1 /*
2  * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3  * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4  * Copyright 2005 Nokia. All rights reserved.
5  *
6  * Licensed under the Apache License 2.0 (the "License").  You may not use
7  * this file except in compliance with the License.  You can obtain a copy
8  * in the file LICENSE in the source distribution or at
9  * https://www.openssl.org/source/license.html
10  */
11 
12 /*
13  * Because of *asn1_*
14  */
15 #define OPENSSL_SUPPRESS_DEPRECATED
16 
17 #include <stdio.h>
18 #include <ctype.h>
19 #include <openssl/objects.h>
20 #include <openssl/comp.h>
21 #include <openssl/engine.h>
22 #include <openssl/crypto.h>
23 #include <openssl/conf.h>
24 #include <openssl/trace.h>
25 #include "internal/nelem.h"
26 #include "ssl_local.h"
27 #include "internal/thread_once.h"
28 #include "internal/cryptlib.h"
29 #include "internal/comp.h"
30 #include "internal/ssl_unwrap.h"
31 
32 /* NB: make sure indices in these tables match values above */
33 
34 typedef struct {
35     uint32_t mask;
36     int nid;
37 } ssl_cipher_table;
38 
39 /* Table of NIDs for each cipher */
40 static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = {
41     {SSL_DES, NID_des_cbc},     /* SSL_ENC_DES_IDX 0 */
42     {SSL_3DES, NID_des_ede3_cbc}, /* SSL_ENC_3DES_IDX 1 */
43     {SSL_RC4, NID_rc4},         /* SSL_ENC_RC4_IDX 2 */
44     {SSL_RC2, NID_rc2_cbc},     /* SSL_ENC_RC2_IDX 3 */
45     {SSL_IDEA, NID_idea_cbc},   /* SSL_ENC_IDEA_IDX 4 */
46     {SSL_eNULL, NID_undef},     /* SSL_ENC_NULL_IDX 5 */
47     {SSL_AES128, NID_aes_128_cbc}, /* SSL_ENC_AES128_IDX 6 */
48     {SSL_AES256, NID_aes_256_cbc}, /* SSL_ENC_AES256_IDX 7 */
49     {SSL_CAMELLIA128, NID_camellia_128_cbc}, /* SSL_ENC_CAMELLIA128_IDX 8 */
50     {SSL_CAMELLIA256, NID_camellia_256_cbc}, /* SSL_ENC_CAMELLIA256_IDX 9 */
51     {SSL_eGOST2814789CNT, NID_gost89_cnt}, /* SSL_ENC_GOST89_IDX 10 */
52     {SSL_SEED, NID_seed_cbc},   /* SSL_ENC_SEED_IDX 11 */
53     {SSL_AES128GCM, NID_aes_128_gcm}, /* SSL_ENC_AES128GCM_IDX 12 */
54     {SSL_AES256GCM, NID_aes_256_gcm}, /* SSL_ENC_AES256GCM_IDX 13 */
55     {SSL_AES128CCM, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM_IDX 14 */
56     {SSL_AES256CCM, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM_IDX 15 */
57     {SSL_AES128CCM8, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM8_IDX 16 */
58     {SSL_AES256CCM8, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM8_IDX 17 */
59     {SSL_eGOST2814789CNT12, NID_gost89_cnt_12}, /* SSL_ENC_GOST8912_IDX 18 */
60     {SSL_CHACHA20POLY1305, NID_chacha20_poly1305}, /* SSL_ENC_CHACHA_IDX 19 */
61     {SSL_ARIA128GCM, NID_aria_128_gcm}, /* SSL_ENC_ARIA128GCM_IDX 20 */
62     {SSL_ARIA256GCM, NID_aria_256_gcm}, /* SSL_ENC_ARIA256GCM_IDX 21 */
63     {SSL_MAGMA, NID_magma_ctr_acpkm}, /* SSL_ENC_MAGMA_IDX */
64     {SSL_KUZNYECHIK, NID_kuznyechik_ctr_acpkm}, /* SSL_ENC_KUZNYECHIK_IDX */
65 };
66 
67 /* NB: make sure indices in this table matches values above */
68 static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = {
69     {SSL_MD5, NID_md5},         /* SSL_MD_MD5_IDX 0 */
70     {SSL_SHA1, NID_sha1},       /* SSL_MD_SHA1_IDX 1 */
71     {SSL_GOST94, NID_id_GostR3411_94}, /* SSL_MD_GOST94_IDX 2 */
72     {SSL_GOST89MAC, NID_id_Gost28147_89_MAC}, /* SSL_MD_GOST89MAC_IDX 3 */
73     {SSL_SHA256, NID_sha256},   /* SSL_MD_SHA256_IDX 4 */
74     {SSL_SHA384, NID_sha384},   /* SSL_MD_SHA384_IDX 5 */
75     {SSL_GOST12_256, NID_id_GostR3411_2012_256}, /* SSL_MD_GOST12_256_IDX 6 */
76     {SSL_GOST89MAC12, NID_gost_mac_12}, /* SSL_MD_GOST89MAC12_IDX 7 */
77     {SSL_GOST12_512, NID_id_GostR3411_2012_512}, /* SSL_MD_GOST12_512_IDX 8 */
78     {0, NID_md5_sha1},          /* SSL_MD_MD5_SHA1_IDX 9 */
79     {0, NID_sha224},            /* SSL_MD_SHA224_IDX 10 */
80     {0, NID_sha512},            /* SSL_MD_SHA512_IDX 11 */
81     {SSL_MAGMAOMAC, NID_magma_mac}, /* sSL_MD_MAGMAOMAC_IDX */
82     {SSL_KUZNYECHIKOMAC, NID_kuznyechik_mac} /* SSL_MD_KUZNYECHIKOMAC_IDX */
83 };
84 
85 /* *INDENT-OFF* */
86 static const ssl_cipher_table ssl_cipher_table_kx[] = {
87     {SSL_kRSA,      NID_kx_rsa},
88     {SSL_kECDHE,    NID_kx_ecdhe},
89     {SSL_kDHE,      NID_kx_dhe},
90     {SSL_kECDHEPSK, NID_kx_ecdhe_psk},
91     {SSL_kDHEPSK,   NID_kx_dhe_psk},
92     {SSL_kRSAPSK,   NID_kx_rsa_psk},
93     {SSL_kPSK,      NID_kx_psk},
94     {SSL_kSRP,      NID_kx_srp},
95     {SSL_kGOST,     NID_kx_gost},
96     {SSL_kGOST18,   NID_kx_gost18},
97     {SSL_kANY,      NID_kx_any}
98 };
99 
100 static const ssl_cipher_table ssl_cipher_table_auth[] = {
101     {SSL_aRSA,    NID_auth_rsa},
102     {SSL_aECDSA,  NID_auth_ecdsa},
103     {SSL_aPSK,    NID_auth_psk},
104     {SSL_aDSS,    NID_auth_dss},
105     {SSL_aGOST01, NID_auth_gost01},
106     {SSL_aGOST12, NID_auth_gost12},
107     {SSL_aSRP,    NID_auth_srp},
108     {SSL_aNULL,   NID_auth_null},
109     {SSL_aANY,    NID_auth_any}
110 };
111 /* *INDENT-ON* */
112 
113 /* Utility function for table lookup */
ssl_cipher_info_find(const ssl_cipher_table * table,size_t table_cnt,uint32_t mask)114 static int ssl_cipher_info_find(const ssl_cipher_table *table,
115                                 size_t table_cnt, uint32_t mask)
116 {
117     size_t i;
118     for (i = 0; i < table_cnt; i++, table++) {
119         if (table->mask == mask)
120             return (int)i;
121     }
122     return -1;
123 }
124 
125 #define ssl_cipher_info_lookup(table, x) \
126     ssl_cipher_info_find(table, OSSL_NELEM(table), x)
127 
128 /*
129  * PKEY_TYPE for GOST89MAC is known in advance, but, because implementation
130  * is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is
131  * found
132  */
133 static const int default_mac_pkey_id[SSL_MD_NUM_IDX] = {
134     /* MD5, SHA, GOST94, MAC89 */
135     EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
136     /* SHA256, SHA384, GOST2012_256, MAC89-12 */
137     EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
138     /* GOST2012_512 */
139     EVP_PKEY_HMAC,
140     /* MD5/SHA1, SHA224, SHA512, MAGMAOMAC, KUZNYECHIKOMAC */
141     NID_undef, NID_undef, NID_undef, NID_undef, NID_undef
142 };
143 
144 #define CIPHER_ADD      1
145 #define CIPHER_KILL     2
146 #define CIPHER_DEL      3
147 #define CIPHER_ORD      4
148 #define CIPHER_SPECIAL  5
149 /*
150  * Bump the ciphers to the top of the list.
151  * This rule isn't currently supported by the public cipherstring API.
152  */
153 #define CIPHER_BUMP     6
154 
155 typedef struct cipher_order_st {
156     const SSL_CIPHER *cipher;
157     int active;
158     int dead;
159     struct cipher_order_st *next, *prev;
160 } CIPHER_ORDER;
161 
162 static const SSL_CIPHER cipher_aliases[] = {
163     /* "ALL" doesn't include eNULL (must be specifically enabled) */
164     {0, SSL_TXT_ALL, NULL, 0, 0, 0, ~SSL_eNULL},
165     /* "COMPLEMENTOFALL" */
166     {0, SSL_TXT_CMPALL, NULL, 0, 0, 0, SSL_eNULL},
167 
168     /*
169      * "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in
170      * ALL!)
171      */
172     {0, SSL_TXT_CMPDEF, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_NOT_DEFAULT},
173 
174     /*
175      * key exchange aliases (some of those using only a single bit here
176      * combine multiple key exchange algs according to the RFCs, e.g. kDHE
177      * combines DHE_DSS and DHE_RSA)
178      */
179     {0, SSL_TXT_kRSA, NULL, 0, SSL_kRSA},
180 
181     {0, SSL_TXT_kEDH, NULL, 0, SSL_kDHE},
182     {0, SSL_TXT_kDHE, NULL, 0, SSL_kDHE},
183     {0, SSL_TXT_DH, NULL, 0, SSL_kDHE},
184 
185     {0, SSL_TXT_kEECDH, NULL, 0, SSL_kECDHE},
186     {0, SSL_TXT_kECDHE, NULL, 0, SSL_kECDHE},
187     {0, SSL_TXT_ECDH, NULL, 0, SSL_kECDHE},
188 
189     {0, SSL_TXT_kPSK, NULL, 0, SSL_kPSK},
190     {0, SSL_TXT_kRSAPSK, NULL, 0, SSL_kRSAPSK},
191     {0, SSL_TXT_kECDHEPSK, NULL, 0, SSL_kECDHEPSK},
192     {0, SSL_TXT_kDHEPSK, NULL, 0, SSL_kDHEPSK},
193     {0, SSL_TXT_kSRP, NULL, 0, SSL_kSRP},
194     {0, SSL_TXT_kGOST, NULL, 0, SSL_kGOST},
195     {0, SSL_TXT_kGOST18, NULL, 0, SSL_kGOST18},
196 
197     /* server authentication aliases */
198     {0, SSL_TXT_aRSA, NULL, 0, 0, SSL_aRSA},
199     {0, SSL_TXT_aDSS, NULL, 0, 0, SSL_aDSS},
200     {0, SSL_TXT_DSS, NULL, 0, 0, SSL_aDSS},
201     {0, SSL_TXT_aNULL, NULL, 0, 0, SSL_aNULL},
202     {0, SSL_TXT_aECDSA, NULL, 0, 0, SSL_aECDSA},
203     {0, SSL_TXT_ECDSA, NULL, 0, 0, SSL_aECDSA},
204     {0, SSL_TXT_aPSK, NULL, 0, 0, SSL_aPSK},
205     {0, SSL_TXT_aGOST01, NULL, 0, 0, SSL_aGOST01},
206     {0, SSL_TXT_aGOST12, NULL, 0, 0, SSL_aGOST12},
207     {0, SSL_TXT_aGOST, NULL, 0, 0, SSL_aGOST01 | SSL_aGOST12},
208     {0, SSL_TXT_aSRP, NULL, 0, 0, SSL_aSRP},
209 
210     /* aliases combining key exchange and server authentication */
211     {0, SSL_TXT_EDH, NULL, 0, SSL_kDHE, ~SSL_aNULL},
212     {0, SSL_TXT_DHE, NULL, 0, SSL_kDHE, ~SSL_aNULL},
213     {0, SSL_TXT_EECDH, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
214     {0, SSL_TXT_ECDHE, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
215     {0, SSL_TXT_NULL, NULL, 0, 0, 0, SSL_eNULL},
216     {0, SSL_TXT_RSA, NULL, 0, SSL_kRSA, SSL_aRSA},
217     {0, SSL_TXT_ADH, NULL, 0, SSL_kDHE, SSL_aNULL},
218     {0, SSL_TXT_AECDH, NULL, 0, SSL_kECDHE, SSL_aNULL},
219     {0, SSL_TXT_PSK, NULL, 0, SSL_PSK},
220     {0, SSL_TXT_SRP, NULL, 0, SSL_kSRP},
221 
222     /* symmetric encryption aliases */
223     {0, SSL_TXT_3DES, NULL, 0, 0, 0, SSL_3DES},
224     {0, SSL_TXT_RC4, NULL, 0, 0, 0, SSL_RC4},
225     {0, SSL_TXT_RC2, NULL, 0, 0, 0, SSL_RC2},
226     {0, SSL_TXT_IDEA, NULL, 0, 0, 0, SSL_IDEA},
227     {0, SSL_TXT_SEED, NULL, 0, 0, 0, SSL_SEED},
228     {0, SSL_TXT_eNULL, NULL, 0, 0, 0, SSL_eNULL},
229     {0, SSL_TXT_GOST, NULL, 0, 0, 0,
230      SSL_eGOST2814789CNT | SSL_eGOST2814789CNT12 | SSL_MAGMA | SSL_KUZNYECHIK},
231     {0, SSL_TXT_AES128, NULL, 0, 0, 0,
232      SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8},
233     {0, SSL_TXT_AES256, NULL, 0, 0, 0,
234      SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8},
235     {0, SSL_TXT_AES, NULL, 0, 0, 0, SSL_AES},
236     {0, SSL_TXT_AES_GCM, NULL, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM},
237     {0, SSL_TXT_AES_CCM, NULL, 0, 0, 0,
238      SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8},
239     {0, SSL_TXT_AES_CCM_8, NULL, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8},
240     {0, SSL_TXT_CAMELLIA128, NULL, 0, 0, 0, SSL_CAMELLIA128},
241     {0, SSL_TXT_CAMELLIA256, NULL, 0, 0, 0, SSL_CAMELLIA256},
242     {0, SSL_TXT_CAMELLIA, NULL, 0, 0, 0, SSL_CAMELLIA},
243     {0, SSL_TXT_CHACHA20, NULL, 0, 0, 0, SSL_CHACHA20},
244     {0, SSL_TXT_GOST2012_GOST8912_GOST8912, NULL, 0, 0, 0, SSL_eGOST2814789CNT12},
245 
246     {0, SSL_TXT_ARIA, NULL, 0, 0, 0, SSL_ARIA},
247     {0, SSL_TXT_ARIA_GCM, NULL, 0, 0, 0, SSL_ARIA128GCM | SSL_ARIA256GCM},
248     {0, SSL_TXT_ARIA128, NULL, 0, 0, 0, SSL_ARIA128GCM},
249     {0, SSL_TXT_ARIA256, NULL, 0, 0, 0, SSL_ARIA256GCM},
250     {0, SSL_TXT_CBC, NULL, 0, 0, 0, SSL_CBC},
251 
252     /* MAC aliases */
253     {0, SSL_TXT_MD5, NULL, 0, 0, 0, 0, SSL_MD5},
254     {0, SSL_TXT_SHA1, NULL, 0, 0, 0, 0, SSL_SHA1},
255     {0, SSL_TXT_SHA, NULL, 0, 0, 0, 0, SSL_SHA1},
256     {0, SSL_TXT_GOST94, NULL, 0, 0, 0, 0, SSL_GOST94},
257     {0, SSL_TXT_GOST89MAC, NULL, 0, 0, 0, 0, SSL_GOST89MAC | SSL_GOST89MAC12},
258     {0, SSL_TXT_SHA256, NULL, 0, 0, 0, 0, SSL_SHA256},
259     {0, SSL_TXT_SHA384, NULL, 0, 0, 0, 0, SSL_SHA384},
260     {0, SSL_TXT_GOST12, NULL, 0, 0, 0, 0, SSL_GOST12_256},
261 
262     /* protocol version aliases */
263     {0, SSL_TXT_SSLV3, NULL, 0, 0, 0, 0, 0, SSL3_VERSION},
264     {0, SSL_TXT_TLSV1, NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
265     {0, "TLSv1.0", NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
266     {0, SSL_TXT_TLSV1_2, NULL, 0, 0, 0, 0, 0, TLS1_2_VERSION},
267 
268     /* strength classes */
269     {0, SSL_TXT_LOW, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_LOW},
270     {0, SSL_TXT_MEDIUM, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_MEDIUM},
271     {0, SSL_TXT_HIGH, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_HIGH},
272     /* FIPS 140-2 approved ciphersuite */
273     {0, SSL_TXT_FIPS, NULL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, SSL_FIPS},
274 
275     /* "EDH-" aliases to "DHE-" labels (for backward compatibility) */
276     {0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, NULL, 0,
277      SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
278     {0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, NULL, 0,
279      SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
280 
281 };
282 
283 #ifndef OPENSSL_NO_DEPRECATED_3_6
284 /*
285  * Search for public key algorithm with given name and return its pkey_id if
286  * it is available. Otherwise return 0
287  */
288 # ifdef OPENSSL_NO_ENGINE
289 
get_optional_pkey_id(const char * pkey_name)290 static int get_optional_pkey_id(const char *pkey_name)
291 {
292     const EVP_PKEY_ASN1_METHOD *ameth;
293     int pkey_id = 0;
294     ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1);
295     if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
296                                          ameth) > 0)
297         return pkey_id;
298     return 0;
299 }
300 
301 # else
302 
get_optional_pkey_id(const char * pkey_name)303 static int get_optional_pkey_id(const char *pkey_name)
304 {
305     const EVP_PKEY_ASN1_METHOD *ameth;
306     ENGINE *tmpeng = NULL;
307     int pkey_id = 0;
308     ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1);
309     if (ameth) {
310         if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
311                                     ameth) <= 0)
312             pkey_id = 0;
313     }
314     tls_engine_finish(tmpeng);
315     return pkey_id;
316 }
317 # endif
318 #else
get_optional_pkey_id(const char * pkey_name)319 static int get_optional_pkey_id(const char *pkey_name)
320 {
321     (void)pkey_name;
322     return 0;
323 }
324 #endif
325 
ssl_load_ciphers(SSL_CTX * ctx)326 int ssl_load_ciphers(SSL_CTX *ctx)
327 {
328     size_t i;
329     const ssl_cipher_table *t;
330     EVP_KEYEXCH *kex = NULL;
331     EVP_SIGNATURE *sig = NULL;
332 
333     ctx->disabled_enc_mask = 0;
334     for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) {
335         if (t->nid != NID_undef) {
336             const EVP_CIPHER *cipher
337                 = ssl_evp_cipher_fetch(ctx->libctx, t->nid, ctx->propq);
338 
339             ctx->ssl_cipher_methods[i] = cipher;
340             if (cipher == NULL)
341                 ctx->disabled_enc_mask |= t->mask;
342         }
343     }
344     ctx->disabled_mac_mask = 0;
345     for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) {
346         const EVP_MD *md
347             = ssl_evp_md_fetch(ctx->libctx, t->nid, ctx->propq);
348 
349         ctx->ssl_digest_methods[i] = md;
350         if (md == NULL) {
351             ctx->disabled_mac_mask |= t->mask;
352         } else {
353             int tmpsize = EVP_MD_get_size(md);
354 
355             if (!ossl_assert(tmpsize > 0))
356                 return 0;
357             ctx->ssl_mac_secret_size[i] = tmpsize;
358         }
359     }
360 
361     ctx->disabled_mkey_mask = 0;
362     ctx->disabled_auth_mask = 0;
363 
364     /*
365      * We ignore any errors from the fetches below. They are expected to fail
366      * if these algorithms are not available.
367      */
368     ERR_set_mark();
369     sig = EVP_SIGNATURE_fetch(ctx->libctx, "DSA", ctx->propq);
370     if (sig == NULL)
371         ctx->disabled_auth_mask |= SSL_aDSS;
372     else
373         EVP_SIGNATURE_free(sig);
374     kex = EVP_KEYEXCH_fetch(ctx->libctx, "DH", ctx->propq);
375     if (kex == NULL)
376         ctx->disabled_mkey_mask |= SSL_kDHE | SSL_kDHEPSK;
377     else
378         EVP_KEYEXCH_free(kex);
379     kex = EVP_KEYEXCH_fetch(ctx->libctx, "ECDH", ctx->propq);
380     if (kex == NULL)
381         ctx->disabled_mkey_mask |= SSL_kECDHE | SSL_kECDHEPSK;
382     else
383         EVP_KEYEXCH_free(kex);
384     sig = EVP_SIGNATURE_fetch(ctx->libctx, "ECDSA", ctx->propq);
385     if (sig == NULL)
386         ctx->disabled_auth_mask |= SSL_aECDSA;
387     else
388         EVP_SIGNATURE_free(sig);
389     ERR_pop_to_mark();
390 
391 #ifdef OPENSSL_NO_PSK
392     ctx->disabled_mkey_mask |= SSL_PSK;
393     ctx->disabled_auth_mask |= SSL_aPSK;
394 #endif
395 #ifdef OPENSSL_NO_SRP
396     ctx->disabled_mkey_mask |= SSL_kSRP;
397 #endif
398 
399     /*
400      * Check for presence of GOST 34.10 algorithms, and if they are not
401      * present, disable appropriate auth and key exchange
402      */
403     memcpy(ctx->ssl_mac_pkey_id, default_mac_pkey_id,
404            sizeof(ctx->ssl_mac_pkey_id));
405 
406     ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] =
407         get_optional_pkey_id(SN_id_Gost28147_89_MAC);
408     if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX])
409         ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32;
410     else
411         ctx->disabled_mac_mask |= SSL_GOST89MAC;
412 
413     ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX] =
414         get_optional_pkey_id(SN_gost_mac_12);
415     if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX])
416         ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC12_IDX] = 32;
417     else
418         ctx->disabled_mac_mask |= SSL_GOST89MAC12;
419 
420     ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX] =
421         get_optional_pkey_id(SN_magma_mac);
422     if (ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX])
423         ctx->ssl_mac_secret_size[SSL_MD_MAGMAOMAC_IDX] = 32;
424     else
425         ctx->disabled_mac_mask |= SSL_MAGMAOMAC;
426 
427     ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX] =
428         get_optional_pkey_id(SN_kuznyechik_mac);
429     if (ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX])
430         ctx->ssl_mac_secret_size[SSL_MD_KUZNYECHIKOMAC_IDX] = 32;
431     else
432         ctx->disabled_mac_mask |= SSL_KUZNYECHIKOMAC;
433 
434     if (!get_optional_pkey_id(SN_id_GostR3410_2001))
435         ctx->disabled_auth_mask |= SSL_aGOST01 | SSL_aGOST12;
436     if (!get_optional_pkey_id(SN_id_GostR3410_2012_256))
437         ctx->disabled_auth_mask |= SSL_aGOST12;
438     if (!get_optional_pkey_id(SN_id_GostR3410_2012_512))
439         ctx->disabled_auth_mask |= SSL_aGOST12;
440     /*
441      * Disable GOST key exchange if no GOST signature algs are available *
442      */
443     if ((ctx->disabled_auth_mask & (SSL_aGOST01 | SSL_aGOST12)) ==
444         (SSL_aGOST01 | SSL_aGOST12))
445         ctx->disabled_mkey_mask |= SSL_kGOST;
446 
447     if ((ctx->disabled_auth_mask & SSL_aGOST12) ==  SSL_aGOST12)
448         ctx->disabled_mkey_mask |= SSL_kGOST18;
449 
450     return 1;
451 }
452 
ssl_cipher_get_evp_cipher(SSL_CTX * ctx,const SSL_CIPHER * sslc,const EVP_CIPHER ** enc)453 int ssl_cipher_get_evp_cipher(SSL_CTX *ctx, const SSL_CIPHER *sslc,
454                               const EVP_CIPHER **enc)
455 {
456     int i = ssl_cipher_info_lookup(ssl_cipher_table_cipher,
457                                    sslc->algorithm_enc);
458 
459     if (i == -1) {
460         *enc = NULL;
461     } else {
462         if (i == SSL_ENC_NULL_IDX) {
463             /*
464              * We assume we don't care about this coming from an ENGINE so
465              * just do a normal EVP_CIPHER_fetch instead of
466              * ssl_evp_cipher_fetch()
467              */
468             *enc = EVP_CIPHER_fetch(ctx->libctx, "NULL", ctx->propq);
469             if (*enc == NULL)
470                 return 0;
471         } else {
472             const EVP_CIPHER *cipher = ctx->ssl_cipher_methods[i];
473 
474             if (cipher == NULL
475                     || !ssl_evp_cipher_up_ref(cipher))
476                 return 0;
477             *enc = ctx->ssl_cipher_methods[i];
478         }
479     }
480     return 1;
481 }
482 
ssl_cipher_get_evp_md_mac(SSL_CTX * ctx,const SSL_CIPHER * sslc,const EVP_MD ** md,int * mac_pkey_type,size_t * mac_secret_size)483 int ssl_cipher_get_evp_md_mac(SSL_CTX *ctx, const SSL_CIPHER *sslc,
484                               const EVP_MD **md,
485                               int *mac_pkey_type, size_t *mac_secret_size)
486 {
487     int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, sslc->algorithm_mac);
488 
489     if (i == -1) {
490         *md = NULL;
491         if (mac_pkey_type != NULL)
492             *mac_pkey_type = NID_undef;
493         if (mac_secret_size != NULL)
494             *mac_secret_size = 0;
495     } else {
496         const EVP_MD *digest = ctx->ssl_digest_methods[i];
497 
498         if (digest == NULL || !ssl_evp_md_up_ref(digest))
499             return 0;
500 
501         *md = digest;
502         if (mac_pkey_type != NULL)
503             *mac_pkey_type = ctx->ssl_mac_pkey_id[i];
504         if (mac_secret_size != NULL)
505             *mac_secret_size = ctx->ssl_mac_secret_size[i];
506     }
507     return 1;
508 }
509 
ssl_cipher_get_evp(SSL_CTX * ctx,const SSL_SESSION * s,const EVP_CIPHER ** enc,const EVP_MD ** md,int * mac_pkey_type,size_t * mac_secret_size,SSL_COMP ** comp,int use_etm)510 int ssl_cipher_get_evp(SSL_CTX *ctx, const SSL_SESSION *s,
511                        const EVP_CIPHER **enc, const EVP_MD **md,
512                        int *mac_pkey_type, size_t *mac_secret_size,
513                        SSL_COMP **comp, int use_etm)
514 {
515     int i;
516     const SSL_CIPHER *c;
517 
518     c = s->cipher;
519     if (c == NULL)
520         return 0;
521     if (comp != NULL) {
522         SSL_COMP ctmp;
523         STACK_OF(SSL_COMP) *comp_methods;
524 
525         *comp = NULL;
526         ctmp.id = s->compress_meth;
527         comp_methods = SSL_COMP_get_compression_methods();
528         if (comp_methods != NULL) {
529             i = sk_SSL_COMP_find(comp_methods, &ctmp);
530             if (i >= 0)
531                 *comp = sk_SSL_COMP_value(comp_methods, i);
532         }
533         /* If were only interested in comp then return success */
534         if ((enc == NULL) && (md == NULL))
535             return 1;
536     }
537 
538     if ((enc == NULL) || (md == NULL))
539         return 0;
540 
541     if (!ssl_cipher_get_evp_cipher(ctx, c, enc))
542         return 0;
543 
544     if (!ssl_cipher_get_evp_md_mac(ctx, c, md, mac_pkey_type,
545                                    mac_secret_size)) {
546         ssl_evp_cipher_free(*enc);
547         return 0;
548     }
549 
550     if ((*enc != NULL)
551         && (*md != NULL
552             || (EVP_CIPHER_get_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER))
553         && (c->algorithm_mac == SSL_AEAD
554             || mac_pkey_type == NULL || *mac_pkey_type != NID_undef)) {
555         const EVP_CIPHER *evp = NULL;
556 
557         if (use_etm
558                 || s->ssl_version >> 8 != TLS1_VERSION_MAJOR
559                 || s->ssl_version < TLS1_VERSION)
560             return 1;
561 
562         if (c->algorithm_enc == SSL_RC4
563                 && c->algorithm_mac == SSL_MD5)
564             evp = ssl_evp_cipher_fetch(ctx->libctx, NID_rc4_hmac_md5,
565                                        ctx->propq);
566         else if (c->algorithm_enc == SSL_AES128
567                     && c->algorithm_mac == SSL_SHA1)
568             evp = ssl_evp_cipher_fetch(ctx->libctx,
569                                        NID_aes_128_cbc_hmac_sha1,
570                                        ctx->propq);
571         else if (c->algorithm_enc == SSL_AES256
572                     && c->algorithm_mac == SSL_SHA1)
573              evp = ssl_evp_cipher_fetch(ctx->libctx,
574                                         NID_aes_256_cbc_hmac_sha1,
575                                         ctx->propq);
576         else if (c->algorithm_enc == SSL_AES128
577                     && c->algorithm_mac == SSL_SHA256)
578             evp = ssl_evp_cipher_fetch(ctx->libctx,
579                                        NID_aes_128_cbc_hmac_sha256,
580                                        ctx->propq);
581         else if (c->algorithm_enc == SSL_AES256
582                     && c->algorithm_mac == SSL_SHA256)
583             evp = ssl_evp_cipher_fetch(ctx->libctx,
584                                        NID_aes_256_cbc_hmac_sha256,
585                                        ctx->propq);
586 
587         if (evp != NULL) {
588             ssl_evp_cipher_free(*enc);
589             ssl_evp_md_free(*md);
590             *enc = evp;
591             *md = NULL;
592         }
593         return 1;
594     }
595 
596     return 0;
597 }
598 
ssl_md(SSL_CTX * ctx,int idx)599 const EVP_MD *ssl_md(SSL_CTX *ctx, int idx)
600 {
601     idx &= SSL_HANDSHAKE_MAC_MASK;
602     if (idx < 0 || idx >= SSL_MD_NUM_IDX)
603         return NULL;
604     return ctx->ssl_digest_methods[idx];
605 }
606 
ssl_handshake_md(SSL_CONNECTION * s)607 const EVP_MD *ssl_handshake_md(SSL_CONNECTION *s)
608 {
609     return ssl_md(SSL_CONNECTION_GET_CTX(s), ssl_get_algorithm2(s));
610 }
611 
ssl_prf_md(SSL_CONNECTION * s)612 const EVP_MD *ssl_prf_md(SSL_CONNECTION *s)
613 {
614     return ssl_md(SSL_CONNECTION_GET_CTX(s),
615                   ssl_get_algorithm2(s) >> TLS1_PRF_DGST_SHIFT);
616 }
617 
618 
619 #define ITEM_SEP(a) \
620         (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
621 
ll_append_tail(CIPHER_ORDER ** head,CIPHER_ORDER * curr,CIPHER_ORDER ** tail)622 static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
623                            CIPHER_ORDER **tail)
624 {
625     if (curr == *tail)
626         return;
627     if (curr == *head)
628         *head = curr->next;
629     if (curr->prev != NULL)
630         curr->prev->next = curr->next;
631     if (curr->next != NULL)
632         curr->next->prev = curr->prev;
633     (*tail)->next = curr;
634     curr->prev = *tail;
635     curr->next = NULL;
636     *tail = curr;
637 }
638 
ll_append_head(CIPHER_ORDER ** head,CIPHER_ORDER * curr,CIPHER_ORDER ** tail)639 static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
640                            CIPHER_ORDER **tail)
641 {
642     if (curr == *head)
643         return;
644     if (curr == *tail)
645         *tail = curr->prev;
646     if (curr->next != NULL)
647         curr->next->prev = curr->prev;
648     if (curr->prev != NULL)
649         curr->prev->next = curr->next;
650     (*head)->prev = curr;
651     curr->next = *head;
652     curr->prev = NULL;
653     *head = curr;
654 }
655 
ssl_cipher_collect_ciphers(const SSL_METHOD * ssl_method,int num_of_ciphers,uint32_t disabled_mkey,uint32_t disabled_auth,uint32_t disabled_enc,uint32_t disabled_mac,CIPHER_ORDER * co_list,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)656 static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
657                                        int num_of_ciphers,
658                                        uint32_t disabled_mkey,
659                                        uint32_t disabled_auth,
660                                        uint32_t disabled_enc,
661                                        uint32_t disabled_mac,
662                                        CIPHER_ORDER *co_list,
663                                        CIPHER_ORDER **head_p,
664                                        CIPHER_ORDER **tail_p)
665 {
666     int i, co_list_num;
667     const SSL_CIPHER *c;
668 
669     /*
670      * We have num_of_ciphers descriptions compiled in, depending on the
671      * method selected (SSLv3, TLSv1 etc).
672      * These will later be sorted in a linked list with at most num
673      * entries.
674      */
675 
676     /* Get the initial list of ciphers */
677     co_list_num = 0;            /* actual count of ciphers */
678     for (i = 0; i < num_of_ciphers; i++) {
679         c = ssl_method->get_cipher(i);
680         /* drop those that use any of that is not available */
681         if (c == NULL || !c->valid)
682             continue;
683         if ((c->algorithm_mkey & disabled_mkey) ||
684             (c->algorithm_auth & disabled_auth) ||
685             (c->algorithm_enc & disabled_enc) ||
686             (c->algorithm_mac & disabled_mac))
687             continue;
688         if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) == 0) &&
689             c->min_tls == 0)
690             continue;
691         if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) != 0) &&
692             c->min_dtls == 0)
693             continue;
694 
695         co_list[co_list_num].cipher = c;
696         co_list[co_list_num].next = NULL;
697         co_list[co_list_num].prev = NULL;
698         co_list[co_list_num].active = 0;
699         co_list_num++;
700     }
701 
702     /*
703      * Prepare linked list from list entries
704      */
705     if (co_list_num > 0) {
706         co_list[0].prev = NULL;
707 
708         if (co_list_num > 1) {
709             co_list[0].next = &co_list[1];
710 
711             for (i = 1; i < co_list_num - 1; i++) {
712                 co_list[i].prev = &co_list[i - 1];
713                 co_list[i].next = &co_list[i + 1];
714             }
715 
716             co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
717         }
718 
719         co_list[co_list_num - 1].next = NULL;
720 
721         *head_p = &co_list[0];
722         *tail_p = &co_list[co_list_num - 1];
723     }
724 }
725 
ssl_cipher_collect_aliases(const SSL_CIPHER ** ca_list,int num_of_group_aliases,uint32_t disabled_mkey,uint32_t disabled_auth,uint32_t disabled_enc,uint32_t disabled_mac,CIPHER_ORDER * head)726 static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
727                                        int num_of_group_aliases,
728                                        uint32_t disabled_mkey,
729                                        uint32_t disabled_auth,
730                                        uint32_t disabled_enc,
731                                        uint32_t disabled_mac,
732                                        CIPHER_ORDER *head)
733 {
734     CIPHER_ORDER *ciph_curr;
735     const SSL_CIPHER **ca_curr;
736     int i;
737     uint32_t mask_mkey = ~disabled_mkey;
738     uint32_t mask_auth = ~disabled_auth;
739     uint32_t mask_enc = ~disabled_enc;
740     uint32_t mask_mac = ~disabled_mac;
741 
742     /*
743      * First, add the real ciphers as already collected
744      */
745     ciph_curr = head;
746     ca_curr = ca_list;
747     while (ciph_curr != NULL) {
748         *ca_curr = ciph_curr->cipher;
749         ca_curr++;
750         ciph_curr = ciph_curr->next;
751     }
752 
753     /*
754      * Now we add the available ones from the cipher_aliases[] table.
755      * They represent either one or more algorithms, some of which
756      * in any affected category must be supported (set in enabled_mask),
757      * or represent a cipher strength value (will be added in any case because algorithms=0).
758      */
759     for (i = 0; i < num_of_group_aliases; i++) {
760         uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey;
761         uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth;
762         uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc;
763         uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac;
764 
765         if (algorithm_mkey)
766             if ((algorithm_mkey & mask_mkey) == 0)
767                 continue;
768 
769         if (algorithm_auth)
770             if ((algorithm_auth & mask_auth) == 0)
771                 continue;
772 
773         if (algorithm_enc)
774             if ((algorithm_enc & mask_enc) == 0)
775                 continue;
776 
777         if (algorithm_mac)
778             if ((algorithm_mac & mask_mac) == 0)
779                 continue;
780 
781         *ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
782         ca_curr++;
783     }
784 
785     *ca_curr = NULL;            /* end of list */
786 }
787 
ssl_cipher_apply_rule(uint32_t cipher_id,uint32_t alg_mkey,uint32_t alg_auth,uint32_t alg_enc,uint32_t alg_mac,int min_tls,uint32_t algo_strength,int rule,int32_t strength_bits,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)788 static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey,
789                                   uint32_t alg_auth, uint32_t alg_enc,
790                                   uint32_t alg_mac, int min_tls,
791                                   uint32_t algo_strength, int rule,
792                                   int32_t strength_bits, CIPHER_ORDER **head_p,
793                                   CIPHER_ORDER **tail_p)
794 {
795     CIPHER_ORDER *head, *tail, *curr, *next, *last;
796     const SSL_CIPHER *cp;
797     int reverse = 0;
798 
799     OSSL_TRACE_BEGIN(TLS_CIPHER) {
800         BIO_printf(trc_out,
801                    "Applying rule %d with %08x/%08x/%08x/%08x/%08x %08x (%d)\n",
802                    rule, (unsigned int)alg_mkey, (unsigned int)alg_auth,
803                    (unsigned int)alg_enc, (unsigned int)alg_mac, min_tls,
804                    (unsigned int)algo_strength, (int)strength_bits);
805     }
806 
807     if (rule == CIPHER_DEL || rule == CIPHER_BUMP)
808         reverse = 1;            /* needed to maintain sorting between currently
809                                  * deleted ciphers */
810 
811     head = *head_p;
812     tail = *tail_p;
813 
814     if (reverse) {
815         next = tail;
816         last = head;
817     } else {
818         next = head;
819         last = tail;
820     }
821 
822     curr = NULL;
823     for (;;) {
824         if (curr == last)
825             break;
826 
827         curr = next;
828 
829         if (curr == NULL)
830             break;
831 
832         next = reverse ? curr->prev : curr->next;
833 
834         cp = curr->cipher;
835 
836         /*
837          * Selection criteria is either the value of strength_bits
838          * or the algorithms used.
839          */
840         if (strength_bits >= 0) {
841             if (strength_bits != cp->strength_bits)
842                 continue;
843         } else {
844             if (trc_out != NULL) {
845                 BIO_printf(trc_out,
846                            "\nName: %s:"
847                            "\nAlgo = %08x/%08x/%08x/%08x/%08x Algo_strength = %08x\n",
848                            cp->name,
849                            (unsigned int)cp->algorithm_mkey,
850                            (unsigned int)cp->algorithm_auth,
851                            (unsigned int)cp->algorithm_enc,
852                            (unsigned int)cp->algorithm_mac,
853                            cp->min_tls,
854                            (unsigned int)cp->algo_strength);
855             }
856             if (cipher_id != 0 && (cipher_id != cp->id))
857                 continue;
858             if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
859                 continue;
860             if (alg_auth && !(alg_auth & cp->algorithm_auth))
861                 continue;
862             if (alg_enc && !(alg_enc & cp->algorithm_enc))
863                 continue;
864             if (alg_mac && !(alg_mac & cp->algorithm_mac))
865                 continue;
866             if (min_tls && (min_tls != cp->min_tls))
867                 continue;
868             if ((algo_strength & SSL_STRONG_MASK)
869                 && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
870                 continue;
871             if ((algo_strength & SSL_DEFAULT_MASK)
872                 && !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength))
873                 continue;
874         }
875 
876         if (trc_out != NULL)
877             BIO_printf(trc_out, "Action = %d\n", rule);
878 
879         /* add the cipher if it has not been added yet. */
880         if (rule == CIPHER_ADD) {
881             /* reverse == 0 */
882             if (!curr->active) {
883                 ll_append_tail(&head, curr, &tail);
884                 curr->active = 1;
885             }
886         }
887         /* Move the added cipher to this location */
888         else if (rule == CIPHER_ORD) {
889             /* reverse == 0 */
890             if (curr->active) {
891                 ll_append_tail(&head, curr, &tail);
892             }
893         } else if (rule == CIPHER_DEL) {
894             /* reverse == 1 */
895             if (curr->active) {
896                 /*
897                  * most recently deleted ciphersuites get best positions for
898                  * any future CIPHER_ADD (note that the CIPHER_DEL loop works
899                  * in reverse to maintain the order)
900                  */
901                 ll_append_head(&head, curr, &tail);
902                 curr->active = 0;
903             }
904         } else if (rule == CIPHER_BUMP) {
905             if (curr->active)
906                 ll_append_head(&head, curr, &tail);
907         } else if (rule == CIPHER_KILL) {
908             /* reverse == 0 */
909             if (head == curr)
910                 head = curr->next;
911             else
912                 curr->prev->next = curr->next;
913             if (tail == curr)
914                 tail = curr->prev;
915             curr->active = 0;
916             if (curr->next != NULL)
917                 curr->next->prev = curr->prev;
918             if (curr->prev != NULL)
919                 curr->prev->next = curr->next;
920             curr->next = NULL;
921             curr->prev = NULL;
922         }
923     }
924 
925     *head_p = head;
926     *tail_p = tail;
927 
928     OSSL_TRACE_END(TLS_CIPHER);
929 }
930 
ssl_cipher_strength_sort(CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)931 static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
932                                     CIPHER_ORDER **tail_p)
933 {
934     int32_t max_strength_bits;
935     int i, *number_uses;
936     CIPHER_ORDER *curr;
937 
938     /*
939      * This routine sorts the ciphers with descending strength. The sorting
940      * must keep the pre-sorted sequence, so we apply the normal sorting
941      * routine as '+' movement to the end of the list.
942      */
943     max_strength_bits = 0;
944     curr = *head_p;
945     while (curr != NULL) {
946         if (curr->active && (curr->cipher->strength_bits > max_strength_bits))
947             max_strength_bits = curr->cipher->strength_bits;
948         curr = curr->next;
949     }
950 
951     number_uses = OPENSSL_calloc(max_strength_bits + 1, sizeof(int));
952     if (number_uses == NULL)
953         return 0;
954 
955     /*
956      * Now find the strength_bits values actually used
957      */
958     curr = *head_p;
959     while (curr != NULL) {
960         if (curr->active)
961             number_uses[curr->cipher->strength_bits]++;
962         curr = curr->next;
963     }
964     /*
965      * Go through the list of used strength_bits values in descending
966      * order.
967      */
968     for (i = max_strength_bits; i >= 0; i--)
969         if (number_uses[i] > 0)
970             ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p,
971                                   tail_p);
972 
973     OPENSSL_free(number_uses);
974     return 1;
975 }
976 
ssl_cipher_process_rulestr(const char * rule_str,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p,const SSL_CIPHER ** ca_list,CERT * c)977 static int ssl_cipher_process_rulestr(const char *rule_str,
978                                       CIPHER_ORDER **head_p,
979                                       CIPHER_ORDER **tail_p,
980                                       const SSL_CIPHER **ca_list, CERT *c)
981 {
982     uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, algo_strength;
983     int min_tls;
984     const char *l, *buf;
985     int j, multi, found, rule, retval, ok, buflen;
986     uint32_t cipher_id = 0;
987     char ch;
988 
989     retval = 1;
990     l = rule_str;
991     for (;;) {
992         ch = *l;
993 
994         if (ch == '\0')
995             break;              /* done */
996         if (ch == '-') {
997             rule = CIPHER_DEL;
998             l++;
999         } else if (ch == '+') {
1000             rule = CIPHER_ORD;
1001             l++;
1002         } else if (ch == '!') {
1003             rule = CIPHER_KILL;
1004             l++;
1005         } else if (ch == '@') {
1006             rule = CIPHER_SPECIAL;
1007             l++;
1008         } else {
1009             rule = CIPHER_ADD;
1010         }
1011 
1012         if (ITEM_SEP(ch)) {
1013             l++;
1014             continue;
1015         }
1016 
1017         alg_mkey = 0;
1018         alg_auth = 0;
1019         alg_enc = 0;
1020         alg_mac = 0;
1021         min_tls = 0;
1022         algo_strength = 0;
1023 
1024         for (;;) {
1025             ch = *l;
1026             buf = l;
1027             buflen = 0;
1028 #ifndef CHARSET_EBCDIC
1029             while (((ch >= 'A') && (ch <= 'Z')) ||
1030                    ((ch >= '0') && (ch <= '9')) ||
1031                    ((ch >= 'a') && (ch <= 'z')) ||
1032                    (ch == '-') || (ch == '_') || (ch == '.') || (ch == '='))
1033 #else
1034             while (isalnum((unsigned char)ch) || (ch == '-') || (ch == '_') || (ch == '.')
1035                    || (ch == '='))
1036 #endif
1037             {
1038                 ch = *(++l);
1039                 buflen++;
1040             }
1041 
1042             if (buflen == 0) {
1043                 /*
1044                  * We hit something we cannot deal with,
1045                  * it is no command or separator nor
1046                  * alphanumeric, so we call this an error.
1047                  */
1048                 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1049                 return 0;
1050             }
1051 
1052             if (rule == CIPHER_SPECIAL) {
1053                 found = 0;      /* unused -- avoid compiler warning */
1054                 break;          /* special treatment */
1055             }
1056 
1057             /* check for multi-part specification */
1058             if (ch == '+') {
1059                 multi = 1;
1060                 l++;
1061             } else {
1062                 multi = 0;
1063             }
1064 
1065             /*
1066              * Now search for the cipher alias in the ca_list. Be careful
1067              * with the strncmp, because the "buflen" limitation
1068              * will make the rule "ADH:SOME" and the cipher
1069              * "ADH-MY-CIPHER" look like a match for buflen=3.
1070              * So additionally check whether the cipher name found
1071              * has the correct length. We can save a strlen() call:
1072              * just checking for the '\0' at the right place is
1073              * sufficient, we have to strncmp() anyway. (We cannot
1074              * use strcmp(), because buf is not '\0' terminated.)
1075              */
1076             j = found = 0;
1077             cipher_id = 0;
1078             while (ca_list[j]) {
1079                 if (strncmp(buf, ca_list[j]->name, buflen) == 0
1080                     && (ca_list[j]->name[buflen] == '\0')) {
1081                     found = 1;
1082                     break;
1083                 } else if (ca_list[j]->stdname != NULL
1084                            && strncmp(buf, ca_list[j]->stdname, buflen) == 0
1085                            && ca_list[j]->stdname[buflen] == '\0') {
1086                     found = 1;
1087                     break;
1088                 } else
1089                     j++;
1090             }
1091 
1092             if (!found)
1093                 break;          /* ignore this entry */
1094 
1095             if (ca_list[j]->algorithm_mkey) {
1096                 if (alg_mkey) {
1097                     alg_mkey &= ca_list[j]->algorithm_mkey;
1098                     if (!alg_mkey) {
1099                         found = 0;
1100                         break;
1101                     }
1102                 } else {
1103                     alg_mkey = ca_list[j]->algorithm_mkey;
1104                 }
1105             }
1106 
1107             if (ca_list[j]->algorithm_auth) {
1108                 if (alg_auth) {
1109                     alg_auth &= ca_list[j]->algorithm_auth;
1110                     if (!alg_auth) {
1111                         found = 0;
1112                         break;
1113                     }
1114                 } else {
1115                     alg_auth = ca_list[j]->algorithm_auth;
1116                 }
1117             }
1118 
1119             if (ca_list[j]->algorithm_enc) {
1120                 if (alg_enc) {
1121                     alg_enc &= ca_list[j]->algorithm_enc;
1122                     if (!alg_enc) {
1123                         found = 0;
1124                         break;
1125                     }
1126                 } else {
1127                     alg_enc = ca_list[j]->algorithm_enc;
1128                 }
1129             }
1130 
1131             if (ca_list[j]->algorithm_mac) {
1132                 if (alg_mac) {
1133                     alg_mac &= ca_list[j]->algorithm_mac;
1134                     if (!alg_mac) {
1135                         found = 0;
1136                         break;
1137                     }
1138                 } else {
1139                     alg_mac = ca_list[j]->algorithm_mac;
1140                 }
1141             }
1142 
1143             if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
1144                 if (algo_strength & SSL_STRONG_MASK) {
1145                     algo_strength &=
1146                         (ca_list[j]->algo_strength & SSL_STRONG_MASK) |
1147                         ~SSL_STRONG_MASK;
1148                     if (!(algo_strength & SSL_STRONG_MASK)) {
1149                         found = 0;
1150                         break;
1151                     }
1152                 } else {
1153                     algo_strength = ca_list[j]->algo_strength & SSL_STRONG_MASK;
1154                 }
1155             }
1156 
1157             if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) {
1158                 if (algo_strength & SSL_DEFAULT_MASK) {
1159                     algo_strength &=
1160                         (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) |
1161                         ~SSL_DEFAULT_MASK;
1162                     if (!(algo_strength & SSL_DEFAULT_MASK)) {
1163                         found = 0;
1164                         break;
1165                     }
1166                 } else {
1167                     algo_strength |=
1168                         ca_list[j]->algo_strength & SSL_DEFAULT_MASK;
1169                 }
1170             }
1171 
1172             if (ca_list[j]->valid) {
1173                 /*
1174                  * explicit ciphersuite found; its protocol version does not
1175                  * become part of the search pattern!
1176                  */
1177 
1178                 cipher_id = ca_list[j]->id;
1179             } else {
1180                 /*
1181                  * not an explicit ciphersuite; only in this case, the
1182                  * protocol version is considered part of the search pattern
1183                  */
1184 
1185                 if (ca_list[j]->min_tls) {
1186                     if (min_tls != 0 && min_tls != ca_list[j]->min_tls) {
1187                         found = 0;
1188                         break;
1189                     } else {
1190                         min_tls = ca_list[j]->min_tls;
1191                     }
1192                 }
1193             }
1194 
1195             if (!multi)
1196                 break;
1197         }
1198 
1199         /*
1200          * Ok, we have the rule, now apply it
1201          */
1202         if (rule == CIPHER_SPECIAL) { /* special command */
1203             ok = 0;
1204             if ((buflen == 8) && HAS_PREFIX(buf, "STRENGTH")) {
1205                 ok = ssl_cipher_strength_sort(head_p, tail_p);
1206             } else if (buflen == 10 && CHECK_AND_SKIP_PREFIX(buf, "SECLEVEL=")) {
1207                 int level = *buf - '0';
1208                 if (level < 0 || level > 5) {
1209                     ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1210                 } else {
1211                     c->sec_level = level;
1212                     ok = 1;
1213                 }
1214             } else {
1215                 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1216             }
1217             if (ok == 0)
1218                 retval = 0;
1219             /*
1220              * We do not support any "multi" options
1221              * together with "@", so throw away the
1222              * rest of the command, if any left, until
1223              * end or ':' is found.
1224              */
1225             while ((*l != '\0') && !ITEM_SEP(*l))
1226                 l++;
1227         } else if (found) {
1228             ssl_cipher_apply_rule(cipher_id,
1229                                   alg_mkey, alg_auth, alg_enc, alg_mac,
1230                                   min_tls, algo_strength, rule, -1, head_p,
1231                                   tail_p);
1232         } else {
1233             while ((*l != '\0') && !ITEM_SEP(*l))
1234                 l++;
1235         }
1236         if (*l == '\0')
1237             break;              /* done */
1238     }
1239 
1240     return retval;
1241 }
1242 
check_suiteb_cipher_list(const SSL_METHOD * meth,CERT * c,const char ** prule_str)1243 static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c,
1244                                     const char **prule_str)
1245 {
1246     unsigned int suiteb_flags = 0, suiteb_comb2 = 0;
1247     if (HAS_PREFIX(*prule_str, "SUITEB128ONLY")) {
1248         suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY;
1249     } else if (HAS_PREFIX(*prule_str, "SUITEB128C2")) {
1250         suiteb_comb2 = 1;
1251         suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1252     } else if (HAS_PREFIX(*prule_str, "SUITEB128")) {
1253         suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1254     } else if (HAS_PREFIX(*prule_str, "SUITEB192")) {
1255         suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS;
1256     }
1257 
1258     if (suiteb_flags) {
1259         c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS;
1260         c->cert_flags |= suiteb_flags;
1261     } else {
1262         suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS;
1263     }
1264 
1265     if (!suiteb_flags)
1266         return 1;
1267     /* Check version: if TLS 1.2 ciphers allowed we can use Suite B */
1268 
1269     if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) {
1270         ERR_raise(ERR_LIB_SSL, SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE);
1271         return 0;
1272     }
1273 
1274     switch (suiteb_flags) {
1275     case SSL_CERT_FLAG_SUITEB_128_LOS:
1276         if (suiteb_comb2)
1277             *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1278         else
1279             *prule_str =
1280                 "ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384";
1281         break;
1282     case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1283         *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256";
1284         break;
1285     case SSL_CERT_FLAG_SUITEB_192_LOS:
1286         *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1287         break;
1288     }
1289     return 1;
1290 }
1291 
ciphersuite_cb(const char * elem,int len,void * arg)1292 static int ciphersuite_cb(const char *elem, int len, void *arg)
1293 {
1294     STACK_OF(SSL_CIPHER) *ciphersuites = (STACK_OF(SSL_CIPHER) *)arg;
1295     const SSL_CIPHER *cipher;
1296     /* Arbitrary sized temp buffer for the cipher name. Should be big enough */
1297     char name[80];
1298 
1299     if (len > (int)(sizeof(name) - 1))
1300         /* Anyway return 1 so we can parse rest of the list */
1301         return 1;
1302 
1303     memcpy(name, elem, len);
1304     name[len] = '\0';
1305 
1306     cipher = ssl3_get_cipher_by_std_name(name);
1307     if (cipher == NULL)
1308         /* Ciphersuite not found but return 1 to parse rest of the list */
1309         return 1;
1310 
1311     if (!sk_SSL_CIPHER_push(ciphersuites, cipher)) {
1312         ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
1313         return 0;
1314     }
1315 
1316     return 1;
1317 }
1318 
set_ciphersuites(STACK_OF (SSL_CIPHER)** currciphers,const char * str)1319 static __owur int set_ciphersuites(STACK_OF(SSL_CIPHER) **currciphers, const char *str)
1320 {
1321     STACK_OF(SSL_CIPHER) *newciphers = sk_SSL_CIPHER_new_null();
1322 
1323     if (newciphers == NULL)
1324         return 0;
1325 
1326     /* Parse the list. We explicitly allow an empty list */
1327     if (*str != '\0'
1328             && (CONF_parse_list(str, ':', 1, ciphersuite_cb, newciphers) <= 0
1329                 || sk_SSL_CIPHER_num(newciphers) == 0)) {
1330         ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH);
1331         sk_SSL_CIPHER_free(newciphers);
1332         return 0;
1333     }
1334     sk_SSL_CIPHER_free(*currciphers);
1335     *currciphers = newciphers;
1336 
1337     return 1;
1338 }
1339 
update_cipher_list_by_id(STACK_OF (SSL_CIPHER)** cipher_list_by_id,STACK_OF (SSL_CIPHER)* cipherstack)1340 static int update_cipher_list_by_id(STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1341                                     STACK_OF(SSL_CIPHER) *cipherstack)
1342 {
1343     STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
1344 
1345     if (tmp_cipher_list == NULL) {
1346         return 0;
1347     }
1348 
1349     sk_SSL_CIPHER_free(*cipher_list_by_id);
1350     *cipher_list_by_id = tmp_cipher_list;
1351 
1352     (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, ssl_cipher_ptr_id_cmp);
1353     sk_SSL_CIPHER_sort(*cipher_list_by_id);
1354 
1355     return 1;
1356 }
1357 
update_cipher_list(SSL_CTX * ctx,STACK_OF (SSL_CIPHER)** cipher_list,STACK_OF (SSL_CIPHER)** cipher_list_by_id,STACK_OF (SSL_CIPHER)* tls13_ciphersuites)1358 static int update_cipher_list(SSL_CTX *ctx,
1359                               STACK_OF(SSL_CIPHER) **cipher_list,
1360                               STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1361                               STACK_OF(SSL_CIPHER) *tls13_ciphersuites)
1362 {
1363     int i;
1364     STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(*cipher_list);
1365 
1366     if (tmp_cipher_list == NULL)
1367         return 0;
1368 
1369     /*
1370      * Delete any existing TLSv1.3 ciphersuites. These are always first in the
1371      * list.
1372      */
1373     while (sk_SSL_CIPHER_num(tmp_cipher_list) > 0
1374            && sk_SSL_CIPHER_value(tmp_cipher_list, 0)->min_tls
1375               == TLS1_3_VERSION)
1376         (void)sk_SSL_CIPHER_delete(tmp_cipher_list, 0);
1377 
1378     /* Insert the new TLSv1.3 ciphersuites */
1379     for (i = sk_SSL_CIPHER_num(tls13_ciphersuites) - 1; i >= 0; i--) {
1380         const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1381 
1382         /* Don't include any TLSv1.3 ciphersuites that are disabled */
1383         if ((sslc->algorithm_enc & ctx->disabled_enc_mask) == 0
1384                 && (ssl_cipher_table_mac[sslc->algorithm2
1385                                          & SSL_HANDSHAKE_MAC_MASK].mask
1386                     & ctx->disabled_mac_mask) == 0) {
1387             sk_SSL_CIPHER_unshift(tmp_cipher_list, sslc);
1388         }
1389     }
1390 
1391     if (!update_cipher_list_by_id(cipher_list_by_id, tmp_cipher_list)) {
1392         sk_SSL_CIPHER_free(tmp_cipher_list);
1393         return 0;
1394     }
1395 
1396     sk_SSL_CIPHER_free(*cipher_list);
1397     *cipher_list = tmp_cipher_list;
1398 
1399     return 1;
1400 }
1401 
SSL_CTX_set_ciphersuites(SSL_CTX * ctx,const char * str)1402 int SSL_CTX_set_ciphersuites(SSL_CTX *ctx, const char *str)
1403 {
1404     int ret = set_ciphersuites(&(ctx->tls13_ciphersuites), str);
1405 
1406     if (ret && ctx->cipher_list != NULL)
1407         return update_cipher_list(ctx, &ctx->cipher_list, &ctx->cipher_list_by_id,
1408                                   ctx->tls13_ciphersuites);
1409 
1410     return ret;
1411 }
1412 
SSL_set_ciphersuites(SSL * s,const char * str)1413 int SSL_set_ciphersuites(SSL *s, const char *str)
1414 {
1415     STACK_OF(SSL_CIPHER) *cipher_list;
1416     SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
1417     int ret;
1418 
1419     if (sc == NULL)
1420         return 0;
1421 
1422     ret = set_ciphersuites(&(sc->tls13_ciphersuites), str);
1423 
1424     if (sc->cipher_list == NULL) {
1425         if ((cipher_list = SSL_get_ciphers(s)) != NULL)
1426             sc->cipher_list = sk_SSL_CIPHER_dup(cipher_list);
1427     }
1428     if (ret && sc->cipher_list != NULL)
1429         return update_cipher_list(s->ctx, &sc->cipher_list,
1430                                   &sc->cipher_list_by_id,
1431                                   sc->tls13_ciphersuites);
1432 
1433     return ret;
1434 }
1435 
STACK_OF(SSL_CIPHER)1436 STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(SSL_CTX *ctx,
1437                                              STACK_OF(SSL_CIPHER) *tls13_ciphersuites,
1438                                              STACK_OF(SSL_CIPHER) **cipher_list,
1439                                              STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1440                                              const char *rule_str,
1441                                              CERT *c)
1442 {
1443     int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases, i;
1444     uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac;
1445     STACK_OF(SSL_CIPHER) *cipherstack;
1446     const char *rule_p;
1447     CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
1448     const SSL_CIPHER **ca_list = NULL;
1449     const SSL_METHOD *ssl_method = ctx->method;
1450 
1451     /*
1452      * Return with error if nothing to do.
1453      */
1454     if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
1455         return NULL;
1456 
1457     if (!check_suiteb_cipher_list(ssl_method, c, &rule_str))
1458         return NULL;
1459 
1460     /*
1461      * To reduce the work to do we only want to process the compiled
1462      * in algorithms, so we first get the mask of disabled ciphers.
1463      */
1464 
1465     disabled_mkey = ctx->disabled_mkey_mask;
1466     disabled_auth = ctx->disabled_auth_mask;
1467     disabled_enc = ctx->disabled_enc_mask;
1468     disabled_mac = ctx->disabled_mac_mask;
1469 
1470     /*
1471      * Now we have to collect the available ciphers from the compiled
1472      * in ciphers. We cannot get more than the number compiled in, so
1473      * it is used for allocation.
1474      */
1475     num_of_ciphers = ssl_method->num_ciphers();
1476 
1477     if (num_of_ciphers > 0) {
1478         co_list = OPENSSL_malloc_array(num_of_ciphers, sizeof(*co_list));
1479         if (co_list == NULL)
1480             return NULL;          /* Failure */
1481     }
1482 
1483     ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
1484                                disabled_mkey, disabled_auth, disabled_enc,
1485                                disabled_mac, co_list, &head, &tail);
1486 
1487     /* Now arrange all ciphers by preference. */
1488 
1489     /*
1490      * Everything else being equal, prefer ephemeral ECDH over other key
1491      * exchange mechanisms.
1492      * For consistency, prefer ECDSA over RSA (though this only matters if the
1493      * server has both certificates, and is using the DEFAULT, or a client
1494      * preference).
1495      */
1496     ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD,
1497                           -1, &head, &tail);
1498     ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head,
1499                           &tail);
1500     ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head,
1501                           &tail);
1502 
1503     /* Within each strength group, we prefer GCM over CHACHA... */
1504     ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1,
1505                           &head, &tail);
1506     ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1,
1507                           &head, &tail);
1508 
1509     /*
1510      * ...and generally, our preferred cipher is AES.
1511      * Note that AEADs will be bumped to take preference after sorting by
1512      * strength.
1513      */
1514     ssl_cipher_apply_rule(0, 0, 0, SSL_AES ^ SSL_AESGCM, 0, 0, 0, CIPHER_ADD,
1515                           -1, &head, &tail);
1516 
1517     /* Temporarily enable everything else for sorting */
1518     ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1519 
1520     /* Low priority for MD5 */
1521     ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head,
1522                           &tail);
1523 
1524     /*
1525      * Move anonymous ciphers to the end.  Usually, these will remain
1526      * disabled. (For applications that allow them, they aren't too bad, but
1527      * we prefer authenticated ciphers.)
1528      */
1529     ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1530                           &tail);
1531 
1532     ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1533                           &tail);
1534     ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1535                           &tail);
1536 
1537     /* RC4 is sort-of broken -- move to the end */
1538     ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head,
1539                           &tail);
1540 
1541     /*
1542      * Now sort by symmetric encryption strength.  The above ordering remains
1543      * in force within each class
1544      */
1545     if (!ssl_cipher_strength_sort(&head, &tail)) {
1546         OPENSSL_free(co_list);
1547         return NULL;
1548     }
1549 
1550     /*
1551      * Partially overrule strength sort to prefer TLS 1.2 ciphers/PRFs.
1552      */
1553     ssl_cipher_apply_rule(0, 0, 0, 0, 0, TLS1_2_VERSION, 0, CIPHER_BUMP, -1,
1554                           &head, &tail);
1555 
1556     /*
1557      * Irrespective of strength, enforce the following order:
1558      * (EC)DHE + AEAD > (EC)DHE > rest of AEAD > rest.
1559      * Within each group, ciphers remain sorted by strength and previous
1560      * preference, i.e.,
1561      * 1) ECDHE > DHE
1562      * 2) GCM > CHACHA
1563      * 3) AES > rest
1564      * 4) TLS 1.2 > legacy
1565      *
1566      * Because we now bump ciphers to the top of the list, we proceed in
1567      * reverse order of preference.
1568      */
1569     ssl_cipher_apply_rule(0, 0, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1,
1570                           &head, &tail);
1571     ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, 0, 0, 0,
1572                           CIPHER_BUMP, -1, &head, &tail);
1573     ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, SSL_AEAD, 0, 0,
1574                           CIPHER_BUMP, -1, &head, &tail);
1575 
1576     /* Now disable everything (maintaining the ordering!) */
1577     ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
1578 
1579     /*
1580      * We also need cipher aliases for selecting based on the rule_str.
1581      * There might be two types of entries in the rule_str: 1) names
1582      * of ciphers themselves 2) aliases for groups of ciphers.
1583      * For 1) we need the available ciphers and for 2) the cipher
1584      * groups of cipher_aliases added together in one list (otherwise
1585      * we would be happy with just the cipher_aliases table).
1586      */
1587     num_of_group_aliases = OSSL_NELEM(cipher_aliases);
1588     num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
1589     ca_list = OPENSSL_malloc_array(num_of_alias_max, sizeof(*ca_list));
1590     if (ca_list == NULL) {
1591         OPENSSL_free(co_list);
1592         return NULL;          /* Failure */
1593     }
1594     ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
1595                                disabled_mkey, disabled_auth, disabled_enc,
1596                                disabled_mac, head);
1597 
1598     /*
1599      * If the rule_string begins with DEFAULT, apply the default rule
1600      * before using the (possibly available) additional rules.
1601      */
1602     ok = 1;
1603     rule_p = rule_str;
1604     if (HAS_PREFIX(rule_str, "DEFAULT")) {
1605         ok = ssl_cipher_process_rulestr(OSSL_default_cipher_list(),
1606                                         &head, &tail, ca_list, c);
1607         rule_p += 7;
1608         if (*rule_p == ':')
1609             rule_p++;
1610     }
1611 
1612     if (ok && (rule_p[0] != '\0'))
1613         ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c);
1614 
1615     OPENSSL_free(ca_list);      /* Not needed anymore */
1616 
1617     if (!ok) {                  /* Rule processing failure */
1618         OPENSSL_free(co_list);
1619         return NULL;
1620     }
1621 
1622     /*
1623      * Allocate new "cipherstack" for the result, return with error
1624      * if we cannot get one.
1625      */
1626     if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
1627         OPENSSL_free(co_list);
1628         return NULL;
1629     }
1630 
1631     /* Add TLSv1.3 ciphers first - we always prefer those if possible */
1632     for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++) {
1633         const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1634 
1635         /* Don't include any TLSv1.3 ciphers that are disabled */
1636         if ((sslc->algorithm_enc & disabled_enc) != 0
1637                 || (ssl_cipher_table_mac[sslc->algorithm2
1638                                          & SSL_HANDSHAKE_MAC_MASK].mask
1639                     & ctx->disabled_mac_mask) != 0) {
1640             sk_SSL_CIPHER_delete(tls13_ciphersuites, i);
1641             i--;
1642             continue;
1643         }
1644 
1645         if (!sk_SSL_CIPHER_push(cipherstack, sslc)) {
1646             OPENSSL_free(co_list);
1647             sk_SSL_CIPHER_free(cipherstack);
1648             return NULL;
1649         }
1650     }
1651 
1652     OSSL_TRACE_BEGIN(TLS_CIPHER) {
1653         BIO_printf(trc_out, "cipher selection:\n");
1654     }
1655     /*
1656      * The cipher selection for the list is done. The ciphers are added
1657      * to the resulting precedence to the STACK_OF(SSL_CIPHER).
1658      */
1659     for (curr = head; curr != NULL; curr = curr->next) {
1660         if (curr->active) {
1661             if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
1662                 OPENSSL_free(co_list);
1663                 sk_SSL_CIPHER_free(cipherstack);
1664                 OSSL_TRACE_CANCEL(TLS_CIPHER);
1665                 return NULL;
1666             }
1667             if (trc_out != NULL)
1668                 BIO_printf(trc_out, "<%s>\n", curr->cipher->name);
1669         }
1670     }
1671     OPENSSL_free(co_list);      /* Not needed any longer */
1672     OSSL_TRACE_END(TLS_CIPHER);
1673 
1674     if (!update_cipher_list_by_id(cipher_list_by_id, cipherstack)) {
1675         sk_SSL_CIPHER_free(cipherstack);
1676         return NULL;
1677     }
1678     sk_SSL_CIPHER_free(*cipher_list);
1679     *cipher_list = cipherstack;
1680 
1681     return cipherstack;
1682 }
1683 
SSL_CIPHER_description(const SSL_CIPHER * cipher,char * buf,int len)1684 char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
1685 {
1686     const char *ver;
1687     const char *kx, *au, *enc, *mac;
1688     uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
1689     static const char *const format = "%-30s %-7s Kx=%-8s Au=%-5s Enc=%-22s Mac=%-4s\n";
1690 
1691     if (buf == NULL) {
1692         len = 128;
1693         if ((buf = OPENSSL_malloc(len)) == NULL)
1694             return NULL;
1695     } else if (len < 128) {
1696         return NULL;
1697     }
1698 
1699     alg_mkey = cipher->algorithm_mkey;
1700     alg_auth = cipher->algorithm_auth;
1701     alg_enc = cipher->algorithm_enc;
1702     alg_mac = cipher->algorithm_mac;
1703 
1704     ver = ssl_protocol_to_string(cipher->min_tls);
1705 
1706     switch (alg_mkey) {
1707     case SSL_kRSA:
1708         kx = "RSA";
1709         break;
1710     case SSL_kDHE:
1711         kx = "DH";
1712         break;
1713     case SSL_kECDHE:
1714         kx = "ECDH";
1715         break;
1716     case SSL_kPSK:
1717         kx = "PSK";
1718         break;
1719     case SSL_kRSAPSK:
1720         kx = "RSAPSK";
1721         break;
1722     case SSL_kECDHEPSK:
1723         kx = "ECDHEPSK";
1724         break;
1725     case SSL_kDHEPSK:
1726         kx = "DHEPSK";
1727         break;
1728     case SSL_kSRP:
1729         kx = "SRP";
1730         break;
1731     case SSL_kGOST:
1732         kx = "GOST";
1733         break;
1734     case SSL_kGOST18:
1735         kx = "GOST18";
1736         break;
1737     case SSL_kANY:
1738         kx = "any";
1739         break;
1740     default:
1741         kx = "unknown";
1742     }
1743 
1744     switch (alg_auth) {
1745     case SSL_aRSA:
1746         au = "RSA";
1747         break;
1748     case SSL_aDSS:
1749         au = "DSS";
1750         break;
1751     case SSL_aNULL:
1752         au = "None";
1753         break;
1754     case SSL_aECDSA:
1755         au = "ECDSA";
1756         break;
1757     case SSL_aPSK:
1758         au = "PSK";
1759         break;
1760     case SSL_aSRP:
1761         au = "SRP";
1762         break;
1763     case SSL_aGOST01:
1764         au = "GOST01";
1765         break;
1766     /* New GOST ciphersuites have both SSL_aGOST12 and SSL_aGOST01 bits */
1767     case (SSL_aGOST12 | SSL_aGOST01):
1768         au = "GOST12";
1769         break;
1770     case SSL_aANY:
1771         au = "any";
1772         break;
1773     default:
1774         au = "unknown";
1775         break;
1776     }
1777 
1778     switch (alg_enc) {
1779     case SSL_DES:
1780         enc = "DES(56)";
1781         break;
1782     case SSL_3DES:
1783         enc = "3DES(168)";
1784         break;
1785     case SSL_RC4:
1786         enc = "RC4(128)";
1787         break;
1788     case SSL_RC2:
1789         enc = "RC2(128)";
1790         break;
1791     case SSL_IDEA:
1792         enc = "IDEA(128)";
1793         break;
1794     case SSL_eNULL:
1795         enc = "None";
1796         break;
1797     case SSL_AES128:
1798         enc = "AES(128)";
1799         break;
1800     case SSL_AES256:
1801         enc = "AES(256)";
1802         break;
1803     case SSL_AES128GCM:
1804         enc = "AESGCM(128)";
1805         break;
1806     case SSL_AES256GCM:
1807         enc = "AESGCM(256)";
1808         break;
1809     case SSL_AES128CCM:
1810         enc = "AESCCM(128)";
1811         break;
1812     case SSL_AES256CCM:
1813         enc = "AESCCM(256)";
1814         break;
1815     case SSL_AES128CCM8:
1816         enc = "AESCCM8(128)";
1817         break;
1818     case SSL_AES256CCM8:
1819         enc = "AESCCM8(256)";
1820         break;
1821     case SSL_CAMELLIA128:
1822         enc = "Camellia(128)";
1823         break;
1824     case SSL_CAMELLIA256:
1825         enc = "Camellia(256)";
1826         break;
1827     case SSL_ARIA128GCM:
1828         enc = "ARIAGCM(128)";
1829         break;
1830     case SSL_ARIA256GCM:
1831         enc = "ARIAGCM(256)";
1832         break;
1833     case SSL_SEED:
1834         enc = "SEED(128)";
1835         break;
1836     case SSL_eGOST2814789CNT:
1837     case SSL_eGOST2814789CNT12:
1838         enc = "GOST89(256)";
1839         break;
1840     case SSL_MAGMA:
1841         enc = "MAGMA";
1842         break;
1843     case SSL_KUZNYECHIK:
1844         enc = "KUZNYECHIK";
1845         break;
1846     case SSL_CHACHA20POLY1305:
1847         enc = "CHACHA20/POLY1305(256)";
1848         break;
1849     default:
1850         enc = "unknown";
1851         break;
1852     }
1853 
1854     switch (alg_mac) {
1855     case SSL_MD5:
1856         mac = "MD5";
1857         break;
1858     case SSL_SHA1:
1859         mac = "SHA1";
1860         break;
1861     case SSL_SHA256:
1862         mac = "SHA256";
1863         break;
1864     case SSL_SHA384:
1865         mac = "SHA384";
1866         break;
1867     case SSL_AEAD:
1868         mac = "AEAD";
1869         break;
1870     case SSL_GOST89MAC:
1871     case SSL_GOST89MAC12:
1872         mac = "GOST89";
1873         break;
1874     case SSL_GOST94:
1875         mac = "GOST94";
1876         break;
1877     case SSL_GOST12_256:
1878     case SSL_GOST12_512:
1879         mac = "GOST2012";
1880         break;
1881     default:
1882         mac = "unknown";
1883         break;
1884     }
1885 
1886     BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac);
1887 
1888     return buf;
1889 }
1890 
SSL_CIPHER_get_version(const SSL_CIPHER * c)1891 const char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
1892 {
1893     if (c == NULL)
1894         return "(NONE)";
1895 
1896     /*
1897      * Backwards-compatibility crutch.  In almost all contexts we report TLS
1898      * 1.0 as "TLSv1", but for ciphers we report "TLSv1.0".
1899      */
1900     if (c->min_tls == TLS1_VERSION)
1901         return "TLSv1.0";
1902     return ssl_protocol_to_string(c->min_tls);
1903 }
1904 
1905 /* return the actual cipher being used */
SSL_CIPHER_get_name(const SSL_CIPHER * c)1906 const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
1907 {
1908     if (c != NULL)
1909         return c->name;
1910     return "(NONE)";
1911 }
1912 
1913 /* return the actual cipher being used in RFC standard name */
SSL_CIPHER_standard_name(const SSL_CIPHER * c)1914 const char *SSL_CIPHER_standard_name(const SSL_CIPHER *c)
1915 {
1916     if (c != NULL)
1917         return c->stdname;
1918     return "(NONE)";
1919 }
1920 
1921 /* return the OpenSSL name based on given RFC standard name */
OPENSSL_cipher_name(const char * stdname)1922 const char *OPENSSL_cipher_name(const char *stdname)
1923 {
1924     const SSL_CIPHER *c;
1925 
1926     if (stdname == NULL)
1927         return "(NONE)";
1928     c = ssl3_get_cipher_by_std_name(stdname);
1929     return SSL_CIPHER_get_name(c);
1930 }
1931 
1932 /* number of bits for symmetric cipher */
SSL_CIPHER_get_bits(const SSL_CIPHER * c,int * alg_bits)1933 int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
1934 {
1935     int ret = 0;
1936 
1937     if (c != NULL) {
1938         if (alg_bits != NULL)
1939             *alg_bits = (int)c->alg_bits;
1940         ret = (int)c->strength_bits;
1941     }
1942     return ret;
1943 }
1944 
SSL_CIPHER_get_id(const SSL_CIPHER * c)1945 uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c)
1946 {
1947     return c->id;
1948 }
1949 
SSL_CIPHER_get_protocol_id(const SSL_CIPHER * c)1950 uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *c)
1951 {
1952     return c->id & 0xFFFF;
1953 }
1954 
ssl3_comp_find(STACK_OF (SSL_COMP)* sk,int n)1955 SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
1956 {
1957     SSL_COMP *ctmp;
1958     SSL_COMP srch_key;
1959     int i;
1960 
1961     if ((n == 0) || (sk == NULL))
1962         return NULL;
1963     srch_key.id = n;
1964     i = sk_SSL_COMP_find(sk, &srch_key);
1965     if (i >= 0)
1966         ctmp = sk_SSL_COMP_value(sk, i);
1967     else
1968         ctmp = NULL;
1969 
1970     return ctmp;
1971 }
1972 
1973 #ifdef OPENSSL_NO_COMP
STACK_OF(SSL_COMP)1974 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1975 {
1976     return NULL;
1977 }
1978 
STACK_OF(SSL_COMP)1979 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1980                                                       *meths)
1981 {
1982     return meths;
1983 }
1984 
SSL_COMP_add_compression_method(int id,COMP_METHOD * cm)1985 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1986 {
1987     return 1;
1988 }
1989 
1990 #else
STACK_OF(SSL_COMP)1991 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1992 {
1993     STACK_OF(SSL_COMP) **rv;
1994 
1995     rv = (STACK_OF(SSL_COMP) **)OSSL_LIB_CTX_get_data(NULL,
1996                                      OSSL_LIB_CTX_COMP_METHODS);
1997     if (rv != NULL)
1998         return *rv;
1999     else
2000         return NULL;
2001 }
2002 
STACK_OF(SSL_COMP)2003 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
2004                                                       *meths)
2005 {
2006     STACK_OF(SSL_COMP) **comp_methods;
2007     STACK_OF(SSL_COMP) *old_meths;
2008 
2009     comp_methods = (STACK_OF(SSL_COMP) **)OSSL_LIB_CTX_get_data(NULL,
2010                                               OSSL_LIB_CTX_COMP_METHODS);
2011     if (comp_methods == NULL) {
2012         old_meths = meths;
2013     } else {
2014         old_meths = *comp_methods;
2015         *comp_methods = meths;
2016     }
2017 
2018     return old_meths;
2019 }
2020 
SSL_COMP_add_compression_method(int id,COMP_METHOD * cm)2021 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
2022 {
2023     STACK_OF(SSL_COMP) *comp_methods;
2024     SSL_COMP *comp;
2025 
2026     comp_methods = SSL_COMP_get_compression_methods();
2027 
2028     if (comp_methods == NULL)
2029         return 1;
2030 
2031     if (cm == NULL || COMP_get_type(cm) == NID_undef)
2032         return 1;
2033 
2034     /*-
2035      * According to draft-ietf-tls-compression-04.txt, the
2036      * compression number ranges should be the following:
2037      *
2038      *   0 to  63:  methods defined by the IETF
2039      *  64 to 192:  external party methods assigned by IANA
2040      * 193 to 255:  reserved for private use
2041      */
2042     if (id < 193 || id > 255) {
2043         ERR_raise(ERR_LIB_SSL, SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
2044         return 1;
2045     }
2046 
2047     comp = OPENSSL_malloc(sizeof(*comp));
2048     if (comp == NULL)
2049         return 1;
2050 
2051     comp->id = id;
2052     if (sk_SSL_COMP_find(comp_methods, comp) >= 0) {
2053         OPENSSL_free(comp);
2054         ERR_raise(ERR_LIB_SSL, SSL_R_DUPLICATE_COMPRESSION_ID);
2055         return 1;
2056     }
2057     if (!sk_SSL_COMP_push(comp_methods, comp)) {
2058         OPENSSL_free(comp);
2059         ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB);
2060         return 1;
2061     }
2062 
2063     return 0;
2064 }
2065 #endif
2066 
SSL_COMP_get_name(const COMP_METHOD * comp)2067 const char *SSL_COMP_get_name(const COMP_METHOD *comp)
2068 {
2069 #ifndef OPENSSL_NO_COMP
2070     return comp ? COMP_get_name(comp) : NULL;
2071 #else
2072     return NULL;
2073 #endif
2074 }
2075 
SSL_COMP_get0_name(const SSL_COMP * comp)2076 const char *SSL_COMP_get0_name(const SSL_COMP *comp)
2077 {
2078 #ifndef OPENSSL_NO_COMP
2079     return comp->name;
2080 #else
2081     return NULL;
2082 #endif
2083 }
2084 
SSL_COMP_get_id(const SSL_COMP * comp)2085 int SSL_COMP_get_id(const SSL_COMP *comp)
2086 {
2087 #ifndef OPENSSL_NO_COMP
2088     return comp->id;
2089 #else
2090     return -1;
2091 #endif
2092 }
2093 
ssl_get_cipher_by_char(SSL_CONNECTION * s,const unsigned char * ptr,int all)2094 const SSL_CIPHER *ssl_get_cipher_by_char(SSL_CONNECTION *s,
2095                                          const unsigned char *ptr,
2096                                          int all)
2097 {
2098     const SSL_CIPHER *c = SSL_CONNECTION_GET_SSL(s)->method->get_cipher_by_char(ptr);
2099 
2100     if (c == NULL || (!all && c->valid == 0))
2101         return NULL;
2102     return c;
2103 }
2104 
SSL_CIPHER_find(SSL * ssl,const unsigned char * ptr)2105 const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr)
2106 {
2107     return ssl->method->get_cipher_by_char(ptr);
2108 }
2109 
SSL_CIPHER_get_cipher_nid(const SSL_CIPHER * c)2110 int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c)
2111 {
2112     int i;
2113     if (c == NULL)
2114         return NID_undef;
2115     i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
2116     if (i == -1)
2117         return NID_undef;
2118     return ssl_cipher_table_cipher[i].nid;
2119 }
2120 
SSL_CIPHER_get_digest_nid(const SSL_CIPHER * c)2121 int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c)
2122 {
2123     int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
2124 
2125     if (i == -1)
2126         return NID_undef;
2127     return ssl_cipher_table_mac[i].nid;
2128 }
2129 
SSL_CIPHER_get_kx_nid(const SSL_CIPHER * c)2130 int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c)
2131 {
2132     int i = ssl_cipher_info_lookup(ssl_cipher_table_kx, c->algorithm_mkey);
2133 
2134     if (i == -1)
2135         return NID_undef;
2136     return ssl_cipher_table_kx[i].nid;
2137 }
2138 
SSL_CIPHER_get_auth_nid(const SSL_CIPHER * c)2139 int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c)
2140 {
2141     int i = ssl_cipher_info_lookup(ssl_cipher_table_auth, c->algorithm_auth);
2142 
2143     if (i == -1)
2144         return NID_undef;
2145     return ssl_cipher_table_auth[i].nid;
2146 }
2147 
ssl_get_md_idx(int md_nid)2148 int ssl_get_md_idx(int md_nid) {
2149     int i;
2150 
2151     for(i = 0; i < SSL_MD_NUM_IDX; i++) {
2152         if (md_nid == ssl_cipher_table_mac[i].nid)
2153             return i;
2154     }
2155     return -1;
2156 }
2157 
SSL_CIPHER_get_handshake_digest(const SSL_CIPHER * c)2158 const EVP_MD *SSL_CIPHER_get_handshake_digest(const SSL_CIPHER *c)
2159 {
2160     int idx = c->algorithm2 & SSL_HANDSHAKE_MAC_MASK;
2161 
2162     if (idx < 0 || idx >= SSL_MD_NUM_IDX)
2163         return NULL;
2164     return EVP_get_digestbynid(ssl_cipher_table_mac[idx].nid);
2165 }
2166 
SSL_CIPHER_is_aead(const SSL_CIPHER * c)2167 int SSL_CIPHER_is_aead(const SSL_CIPHER *c)
2168 {
2169     return (c->algorithm_mac & SSL_AEAD) ? 1 : 0;
2170 }
2171 
ssl_cipher_get_overhead(const SSL_CIPHER * c,size_t * mac_overhead,size_t * int_overhead,size_t * blocksize,size_t * ext_overhead)2172 int ssl_cipher_get_overhead(const SSL_CIPHER *c, size_t *mac_overhead,
2173                             size_t *int_overhead, size_t *blocksize,
2174                             size_t *ext_overhead)
2175 {
2176     int mac = 0, in = 0, blk = 0, out = 0;
2177 
2178     /* Some hard-coded numbers for the CCM/Poly1305 MAC overhead
2179      * because there are no handy #defines for those. */
2180     if (c->algorithm_enc & (SSL_AESGCM | SSL_ARIAGCM)) {
2181         out = EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
2182     } else if (c->algorithm_enc & (SSL_AES128CCM | SSL_AES256CCM)) {
2183         out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 16;
2184     } else if (c->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) {
2185         out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 8;
2186     } else if (c->algorithm_enc & SSL_CHACHA20POLY1305) {
2187         out = 16;
2188     } else if (c->algorithm_mac & SSL_AEAD) {
2189         /* We're supposed to have handled all the AEAD modes above */
2190         return 0;
2191     } else {
2192         /* Non-AEAD modes. Calculate MAC/cipher overhead separately */
2193         int digest_nid = SSL_CIPHER_get_digest_nid(c);
2194         const EVP_MD *e_md = EVP_get_digestbynid(digest_nid);
2195 
2196         if (e_md == NULL)
2197             return 0;
2198 
2199         mac = EVP_MD_get_size(e_md);
2200         if (mac <= 0)
2201             return 0;
2202         if (c->algorithm_enc != SSL_eNULL) {
2203             int cipher_nid = SSL_CIPHER_get_cipher_nid(c);
2204             const EVP_CIPHER *e_ciph = EVP_get_cipherbynid(cipher_nid);
2205 
2206             /* If it wasn't AEAD or SSL_eNULL, we expect it to be a
2207                known CBC cipher. */
2208             if (e_ciph == NULL ||
2209                 EVP_CIPHER_get_mode(e_ciph) != EVP_CIPH_CBC_MODE)
2210                 return 0;
2211 
2212             in = 1; /* padding length byte */
2213             out = EVP_CIPHER_get_iv_length(e_ciph);
2214             if (out < 0)
2215                 return 0;
2216             blk = EVP_CIPHER_get_block_size(e_ciph);
2217             if (blk <= 0)
2218                 return 0;
2219         }
2220     }
2221 
2222     *mac_overhead = (size_t)mac;
2223     *int_overhead = (size_t)in;
2224     *blocksize = (size_t)blk;
2225     *ext_overhead = (size_t)out;
2226 
2227     return 1;
2228 }
2229 
ssl_cert_is_disabled(SSL_CTX * ctx,size_t idx)2230 int ssl_cert_is_disabled(SSL_CTX *ctx, size_t idx)
2231 {
2232     const SSL_CERT_LOOKUP *cl;
2233 
2234     /* A provider-loaded key type is always enabled */
2235     if (idx >= SSL_PKEY_NUM)
2236         return 0;
2237 
2238     cl = ssl_cert_lookup_by_idx(idx, ctx);
2239     if (cl == NULL || (cl->amask & ctx->disabled_auth_mask) != 0)
2240         return 1;
2241     return 0;
2242 }
2243 
2244 /*
2245  * Default list of TLSv1.2 (and earlier) ciphers
2246  * SSL_DEFAULT_CIPHER_LIST deprecated in 3.0.0
2247  * Update both macro and function simultaneously
2248  */
OSSL_default_cipher_list(void)2249 const char *OSSL_default_cipher_list(void)
2250 {
2251     return "ALL:!COMPLEMENTOFDEFAULT:!eNULL";
2252 }
2253 
2254 /*
2255  * Default list of TLSv1.3 (and later) ciphers
2256  * TLS_DEFAULT_CIPHERSUITES deprecated in 3.0.0
2257  * Update both macro and function simultaneously
2258  */
OSSL_default_ciphersuites(void)2259 const char *OSSL_default_ciphersuites(void)
2260 {
2261     return "TLS_AES_256_GCM_SHA384:"
2262            "TLS_CHACHA20_POLY1305_SHA256:"
2263            "TLS_AES_128_GCM_SHA256";
2264 }
2265