }
742 
743 #endif
744 
745