1 /*
2 * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the Apache License 2.0 (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 /*
13 * Because of *asn1_*
14 */
15 #define OPENSSL_SUPPRESS_DEPRECATED
16
17 #include <stdio.h>
18 #include <ctype.h>
19 #include <openssl/objects.h>
20 #include <openssl/comp.h>
21 #include <openssl/engine.h>
22 #include <openssl/crypto.h>
23 #include <openssl/conf.h>
24 #include <openssl/trace.h>
25 #include "internal/nelem.h"
26 #include "ssl_local.h"
27 #include "internal/thread_once.h"
28 #include "internal/cryptlib.h"
29 #include "internal/comp.h"
30 #include "internal/ssl_unwrap.h"
31
32 /* NB: make sure indices in these tables match values above */
33
34 typedef struct {
35 uint32_t mask;
36 int nid;
37 } ssl_cipher_table;
38
39 /* Table of NIDs for each cipher */
40 static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = {
41 {SSL_DES, NID_des_cbc}, /* SSL_ENC_DES_IDX 0 */
42 {SSL_3DES, NID_des_ede3_cbc}, /* SSL_ENC_3DES_IDX 1 */
43 {SSL_RC4, NID_rc4}, /* SSL_ENC_RC4_IDX 2 */
44 {SSL_RC2, NID_rc2_cbc}, /* SSL_ENC_RC2_IDX 3 */
45 {SSL_IDEA, NID_idea_cbc}, /* SSL_ENC_IDEA_IDX 4 */
46 {SSL_eNULL, NID_undef}, /* SSL_ENC_NULL_IDX 5 */
47 {SSL_AES128, NID_aes_128_cbc}, /* SSL_ENC_AES128_IDX 6 */
48 {SSL_AES256, NID_aes_256_cbc}, /* SSL_ENC_AES256_IDX 7 */
49 {SSL_CAMELLIA128, NID_camellia_128_cbc}, /* SSL_ENC_CAMELLIA128_IDX 8 */
50 {SSL_CAMELLIA256, NID_camellia_256_cbc}, /* SSL_ENC_CAMELLIA256_IDX 9 */
51 {SSL_eGOST2814789CNT, NID_gost89_cnt}, /* SSL_ENC_GOST89_IDX 10 */
52 {SSL_SEED, NID_seed_cbc}, /* SSL_ENC_SEED_IDX 11 */
53 {SSL_AES128GCM, NID_aes_128_gcm}, /* SSL_ENC_AES128GCM_IDX 12 */
54 {SSL_AES256GCM, NID_aes_256_gcm}, /* SSL_ENC_AES256GCM_IDX 13 */
55 {SSL_AES128CCM, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM_IDX 14 */
56 {SSL_AES256CCM, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM_IDX 15 */
57 {SSL_AES128CCM8, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM8_IDX 16 */
58 {SSL_AES256CCM8, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM8_IDX 17 */
59 {SSL_eGOST2814789CNT12, NID_gost89_cnt_12}, /* SSL_ENC_GOST8912_IDX 18 */
60 {SSL_CHACHA20POLY1305, NID_chacha20_poly1305}, /* SSL_ENC_CHACHA_IDX 19 */
61 {SSL_ARIA128GCM, NID_aria_128_gcm}, /* SSL_ENC_ARIA128GCM_IDX 20 */
62 {SSL_ARIA256GCM, NID_aria_256_gcm}, /* SSL_ENC_ARIA256GCM_IDX 21 */
63 {SSL_MAGMA, NID_magma_ctr_acpkm}, /* SSL_ENC_MAGMA_IDX */
64 {SSL_KUZNYECHIK, NID_kuznyechik_ctr_acpkm}, /* SSL_ENC_KUZNYECHIK_IDX */
65 };
66
67 /* NB: make sure indices in this table matches values above */
68 static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = {
69 {SSL_MD5, NID_md5}, /* SSL_MD_MD5_IDX 0 */
70 {SSL_SHA1, NID_sha1}, /* SSL_MD_SHA1_IDX 1 */
71 {SSL_GOST94, NID_id_GostR3411_94}, /* SSL_MD_GOST94_IDX 2 */
72 {SSL_GOST89MAC, NID_id_Gost28147_89_MAC}, /* SSL_MD_GOST89MAC_IDX 3 */
73 {SSL_SHA256, NID_sha256}, /* SSL_MD_SHA256_IDX 4 */
74 {SSL_SHA384, NID_sha384}, /* SSL_MD_SHA384_IDX 5 */
75 {SSL_GOST12_256, NID_id_GostR3411_2012_256}, /* SSL_MD_GOST12_256_IDX 6 */
76 {SSL_GOST89MAC12, NID_gost_mac_12}, /* SSL_MD_GOST89MAC12_IDX 7 */
77 {SSL_GOST12_512, NID_id_GostR3411_2012_512}, /* SSL_MD_GOST12_512_IDX 8 */
78 {0, NID_md5_sha1}, /* SSL_MD_MD5_SHA1_IDX 9 */
79 {0, NID_sha224}, /* SSL_MD_SHA224_IDX 10 */
80 {0, NID_sha512}, /* SSL_MD_SHA512_IDX 11 */
81 {SSL_MAGMAOMAC, NID_magma_mac}, /* sSL_MD_MAGMAOMAC_IDX */
82 {SSL_KUZNYECHIKOMAC, NID_kuznyechik_mac} /* SSL_MD_KUZNYECHIKOMAC_IDX */
83 };
84
85 /* *INDENT-OFF* */
86 static const ssl_cipher_table ssl_cipher_table_kx[] = {
87 {SSL_kRSA, NID_kx_rsa},
88 {SSL_kECDHE, NID_kx_ecdhe},
89 {SSL_kDHE, NID_kx_dhe},
90 {SSL_kECDHEPSK, NID_kx_ecdhe_psk},
91 {SSL_kDHEPSK, NID_kx_dhe_psk},
92 {SSL_kRSAPSK, NID_kx_rsa_psk},
93 {SSL_kPSK, NID_kx_psk},
94 {SSL_kSRP, NID_kx_srp},
95 {SSL_kGOST, NID_kx_gost},
96 {SSL_kGOST18, NID_kx_gost18},
97 {SSL_kANY, NID_kx_any}
98 };
99
100 static const ssl_cipher_table ssl_cipher_table_auth[] = {
101 {SSL_aRSA, NID_auth_rsa},
102 {SSL_aECDSA, NID_auth_ecdsa},
103 {SSL_aPSK, NID_auth_psk},
104 {SSL_aDSS, NID_auth_dss},
105 {SSL_aGOST01, NID_auth_gost01},
106 {SSL_aGOST12, NID_auth_gost12},
107 {SSL_aSRP, NID_auth_srp},
108 {SSL_aNULL, NID_auth_null},
109 {SSL_aANY, NID_auth_any}
110 };
111 /* *INDENT-ON* */
112
113 /* Utility function for table lookup */
ssl_cipher_info_find(const ssl_cipher_table * table,size_t table_cnt,uint32_t mask)114 static int ssl_cipher_info_find(const ssl_cipher_table *table,
115 size_t table_cnt, uint32_t mask)
116 {
117 size_t i;
118 for (i = 0; i < table_cnt; i++, table++) {
119 if (table->mask == mask)
120 return (int)i;
121 }
122 return -1;
123 }
124
125 #define ssl_cipher_info_lookup(table, x) \
126 ssl_cipher_info_find(table, OSSL_NELEM(table), x)
127
128 /*
129 * PKEY_TYPE for GOST89MAC is known in advance, but, because implementation
130 * is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is
131 * found
132 */
133 static const int default_mac_pkey_id[SSL_MD_NUM_IDX] = {
134 /* MD5, SHA, GOST94, MAC89 */
135 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
136 /* SHA256, SHA384, GOST2012_256, MAC89-12 */
137 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
138 /* GOST2012_512 */
139 EVP_PKEY_HMAC,
140 /* MD5/SHA1, SHA224, SHA512, MAGMAOMAC, KUZNYECHIKOMAC */
141 NID_undef, NID_undef, NID_undef, NID_undef, NID_undef
142 };
143
144 #define CIPHER_ADD 1
145 #define CIPHER_KILL 2
146 #define CIPHER_DEL 3
147 #define CIPHER_ORD 4
148 #define CIPHER_SPECIAL 5
149 /*
150 * Bump the ciphers to the top of the list.
151 * This rule isn't currently supported by the public cipherstring API.
152 */
153 #define CIPHER_BUMP 6
154
155 typedef struct cipher_order_st {
156 const SSL_CIPHER *cipher;
157 int active;
158 int dead;
159 struct cipher_order_st *next, *prev;
160 } CIPHER_ORDER;
161
162 static const SSL_CIPHER cipher_aliases[] = {
163 /* "ALL" doesn't include eNULL (must be specifically enabled) */
164 {0, SSL_TXT_ALL, NULL, 0, 0, 0, ~SSL_eNULL},
165 /* "COMPLEMENTOFALL" */
166 {0, SSL_TXT_CMPALL, NULL, 0, 0, 0, SSL_eNULL},
167
168 /*
169 * "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in
170 * ALL!)
171 */
172 {0, SSL_TXT_CMPDEF, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_NOT_DEFAULT},
173
174 /*
175 * key exchange aliases (some of those using only a single bit here
176 * combine multiple key exchange algs according to the RFCs, e.g. kDHE
177 * combines DHE_DSS and DHE_RSA)
178 */
179 {0, SSL_TXT_kRSA, NULL, 0, SSL_kRSA},
180
181 {0, SSL_TXT_kEDH, NULL, 0, SSL_kDHE},
182 {0, SSL_TXT_kDHE, NULL, 0, SSL_kDHE},
183 {0, SSL_TXT_DH, NULL, 0, SSL_kDHE},
184
185 {0, SSL_TXT_kEECDH, NULL, 0, SSL_kECDHE},
186 {0, SSL_TXT_kECDHE, NULL, 0, SSL_kECDHE},
187 {0, SSL_TXT_ECDH, NULL, 0, SSL_kECDHE},
188
189 {0, SSL_TXT_kPSK, NULL, 0, SSL_kPSK},
190 {0, SSL_TXT_kRSAPSK, NULL, 0, SSL_kRSAPSK},
191 {0, SSL_TXT_kECDHEPSK, NULL, 0, SSL_kECDHEPSK},
192 {0, SSL_TXT_kDHEPSK, NULL, 0, SSL_kDHEPSK},
193 {0, SSL_TXT_kSRP, NULL, 0, SSL_kSRP},
194 {0, SSL_TXT_kGOST, NULL, 0, SSL_kGOST},
195 {0, SSL_TXT_kGOST18, NULL, 0, SSL_kGOST18},
196
197 /* server authentication aliases */
198 {0, SSL_TXT_aRSA, NULL, 0, 0, SSL_aRSA},
199 {0, SSL_TXT_aDSS, NULL, 0, 0, SSL_aDSS},
200 {0, SSL_TXT_DSS, NULL, 0, 0, SSL_aDSS},
201 {0, SSL_TXT_aNULL, NULL, 0, 0, SSL_aNULL},
202 {0, SSL_TXT_aECDSA, NULL, 0, 0, SSL_aECDSA},
203 {0, SSL_TXT_ECDSA, NULL, 0, 0, SSL_aECDSA},
204 {0, SSL_TXT_aPSK, NULL, 0, 0, SSL_aPSK},
205 {0, SSL_TXT_aGOST01, NULL, 0, 0, SSL_aGOST01},
206 {0, SSL_TXT_aGOST12, NULL, 0, 0, SSL_aGOST12},
207 {0, SSL_TXT_aGOST, NULL, 0, 0, SSL_aGOST01 | SSL_aGOST12},
208 {0, SSL_TXT_aSRP, NULL, 0, 0, SSL_aSRP},
209
210 /* aliases combining key exchange and server authentication */
211 {0, SSL_TXT_EDH, NULL, 0, SSL_kDHE, ~SSL_aNULL},
212 {0, SSL_TXT_DHE, NULL, 0, SSL_kDHE, ~SSL_aNULL},
213 {0, SSL_TXT_EECDH, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
214 {0, SSL_TXT_ECDHE, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
215 {0, SSL_TXT_NULL, NULL, 0, 0, 0, SSL_eNULL},
216 {0, SSL_TXT_RSA, NULL, 0, SSL_kRSA, SSL_aRSA},
217 {0, SSL_TXT_ADH, NULL, 0, SSL_kDHE, SSL_aNULL},
218 {0, SSL_TXT_AECDH, NULL, 0, SSL_kECDHE, SSL_aNULL},
219 {0, SSL_TXT_PSK, NULL, 0, SSL_PSK},
220 {0, SSL_TXT_SRP, NULL, 0, SSL_kSRP},
221
222 /* symmetric encryption aliases */
223 {0, SSL_TXT_3DES, NULL, 0, 0, 0, SSL_3DES},
224 {0, SSL_TXT_RC4, NULL, 0, 0, 0, SSL_RC4},
225 {0, SSL_TXT_RC2, NULL, 0, 0, 0, SSL_RC2},
226 {0, SSL_TXT_IDEA, NULL, 0, 0, 0, SSL_IDEA},
227 {0, SSL_TXT_SEED, NULL, 0, 0, 0, SSL_SEED},
228 {0, SSL_TXT_eNULL, NULL, 0, 0, 0, SSL_eNULL},
229 {0, SSL_TXT_GOST, NULL, 0, 0, 0,
230 SSL_eGOST2814789CNT | SSL_eGOST2814789CNT12 | SSL_MAGMA | SSL_KUZNYECHIK},
231 {0, SSL_TXT_AES128, NULL, 0, 0, 0,
232 SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8},
233 {0, SSL_TXT_AES256, NULL, 0, 0, 0,
234 SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8},
235 {0, SSL_TXT_AES, NULL, 0, 0, 0, SSL_AES},
236 {0, SSL_TXT_AES_GCM, NULL, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM},
237 {0, SSL_TXT_AES_CCM, NULL, 0, 0, 0,
238 SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8},
239 {0, SSL_TXT_AES_CCM_8, NULL, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8},
240 {0, SSL_TXT_CAMELLIA128, NULL, 0, 0, 0, SSL_CAMELLIA128},
241 {0, SSL_TXT_CAMELLIA256, NULL, 0, 0, 0, SSL_CAMELLIA256},
242 {0, SSL_TXT_CAMELLIA, NULL, 0, 0, 0, SSL_CAMELLIA},
243 {0, SSL_TXT_CHACHA20, NULL, 0, 0, 0, SSL_CHACHA20},
244 {0, SSL_TXT_GOST2012_GOST8912_GOST8912, NULL, 0, 0, 0, SSL_eGOST2814789CNT12},
245
246 {0, SSL_TXT_ARIA, NULL, 0, 0, 0, SSL_ARIA},
247 {0, SSL_TXT_ARIA_GCM, NULL, 0, 0, 0, SSL_ARIA128GCM | SSL_ARIA256GCM},
248 {0, SSL_TXT_ARIA128, NULL, 0, 0, 0, SSL_ARIA128GCM},
249 {0, SSL_TXT_ARIA256, NULL, 0, 0, 0, SSL_ARIA256GCM},
250 {0, SSL_TXT_CBC, NULL, 0, 0, 0, SSL_CBC},
251
252 /* MAC aliases */
253 {0, SSL_TXT_MD5, NULL, 0, 0, 0, 0, SSL_MD5},
254 {0, SSL_TXT_SHA1, NULL, 0, 0, 0, 0, SSL_SHA1},
255 {0, SSL_TXT_SHA, NULL, 0, 0, 0, 0, SSL_SHA1},
256 {0, SSL_TXT_GOST94, NULL, 0, 0, 0, 0, SSL_GOST94},
257 {0, SSL_TXT_GOST89MAC, NULL, 0, 0, 0, 0, SSL_GOST89MAC | SSL_GOST89MAC12},
258 {0, SSL_TXT_SHA256, NULL, 0, 0, 0, 0, SSL_SHA256},
259 {0, SSL_TXT_SHA384, NULL, 0, 0, 0, 0, SSL_SHA384},
260 {0, SSL_TXT_GOST12, NULL, 0, 0, 0, 0, SSL_GOST12_256},
261
262 /* protocol version aliases */
263 {0, SSL_TXT_SSLV3, NULL, 0, 0, 0, 0, 0, SSL3_VERSION},
264 {0, SSL_TXT_TLSV1, NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
265 {0, "TLSv1.0", NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
266 {0, SSL_TXT_TLSV1_2, NULL, 0, 0, 0, 0, 0, TLS1_2_VERSION},
267
268 /* strength classes */
269 {0, SSL_TXT_LOW, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_LOW},
270 {0, SSL_TXT_MEDIUM, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_MEDIUM},
271 {0, SSL_TXT_HIGH, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_HIGH},
272 /* FIPS 140-2 approved ciphersuite */
273 {0, SSL_TXT_FIPS, NULL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, SSL_FIPS},
274
275 /* "EDH-" aliases to "DHE-" labels (for backward compatibility) */
276 {0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, NULL, 0,
277 SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
278 {0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, NULL, 0,
279 SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
280
281 };
282
283 #ifndef OPENSSL_NO_DEPRECATED_3_6
284 /*
285 * Search for public key algorithm with given name and return its pkey_id if
286 * it is available. Otherwise return 0
287 */
288 # ifdef OPENSSL_NO_ENGINE
289
get_optional_pkey_id(const char * pkey_name)290 static int get_optional_pkey_id(const char *pkey_name)
291 {
292 const EVP_PKEY_ASN1_METHOD *ameth;
293 int pkey_id = 0;
294 ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1);
295 if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
296 ameth) > 0)
297 return pkey_id;
298 return 0;
299 }
300
301 # else
302
get_optional_pkey_id(const char * pkey_name)303 static int get_optional_pkey_id(const char *pkey_name)
304 {
305 const EVP_PKEY_ASN1_METHOD *ameth;
306 ENGINE *tmpeng = NULL;
307 int pkey_id = 0;
308 ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1);
309 if (ameth) {
310 if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
311 ameth) <= 0)
312 pkey_id = 0;
313 }
314 tls_engine_finish(tmpeng);
315 return pkey_id;
316 }
317 # endif
318 #else
get_optional_pkey_id(const char * pkey_name)319 static int get_optional_pkey_id(const char *pkey_name)
320 {
321 (void)pkey_name;
322 return 0;
323 }
324 #endif
325
ssl_load_ciphers(SSL_CTX * ctx)326 int ssl_load_ciphers(SSL_CTX *ctx)
327 {
328 size_t i;
329 const ssl_cipher_table *t;
330 EVP_KEYEXCH *kex = NULL;
331 EVP_SIGNATURE *sig = NULL;
332
333 ctx->disabled_enc_mask = 0;
334 for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) {
335 if (t->nid != NID_undef) {
336 const EVP_CIPHER *cipher
337 = ssl_evp_cipher_fetch(ctx->libctx, t->nid, ctx->propq);
338
339 ctx->ssl_cipher_methods[i] = cipher;
340 if (cipher == NULL)
341 ctx->disabled_enc_mask |= t->mask;
342 }
343 }
344 ctx->disabled_mac_mask = 0;
345 for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) {
346 const EVP_MD *md
347 = ssl_evp_md_fetch(ctx->libctx, t->nid, ctx->propq);
348
349 ctx->ssl_digest_methods[i] = md;
350 if (md == NULL) {
351 ctx->disabled_mac_mask |= t->mask;
352 } else {
353 int tmpsize = EVP_MD_get_size(md);
354
355 if (!ossl_assert(tmpsize > 0))
356 return 0;
357 ctx->ssl_mac_secret_size[i] = tmpsize;
358 }
359 }
360
361 ctx->disabled_mkey_mask = 0;
362 ctx->disabled_auth_mask = 0;
363
364 /*
365 * We ignore any errors from the fetches below. They are expected to fail
366 * if these algorithms are not available.
367 */
368 ERR_set_mark();
369 sig = EVP_SIGNATURE_fetch(ctx->libctx, "DSA", ctx->propq);
370 if (sig == NULL)
371 ctx->disabled_auth_mask |= SSL_aDSS;
372 else
373 EVP_SIGNATURE_free(sig);
374 kex = EVP_KEYEXCH_fetch(ctx->libctx, "DH", ctx->propq);
375 if (kex == NULL)
376 ctx->disabled_mkey_mask |= SSL_kDHE | SSL_kDHEPSK;
377 else
378 EVP_KEYEXCH_free(kex);
379 kex = EVP_KEYEXCH_fetch(ctx->libctx, "ECDH", ctx->propq);
380 if (kex == NULL)
381 ctx->disabled_mkey_mask |= SSL_kECDHE | SSL_kECDHEPSK;
382 else
383 EVP_KEYEXCH_free(kex);
384 sig = EVP_SIGNATURE_fetch(ctx->libctx, "ECDSA", ctx->propq);
385 if (sig == NULL)
386 ctx->disabled_auth_mask |= SSL_aECDSA;
387 else
388 EVP_SIGNATURE_free(sig);
389 ERR_pop_to_mark();
390
391 #ifdef OPENSSL_NO_PSK
392 ctx->disabled_mkey_mask |= SSL_PSK;
393 ctx->disabled_auth_mask |= SSL_aPSK;
394 #endif
395 #ifdef OPENSSL_NO_SRP
396 ctx->disabled_mkey_mask |= SSL_kSRP;
397 #endif
398
399 /*
400 * Check for presence of GOST 34.10 algorithms, and if they are not
401 * present, disable appropriate auth and key exchange
402 */
403 memcpy(ctx->ssl_mac_pkey_id, default_mac_pkey_id,
404 sizeof(ctx->ssl_mac_pkey_id));
405
406 ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] =
407 get_optional_pkey_id(SN_id_Gost28147_89_MAC);
408 if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX])
409 ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32;
410 else
411 ctx->disabled_mac_mask |= SSL_GOST89MAC;
412
413 ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX] =
414 get_optional_pkey_id(SN_gost_mac_12);
415 if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX])
416 ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC12_IDX] = 32;
417 else
418 ctx->disabled_mac_mask |= SSL_GOST89MAC12;
419
420 ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX] =
421 get_optional_pkey_id(SN_magma_mac);
422 if (ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX])
423 ctx->ssl_mac_secret_size[SSL_MD_MAGMAOMAC_IDX] = 32;
424 else
425 ctx->disabled_mac_mask |= SSL_MAGMAOMAC;
426
427 ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX] =
428 get_optional_pkey_id(SN_kuznyechik_mac);
429 if (ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX])
430 ctx->ssl_mac_secret_size[SSL_MD_KUZNYECHIKOMAC_IDX] = 32;
431 else
432 ctx->disabled_mac_mask |= SSL_KUZNYECHIKOMAC;
433
434 if (!get_optional_pkey_id(SN_id_GostR3410_2001))
435 ctx->disabled_auth_mask |= SSL_aGOST01 | SSL_aGOST12;
436 if (!get_optional_pkey_id(SN_id_GostR3410_2012_256))
437 ctx->disabled_auth_mask |= SSL_aGOST12;
438 if (!get_optional_pkey_id(SN_id_GostR3410_2012_512))
439 ctx->disabled_auth_mask |= SSL_aGOST12;
440 /*
441 * Disable GOST key exchange if no GOST signature algs are available *
442 */
443 if ((ctx->disabled_auth_mask & (SSL_aGOST01 | SSL_aGOST12)) ==
444 (SSL_aGOST01 | SSL_aGOST12))
445 ctx->disabled_mkey_mask |= SSL_kGOST;
446
447 if ((ctx->disabled_auth_mask & SSL_aGOST12) == SSL_aGOST12)
448 ctx->disabled_mkey_mask |= SSL_kGOST18;
449
450 return 1;
451 }
452
ssl_cipher_get_evp_cipher(SSL_CTX * ctx,const SSL_CIPHER * sslc,const EVP_CIPHER ** enc)453 int ssl_cipher_get_evp_cipher(SSL_CTX *ctx, const SSL_CIPHER *sslc,
454 const EVP_CIPHER **enc)
455 {
456 int i = ssl_cipher_info_lookup(ssl_cipher_table_cipher,
457 sslc->algorithm_enc);
458
459 if (i == -1) {
460 *enc = NULL;
461 } else {
462 if (i == SSL_ENC_NULL_IDX) {
463 /*
464 * We assume we don't care about this coming from an ENGINE so
465 * just do a normal EVP_CIPHER_fetch instead of
466 * ssl_evp_cipher_fetch()
467 */
468 *enc = EVP_CIPHER_fetch(ctx->libctx, "NULL", ctx->propq);
469 if (*enc == NULL)
470 return 0;
471 } else {
472 const EVP_CIPHER *cipher = ctx->ssl_cipher_methods[i];
473
474 if (cipher == NULL
475 || !ssl_evp_cipher_up_ref(cipher))
476 return 0;
477 *enc = ctx->ssl_cipher_methods[i];
478 }
479 }
480 return 1;
481 }
482
ssl_cipher_get_evp_md_mac(SSL_CTX * ctx,const SSL_CIPHER * sslc,const EVP_MD ** md,int * mac_pkey_type,size_t * mac_secret_size)483 int ssl_cipher_get_evp_md_mac(SSL_CTX *ctx, const SSL_CIPHER *sslc,
484 const EVP_MD **md,
485 int *mac_pkey_type, size_t *mac_secret_size)
486 {
487 int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, sslc->algorithm_mac);
488
489 if (i == -1) {
490 *md = NULL;
491 if (mac_pkey_type != NULL)
492 *mac_pkey_type = NID_undef;
493 if (mac_secret_size != NULL)
494 *mac_secret_size = 0;
495 } else {
496 const EVP_MD *digest = ctx->ssl_digest_methods[i];
497
498 if (digest == NULL || !ssl_evp_md_up_ref(digest))
499 return 0;
500
501 *md = digest;
502 if (mac_pkey_type != NULL)
503 *mac_pkey_type = ctx->ssl_mac_pkey_id[i];
504 if (mac_secret_size != NULL)
505 *mac_secret_size = ctx->ssl_mac_secret_size[i];
506 }
507 return 1;
508 }
509
ssl_cipher_get_evp(SSL_CTX * ctx,const SSL_SESSION * s,const EVP_CIPHER ** enc,const EVP_MD ** md,int * mac_pkey_type,size_t * mac_secret_size,SSL_COMP ** comp,int use_etm)510 int ssl_cipher_get_evp(SSL_CTX *ctx, const SSL_SESSION *s,
511 const EVP_CIPHER **enc, const EVP_MD **md,
512 int *mac_pkey_type, size_t *mac_secret_size,
513 SSL_COMP **comp, int use_etm)
514 {
515 int i;
516 const SSL_CIPHER *c;
517
518 c = s->cipher;
519 if (c == NULL)
520 return 0;
521 if (comp != NULL) {
522 SSL_COMP ctmp;
523 STACK_OF(SSL_COMP) *comp_methods;
524
525 *comp = NULL;
526 ctmp.id = s->compress_meth;
527 comp_methods = SSL_COMP_get_compression_methods();
528 if (comp_methods != NULL) {
529 i = sk_SSL_COMP_find(comp_methods, &ctmp);
530 if (i >= 0)
531 *comp = sk_SSL_COMP_value(comp_methods, i);
532 }
533 /* If were only interested in comp then return success */
534 if ((enc == NULL) && (md == NULL))
535 return 1;
536 }
537
538 if ((enc == NULL) || (md == NULL))
539 return 0;
540
541 if (!ssl_cipher_get_evp_cipher(ctx, c, enc))
542 return 0;
543
544 if (!ssl_cipher_get_evp_md_mac(ctx, c, md, mac_pkey_type,
545 mac_secret_size)) {
546 ssl_evp_cipher_free(*enc);
547 return 0;
548 }
549
550 if ((*enc != NULL)
551 && (*md != NULL
552 || (EVP_CIPHER_get_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER))
553 && (c->algorithm_mac == SSL_AEAD
554 || mac_pkey_type == NULL || *mac_pkey_type != NID_undef)) {
555 const EVP_CIPHER *evp = NULL;
556
557 if (use_etm
558 || s->ssl_version >> 8 != TLS1_VERSION_MAJOR
559 || s->ssl_version < TLS1_VERSION)
560 return 1;
561
562 if (c->algorithm_enc == SSL_RC4
563 && c->algorithm_mac == SSL_MD5)
564 evp = ssl_evp_cipher_fetch(ctx->libctx, NID_rc4_hmac_md5,
565 ctx->propq);
566 else if (c->algorithm_enc == SSL_AES128
567 && c->algorithm_mac == SSL_SHA1)
568 evp = ssl_evp_cipher_fetch(ctx->libctx,
569 NID_aes_128_cbc_hmac_sha1,
570 ctx->propq);
571 else if (c->algorithm_enc == SSL_AES256
572 && c->algorithm_mac == SSL_SHA1)
573 evp = ssl_evp_cipher_fetch(ctx->libctx,
574 NID_aes_256_cbc_hmac_sha1,
575 ctx->propq);
576 else if (c->algorithm_enc == SSL_AES128
577 && c->algorithm_mac == SSL_SHA256)
578 evp = ssl_evp_cipher_fetch(ctx->libctx,
579 NID_aes_128_cbc_hmac_sha256,
580 ctx->propq);
581 else if (c->algorithm_enc == SSL_AES256
582 && c->algorithm_mac == SSL_SHA256)
583 evp = ssl_evp_cipher_fetch(ctx->libctx,
584 NID_aes_256_cbc_hmac_sha256,
585 ctx->propq);
586
587 if (evp != NULL) {
588 ssl_evp_cipher_free(*enc);
589 ssl_evp_md_free(*md);
590 *enc = evp;
591 *md = NULL;
592 }
593 return 1;
594 }
595
596 return 0;
597 }
598
ssl_md(SSL_CTX * ctx,int idx)599 const EVP_MD *ssl_md(SSL_CTX *ctx, int idx)
600 {
601 idx &= SSL_HANDSHAKE_MAC_MASK;
602 if (idx < 0 || idx >= SSL_MD_NUM_IDX)
603 return NULL;
604 return ctx->ssl_digest_methods[idx];
605 }
606
ssl_handshake_md(SSL_CONNECTION * s)607 const EVP_MD *ssl_handshake_md(SSL_CONNECTION *s)
608 {
609 return ssl_md(SSL_CONNECTION_GET_CTX(s), ssl_get_algorithm2(s));
610 }
611
ssl_prf_md(SSL_CONNECTION * s)612 const EVP_MD *ssl_prf_md(SSL_CONNECTION *s)
613 {
614 return ssl_md(SSL_CONNECTION_GET_CTX(s),
615 ssl_get_algorithm2(s) >> TLS1_PRF_DGST_SHIFT);
616 }
617
618
619 #define ITEM_SEP(a) \
620 (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
621
ll_append_tail(CIPHER_ORDER ** head,CIPHER_ORDER * curr,CIPHER_ORDER ** tail)622 static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
623 CIPHER_ORDER **tail)
624 {
625 if (curr == *tail)
626 return;
627 if (curr == *head)
628 *head = curr->next;
629 if (curr->prev != NULL)
630 curr->prev->next = curr->next;
631 if (curr->next != NULL)
632 curr->next->prev = curr->prev;
633 (*tail)->next = curr;
634 curr->prev = *tail;
635 curr->next = NULL;
636 *tail = curr;
637 }
638
ll_append_head(CIPHER_ORDER ** head,CIPHER_ORDER * curr,CIPHER_ORDER ** tail)639 static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
640 CIPHER_ORDER **tail)
641 {
642 if (curr == *head)
643 return;
644 if (curr == *tail)
645 *tail = curr->prev;
646 if (curr->next != NULL)
647 curr->next->prev = curr->prev;
648 if (curr->prev != NULL)
649 curr->prev->next = curr->next;
650 (*head)->prev = curr;
651 curr->next = *head;
652 curr->prev = NULL;
653 *head = curr;
654 }
655
ssl_cipher_collect_ciphers(const SSL_METHOD * ssl_method,int num_of_ciphers,uint32_t disabled_mkey,uint32_t disabled_auth,uint32_t disabled_enc,uint32_t disabled_mac,CIPHER_ORDER * co_list,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)656 static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
657 int num_of_ciphers,
658 uint32_t disabled_mkey,
659 uint32_t disabled_auth,
660 uint32_t disabled_enc,
661 uint32_t disabled_mac,
662 CIPHER_ORDER *co_list,
663 CIPHER_ORDER **head_p,
664 CIPHER_ORDER **tail_p)
665 {
666 int i, co_list_num;
667 const SSL_CIPHER *c;
668
669 /*
670 * We have num_of_ciphers descriptions compiled in, depending on the
671 * method selected (SSLv3, TLSv1 etc).
672 * These will later be sorted in a linked list with at most num
673 * entries.
674 */
675
676 /* Get the initial list of ciphers */
677 co_list_num = 0; /* actual count of ciphers */
678 for (i = 0; i < num_of_ciphers; i++) {
679 c = ssl_method->get_cipher(i);
680 /* drop those that use any of that is not available */
681 if (c == NULL || !c->valid)
682 continue;
683 if ((c->algorithm_mkey & disabled_mkey) ||
684 (c->algorithm_auth & disabled_auth) ||
685 (c->algorithm_enc & disabled_enc) ||
686 (c->algorithm_mac & disabled_mac))
687 continue;
688 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) == 0) &&
689 c->min_tls == 0)
690 continue;
691 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) != 0) &&
692 c->min_dtls == 0)
693 continue;
694
695 co_list[co_list_num].cipher = c;
696 co_list[co_list_num].next = NULL;
697 co_list[co_list_num].prev = NULL;
698 co_list[co_list_num].active = 0;
699 co_list_num++;
700 }
701
702 /*
703 * Prepare linked list from list entries
704 */
705 if (co_list_num > 0) {
706 co_list[0].prev = NULL;
707
708 if (co_list_num > 1) {
709 co_list[0].next = &co_list[1];
710
711 for (i = 1; i < co_list_num - 1; i++) {
712 co_list[i].prev = &co_list[i - 1];
713 co_list[i].next = &co_list[i + 1];
714 }
715
716 co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
717 }
718
719 co_list[co_list_num - 1].next = NULL;
720
721 *head_p = &co_list[0];
722 *tail_p = &co_list[co_list_num - 1];
723 }
724 }
725
ssl_cipher_collect_aliases(const SSL_CIPHER ** ca_list,int num_of_group_aliases,uint32_t disabled_mkey,uint32_t disabled_auth,uint32_t disabled_enc,uint32_t disabled_mac,CIPHER_ORDER * head)726 static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
727 int num_of_group_aliases,
728 uint32_t disabled_mkey,
729 uint32_t disabled_auth,
730 uint32_t disabled_enc,
731 uint32_t disabled_mac,
732 CIPHER_ORDER *head)
733 {
734 CIPHER_ORDER *ciph_curr;
735 const SSL_CIPHER **ca_curr;
736 int i;
737 uint32_t mask_mkey = ~disabled_mkey;
738 uint32_t mask_auth = ~disabled_auth;
739 uint32_t mask_enc = ~disabled_enc;
740 uint32_t mask_mac = ~disabled_mac;
741
742 /*
743 * First, add the real ciphers as already collected
744 */
745 ciph_curr = head;
746 ca_curr = ca_list;
747 while (ciph_curr != NULL) {
748 *ca_curr = ciph_curr->cipher;
749 ca_curr++;
750 ciph_curr = ciph_curr->next;
751 }
752
753 /*
754 * Now we add the available ones from the cipher_aliases[] table.
755 * They represent either one or more algorithms, some of which
756 * in any affected category must be supported (set in enabled_mask),
757 * or represent a cipher strength value (will be added in any case because algorithms=0).
758 */
759 for (i = 0; i < num_of_group_aliases; i++) {
760 uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey;
761 uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth;
762 uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc;
763 uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac;
764
765 if (algorithm_mkey)
766 if ((algorithm_mkey & mask_mkey) == 0)
767 continue;
768
769 if (algorithm_auth)
770 if ((algorithm_auth & mask_auth) == 0)
771 continue;
772
773 if (algorithm_enc)
774 if ((algorithm_enc & mask_enc) == 0)
775 continue;
776
777 if (algorithm_mac)
778 if ((algorithm_mac & mask_mac) == 0)
779 continue;
780
781 *ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
782 ca_curr++;
783 }
784
785 *ca_curr = NULL; /* end of list */
786 }
787
ssl_cipher_apply_rule(uint32_t cipher_id,uint32_t alg_mkey,uint32_t alg_auth,uint32_t alg_enc,uint32_t alg_mac,int min_tls,uint32_t algo_strength,int rule,int32_t strength_bits,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)788 static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey,
789 uint32_t alg_auth, uint32_t alg_enc,
790 uint32_t alg_mac, int min_tls,
791 uint32_t algo_strength, int rule,
792 int32_t strength_bits, CIPHER_ORDER **head_p,
793 CIPHER_ORDER **tail_p)
794 {
795 CIPHER_ORDER *head, *tail, *curr, *next, *last;
796 const SSL_CIPHER *cp;
797 int reverse = 0;
798
799 OSSL_TRACE_BEGIN(TLS_CIPHER) {
800 BIO_printf(trc_out,
801 "Applying rule %d with %08x/%08x/%08x/%08x/%08x %08x (%d)\n",
802 rule, (unsigned int)alg_mkey, (unsigned int)alg_auth,
803 (unsigned int)alg_enc, (unsigned int)alg_mac, min_tls,
804 (unsigned int)algo_strength, (int)strength_bits);
805 }
806
807 if (rule == CIPHER_DEL || rule == CIPHER_BUMP)
808 reverse = 1; /* needed to maintain sorting between currently
809 * deleted ciphers */
810
811 head = *head_p;
812 tail = *tail_p;
813
814 if (reverse) {
815 next = tail;
816 last = head;
817 } else {
818 next = head;
819 last = tail;
820 }
821
822 curr = NULL;
823 for (;;) {
824 if (curr == last)
825 break;
826
827 curr = next;
828
829 if (curr == NULL)
830 break;
831
832 next = reverse ? curr->prev : curr->next;
833
834 cp = curr->cipher;
835
836 /*
837 * Selection criteria is either the value of strength_bits
838 * or the algorithms used.
839 */
840 if (strength_bits >= 0) {
841 if (strength_bits != cp->strength_bits)
842 continue;
843 } else {
844 if (trc_out != NULL) {
845 BIO_printf(trc_out,
846 "\nName: %s:"
847 "\nAlgo = %08x/%08x/%08x/%08x/%08x Algo_strength = %08x\n",
848 cp->name,
849 (unsigned int)cp->algorithm_mkey,
850 (unsigned int)cp->algorithm_auth,
851 (unsigned int)cp->algorithm_enc,
852 (unsigned int)cp->algorithm_mac,
853 cp->min_tls,
854 (unsigned int)cp->algo_strength);
855 }
856 if (cipher_id != 0 && (cipher_id != cp->id))
857 continue;
858 if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
859 continue;
860 if (alg_auth && !(alg_auth & cp->algorithm_auth))
861 continue;
862 if (alg_enc && !(alg_enc & cp->algorithm_enc))
863 continue;
864 if (alg_mac && !(alg_mac & cp->algorithm_mac))
865 continue;
866 if (min_tls && (min_tls != cp->min_tls))
867 continue;
868 if ((algo_strength & SSL_STRONG_MASK)
869 && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
870 continue;
871 if ((algo_strength & SSL_DEFAULT_MASK)
872 && !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength))
873 continue;
874 }
875
876 if (trc_out != NULL)
877 BIO_printf(trc_out, "Action = %d\n", rule);
878
879 /* add the cipher if it has not been added yet. */
880 if (rule == CIPHER_ADD) {
881 /* reverse == 0 */
882 if (!curr->active) {
883 ll_append_tail(&head, curr, &tail);
884 curr->active = 1;
885 }
886 }
887 /* Move the added cipher to this location */
888 else if (rule == CIPHER_ORD) {
889 /* reverse == 0 */
890 if (curr->active) {
891 ll_append_tail(&head, curr, &tail);
892 }
893 } else if (rule == CIPHER_DEL) {
894 /* reverse == 1 */
895 if (curr->active) {
896 /*
897 * most recently deleted ciphersuites get best positions for
898 * any future CIPHER_ADD (note that the CIPHER_DEL loop works
899 * in reverse to maintain the order)
900 */
901 ll_append_head(&head, curr, &tail);
902 curr->active = 0;
903 }
904 } else if (rule == CIPHER_BUMP) {
905 if (curr->active)
906 ll_append_head(&head, curr, &tail);
907 } else if (rule == CIPHER_KILL) {
908 /* reverse == 0 */
909 if (head == curr)
910 head = curr->next;
911 else
912 curr->prev->next = curr->next;
913 if (tail == curr)
914 tail = curr->prev;
915 curr->active = 0;
916 if (curr->next != NULL)
917 curr->next->prev = curr->prev;
918 if (curr->prev != NULL)
919 curr->prev->next = curr->next;
920 curr->next = NULL;
921 curr->prev = NULL;
922 }
923 }
924
925 *head_p = head;
926 *tail_p = tail;
927
928 OSSL_TRACE_END(TLS_CIPHER);
929 }
930
ssl_cipher_strength_sort(CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)931 static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
932 CIPHER_ORDER **tail_p)
933 {
934 int32_t max_strength_bits;
935 int i, *number_uses;
936 CIPHER_ORDER *curr;
937
938 /*
939 * This routine sorts the ciphers with descending strength. The sorting
940 * must keep the pre-sorted sequence, so we apply the normal sorting
941 * routine as '+' movement to the end of the list.
942 */
943 max_strength_bits = 0;
944 curr = *head_p;
945 while (curr != NULL) {
946 if (curr->active && (curr->cipher->strength_bits > max_strength_bits))
947 max_strength_bits = curr->cipher->strength_bits;
948 curr = curr->next;
949 }
950
951 number_uses = OPENSSL_calloc(max_strength_bits + 1, sizeof(int));
952 if (number_uses == NULL)
953 return 0;
954
955 /*
956 * Now find the strength_bits values actually used
957 */
958 curr = *head_p;
959 while (curr != NULL) {
960 if (curr->active)
961 number_uses[curr->cipher->strength_bits]++;
962 curr = curr->next;
963 }
964 /*
965 * Go through the list of used strength_bits values in descending
966 * order.
967 */
968 for (i = max_strength_bits; i >= 0; i--)
969 if (number_uses[i] > 0)
970 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p,
971 tail_p);
972
973 OPENSSL_free(number_uses);
974 return 1;
975 }
976
ssl_cipher_process_rulestr(const char * rule_str,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p,const SSL_CIPHER ** ca_list,CERT * c)977 static int ssl_cipher_process_rulestr(const char *rule_str,
978 CIPHER_ORDER **head_p,
979 CIPHER_ORDER **tail_p,
980 const SSL_CIPHER **ca_list, CERT *c)
981 {
982 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, algo_strength;
983 int min_tls;
984 const char *l, *buf;
985 int j, multi, found, rule, retval, ok, buflen;
986 uint32_t cipher_id = 0;
987 char ch;
988
989 retval = 1;
990 l = rule_str;
991 for (;;) {
992 ch = *l;
993
994 if (ch == '\0')
995 break; /* done */
996 if (ch == '-') {
997 rule = CIPHER_DEL;
998 l++;
999 } else if (ch == '+') {
1000 rule = CIPHER_ORD;
1001 l++;
1002 } else if (ch == '!') {
1003 rule = CIPHER_KILL;
1004 l++;
1005 } else if (ch == '@') {
1006 rule = CIPHER_SPECIAL;
1007 l++;
1008 } else {
1009 rule = CIPHER_ADD;
1010 }
1011
1012 if (ITEM_SEP(ch)) {
1013 l++;
1014 continue;
1015 }
1016
1017 alg_mkey = 0;
1018 alg_auth = 0;
1019 alg_enc = 0;
1020 alg_mac = 0;
1021 min_tls = 0;
1022 algo_strength = 0;
1023
1024 for (;;) {
1025 ch = *l;
1026 buf = l;
1027 buflen = 0;
1028 #ifndef CHARSET_EBCDIC
1029 while (((ch >= 'A') && (ch <= 'Z')) ||
1030 ((ch >= '0') && (ch <= '9')) ||
1031 ((ch >= 'a') && (ch <= 'z')) ||
1032 (ch == '-') || (ch == '_') || (ch == '.') || (ch == '='))
1033 #else
1034 while (isalnum((unsigned char)ch) || (ch == '-') || (ch == '_') || (ch == '.')
1035 || (ch == '='))
1036 #endif
1037 {
1038 ch = *(++l);
1039 buflen++;
1040 }
1041
1042 if (buflen == 0) {
1043 /*
1044 * We hit something we cannot deal with,
1045 * it is no command or separator nor
1046 * alphanumeric, so we call this an error.
1047 */
1048 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1049 return 0;
1050 }
1051
1052 if (rule == CIPHER_SPECIAL) {
1053 found = 0; /* unused -- avoid compiler warning */
1054 break; /* special treatment */
1055 }
1056
1057 /* check for multi-part specification */
1058 if (ch == '+') {
1059 multi = 1;
1060 l++;
1061 } else {
1062 multi = 0;
1063 }
1064
1065 /*
1066 * Now search for the cipher alias in the ca_list. Be careful
1067 * with the strncmp, because the "buflen" limitation
1068 * will make the rule "ADH:SOME" and the cipher
1069 * "ADH-MY-CIPHER" look like a match for buflen=3.
1070 * So additionally check whether the cipher name found
1071 * has the correct length. We can save a strlen() call:
1072 * just checking for the '\0' at the right place is
1073 * sufficient, we have to strncmp() anyway. (We cannot
1074 * use strcmp(), because buf is not '\0' terminated.)
1075 */
1076 j = found = 0;
1077 cipher_id = 0;
1078 while (ca_list[j]) {
1079 if (strncmp(buf, ca_list[j]->name, buflen) == 0
1080 && (ca_list[j]->name[buflen] == '\0')) {
1081 found = 1;
1082 break;
1083 } else if (ca_list[j]->stdname != NULL
1084 && strncmp(buf, ca_list[j]->stdname, buflen) == 0
1085 && ca_list[j]->stdname[buflen] == '\0') {
1086 found = 1;
1087 break;
1088 } else
1089 j++;
1090 }
1091
1092 if (!found)
1093 break; /* ignore this entry */
1094
1095 if (ca_list[j]->algorithm_mkey) {
1096 if (alg_mkey) {
1097 alg_mkey &= ca_list[j]->algorithm_mkey;
1098 if (!alg_mkey) {
1099 found = 0;
1100 break;
1101 }
1102 } else {
1103 alg_mkey = ca_list[j]->algorithm_mkey;
1104 }
1105 }
1106
1107 if (ca_list[j]->algorithm_auth) {
1108 if (alg_auth) {
1109 alg_auth &= ca_list[j]->algorithm_auth;
1110 if (!alg_auth) {
1111 found = 0;
1112 break;
1113 }
1114 } else {
1115 alg_auth = ca_list[j]->algorithm_auth;
1116 }
1117 }
1118
1119 if (ca_list[j]->algorithm_enc) {
1120 if (alg_enc) {
1121 alg_enc &= ca_list[j]->algorithm_enc;
1122 if (!alg_enc) {
1123 found = 0;
1124 break;
1125 }
1126 } else {
1127 alg_enc = ca_list[j]->algorithm_enc;
1128 }
1129 }
1130
1131 if (ca_list[j]->algorithm_mac) {
1132 if (alg_mac) {
1133 alg_mac &= ca_list[j]->algorithm_mac;
1134 if (!alg_mac) {
1135 found = 0;
1136 break;
1137 }
1138 } else {
1139 alg_mac = ca_list[j]->algorithm_mac;
1140 }
1141 }
1142
1143 if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
1144 if (algo_strength & SSL_STRONG_MASK) {
1145 algo_strength &=
1146 (ca_list[j]->algo_strength & SSL_STRONG_MASK) |
1147 ~SSL_STRONG_MASK;
1148 if (!(algo_strength & SSL_STRONG_MASK)) {
1149 found = 0;
1150 break;
1151 }
1152 } else {
1153 algo_strength = ca_list[j]->algo_strength & SSL_STRONG_MASK;
1154 }
1155 }
1156
1157 if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) {
1158 if (algo_strength & SSL_DEFAULT_MASK) {
1159 algo_strength &=
1160 (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) |
1161 ~SSL_DEFAULT_MASK;
1162 if (!(algo_strength & SSL_DEFAULT_MASK)) {
1163 found = 0;
1164 break;
1165 }
1166 } else {
1167 algo_strength |=
1168 ca_list[j]->algo_strength & SSL_DEFAULT_MASK;
1169 }
1170 }
1171
1172 if (ca_list[j]->valid) {
1173 /*
1174 * explicit ciphersuite found; its protocol version does not
1175 * become part of the search pattern!
1176 */
1177
1178 cipher_id = ca_list[j]->id;
1179 } else {
1180 /*
1181 * not an explicit ciphersuite; only in this case, the
1182 * protocol version is considered part of the search pattern
1183 */
1184
1185 if (ca_list[j]->min_tls) {
1186 if (min_tls != 0 && min_tls != ca_list[j]->min_tls) {
1187 found = 0;
1188 break;
1189 } else {
1190 min_tls = ca_list[j]->min_tls;
1191 }
1192 }
1193 }
1194
1195 if (!multi)
1196 break;
1197 }
1198
1199 /*
1200 * Ok, we have the rule, now apply it
1201 */
1202 if (rule == CIPHER_SPECIAL) { /* special command */
1203 ok = 0;
1204 if ((buflen == 8) && HAS_PREFIX(buf, "STRENGTH")) {
1205 ok = ssl_cipher_strength_sort(head_p, tail_p);
1206 } else if (buflen == 10 && CHECK_AND_SKIP_PREFIX(buf, "SECLEVEL=")) {
1207 int level = *buf - '0';
1208 if (level < 0 || level > 5) {
1209 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1210 } else {
1211 c->sec_level = level;
1212 ok = 1;
1213 }
1214 } else {
1215 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1216 }
1217 if (ok == 0)
1218 retval = 0;
1219 /*
1220 * We do not support any "multi" options
1221 * together with "@", so throw away the
1222 * rest of the command, if any left, until
1223 * end or ':' is found.
1224 */
1225 while ((*l != '\0') && !ITEM_SEP(*l))
1226 l++;
1227 } else if (found) {
1228 ssl_cipher_apply_rule(cipher_id,
1229 alg_mkey, alg_auth, alg_enc, alg_mac,
1230 min_tls, algo_strength, rule, -1, head_p,
1231 tail_p);
1232 } else {
1233 while ((*l != '\0') && !ITEM_SEP(*l))
1234 l++;
1235 }
1236 if (*l == '\0')
1237 break; /* done */
1238 }
1239
1240 return retval;
1241 }
1242
check_suiteb_cipher_list(const SSL_METHOD * meth,CERT * c,const char ** prule_str)1243 static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c,
1244 const char **prule_str)
1245 {
1246 unsigned int suiteb_flags = 0, suiteb_comb2 = 0;
1247 if (HAS_PREFIX(*prule_str, "SUITEB128ONLY")) {
1248 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY;
1249 } else if (HAS_PREFIX(*prule_str, "SUITEB128C2")) {
1250 suiteb_comb2 = 1;
1251 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1252 } else if (HAS_PREFIX(*prule_str, "SUITEB128")) {
1253 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1254 } else if (HAS_PREFIX(*prule_str, "SUITEB192")) {
1255 suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS;
1256 }
1257
1258 if (suiteb_flags) {
1259 c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS;
1260 c->cert_flags |= suiteb_flags;
1261 } else {
1262 suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS;
1263 }
1264
1265 if (!suiteb_flags)
1266 return 1;
1267 /* Check version: if TLS 1.2 ciphers allowed we can use Suite B */
1268
1269 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) {
1270 ERR_raise(ERR_LIB_SSL, SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE);
1271 return 0;
1272 }
1273
1274 switch (suiteb_flags) {
1275 case SSL_CERT_FLAG_SUITEB_128_LOS:
1276 if (suiteb_comb2)
1277 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1278 else
1279 *prule_str =
1280 "ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384";
1281 break;
1282 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1283 *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256";
1284 break;
1285 case SSL_CERT_FLAG_SUITEB_192_LOS:
1286 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1287 break;
1288 }
1289 return 1;
1290 }
1291
ciphersuite_cb(const char * elem,int len,void * arg)1292 static int ciphersuite_cb(const char *elem, int len, void *arg)
1293 {
1294 STACK_OF(SSL_CIPHER) *ciphersuites = (STACK_OF(SSL_CIPHER) *)arg;
1295 const SSL_CIPHER *cipher;
1296 /* Arbitrary sized temp buffer for the cipher name. Should be big enough */
1297 char name[80];
1298
1299 if (len > (int)(sizeof(name) - 1))
1300 /* Anyway return 1 so we can parse rest of the list */
1301 return 1;
1302
1303 memcpy(name, elem, len);
1304 name[len] = '\0';
1305
1306 cipher = ssl3_get_cipher_by_std_name(name);
1307 if (cipher == NULL)
1308 /* Ciphersuite not found but return 1 to parse rest of the list */
1309 return 1;
1310
1311 if (!sk_SSL_CIPHER_push(ciphersuites, cipher)) {
1312 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
1313 return 0;
1314 }
1315
1316 return 1;
1317 }
1318
set_ciphersuites(STACK_OF (SSL_CIPHER)** currciphers,const char * str)1319 static __owur int set_ciphersuites(STACK_OF(SSL_CIPHER) **currciphers, const char *str)
1320 {
1321 STACK_OF(SSL_CIPHER) *newciphers = sk_SSL_CIPHER_new_null();
1322
1323 if (newciphers == NULL)
1324 return 0;
1325
1326 /* Parse the list. We explicitly allow an empty list */
1327 if (*str != '\0'
1328 && (CONF_parse_list(str, ':', 1, ciphersuite_cb, newciphers) <= 0
1329 || sk_SSL_CIPHER_num(newciphers) == 0)) {
1330 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH);
1331 sk_SSL_CIPHER_free(newciphers);
1332 return 0;
1333 }
1334 sk_SSL_CIPHER_free(*currciphers);
1335 *currciphers = newciphers;
1336
1337 return 1;
1338 }
1339
update_cipher_list_by_id(STACK_OF (SSL_CIPHER)** cipher_list_by_id,STACK_OF (SSL_CIPHER)* cipherstack)1340 static int update_cipher_list_by_id(STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1341 STACK_OF(SSL_CIPHER) *cipherstack)
1342 {
1343 STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
1344
1345 if (tmp_cipher_list == NULL) {
1346 return 0;
1347 }
1348
1349 sk_SSL_CIPHER_free(*cipher_list_by_id);
1350 *cipher_list_by_id = tmp_cipher_list;
1351
1352 (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, ssl_cipher_ptr_id_cmp);
1353 sk_SSL_CIPHER_sort(*cipher_list_by_id);
1354
1355 return 1;
1356 }
1357
update_cipher_list(SSL_CTX * ctx,STACK_OF (SSL_CIPHER)** cipher_list,STACK_OF (SSL_CIPHER)** cipher_list_by_id,STACK_OF (SSL_CIPHER)* tls13_ciphersuites)1358 static int update_cipher_list(SSL_CTX *ctx,
1359 STACK_OF(SSL_CIPHER) **cipher_list,
1360 STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1361 STACK_OF(SSL_CIPHER) *tls13_ciphersuites)
1362 {
1363 int i;
1364 STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(*cipher_list);
1365
1366 if (tmp_cipher_list == NULL)
1367 return 0;
1368
1369 /*
1370 * Delete any existing TLSv1.3 ciphersuites. These are always first in the
1371 * list.
1372 */
1373 while (sk_SSL_CIPHER_num(tmp_cipher_list) > 0
1374 && sk_SSL_CIPHER_value(tmp_cipher_list, 0)->min_tls
1375 == TLS1_3_VERSION)
1376 (void)sk_SSL_CIPHER_delete(tmp_cipher_list, 0);
1377
1378 /* Insert the new TLSv1.3 ciphersuites */
1379 for (i = sk_SSL_CIPHER_num(tls13_ciphersuites) - 1; i >= 0; i--) {
1380 const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1381
1382 /* Don't include any TLSv1.3 ciphersuites that are disabled */
1383 if ((sslc->algorithm_enc & ctx->disabled_enc_mask) == 0
1384 && (ssl_cipher_table_mac[sslc->algorithm2
1385 & SSL_HANDSHAKE_MAC_MASK].mask
1386 & ctx->disabled_mac_mask) == 0) {
1387 sk_SSL_CIPHER_unshift(tmp_cipher_list, sslc);
1388 }
1389 }
1390
1391 if (!update_cipher_list_by_id(cipher_list_by_id, tmp_cipher_list)) {
1392 sk_SSL_CIPHER_free(tmp_cipher_list);
1393 return 0;
1394 }
1395
1396 sk_SSL_CIPHER_free(*cipher_list);
1397 *cipher_list = tmp_cipher_list;
1398
1399 return 1;
1400 }
1401
SSL_CTX_set_ciphersuites(SSL_CTX * ctx,const char * str)1402 int SSL_CTX_set_ciphersuites(SSL_CTX *ctx, const char *str)
1403 {
1404 int ret = set_ciphersuites(&(ctx->tls13_ciphersuites), str);
1405
1406 if (ret && ctx->cipher_list != NULL)
1407 return update_cipher_list(ctx, &ctx->cipher_list, &ctx->cipher_list_by_id,
1408 ctx->tls13_ciphersuites);
1409
1410 return ret;
1411 }
1412
SSL_set_ciphersuites(SSL * s,const char * str)1413 int SSL_set_ciphersuites(SSL *s, const char *str)
1414 {
1415 STACK_OF(SSL_CIPHER) *cipher_list;
1416 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
1417 int ret;
1418
1419 if (sc == NULL)
1420 return 0;
1421
1422 ret = set_ciphersuites(&(sc->tls13_ciphersuites), str);
1423
1424 if (sc->cipher_list == NULL) {
1425 if ((cipher_list = SSL_get_ciphers(s)) != NULL)
1426 sc->cipher_list = sk_SSL_CIPHER_dup(cipher_list);
1427 }
1428 if (ret && sc->cipher_list != NULL)
1429 return update_cipher_list(s->ctx, &sc->cipher_list,
1430 &sc->cipher_list_by_id,
1431 sc->tls13_ciphersuites);
1432
1433 return ret;
1434 }
1435
STACK_OF(SSL_CIPHER)1436 STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(SSL_CTX *ctx,
1437 STACK_OF(SSL_CIPHER) *tls13_ciphersuites,
1438 STACK_OF(SSL_CIPHER) **cipher_list,
1439 STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1440 const char *rule_str,
1441 CERT *c)
1442 {
1443 int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases, i;
1444 uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac;
1445 STACK_OF(SSL_CIPHER) *cipherstack;
1446 const char *rule_p;
1447 CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
1448 const SSL_CIPHER **ca_list = NULL;
1449 const SSL_METHOD *ssl_method = ctx->method;
1450
1451 /*
1452 * Return with error if nothing to do.
1453 */
1454 if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
1455 return NULL;
1456
1457 if (!check_suiteb_cipher_list(ssl_method, c, &rule_str))
1458 return NULL;
1459
1460 /*
1461 * To reduce the work to do we only want to process the compiled
1462 * in algorithms, so we first get the mask of disabled ciphers.
1463 */
1464
1465 disabled_mkey = ctx->disabled_mkey_mask;
1466 disabled_auth = ctx->disabled_auth_mask;
1467 disabled_enc = ctx->disabled_enc_mask;
1468 disabled_mac = ctx->disabled_mac_mask;
1469
1470 /*
1471 * Now we have to collect the available ciphers from the compiled
1472 * in ciphers. We cannot get more than the number compiled in, so
1473 * it is used for allocation.
1474 */
1475 num_of_ciphers = ssl_method->num_ciphers();
1476
1477 if (num_of_ciphers > 0) {
1478 co_list = OPENSSL_malloc_array(num_of_ciphers, sizeof(*co_list));
1479 if (co_list == NULL)
1480 return NULL; /* Failure */
1481 }
1482
1483 ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
1484 disabled_mkey, disabled_auth, disabled_enc,
1485 disabled_mac, co_list, &head, &tail);
1486
1487 /* Now arrange all ciphers by preference. */
1488
1489 /*
1490 * Everything else being equal, prefer ephemeral ECDH over other key
1491 * exchange mechanisms.
1492 * For consistency, prefer ECDSA over RSA (though this only matters if the
1493 * server has both certificates, and is using the DEFAULT, or a client
1494 * preference).
1495 */
1496 ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD,
1497 -1, &head, &tail);
1498 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head,
1499 &tail);
1500 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head,
1501 &tail);
1502
1503 /* Within each strength group, we prefer GCM over CHACHA... */
1504 ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1,
1505 &head, &tail);
1506 ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1,
1507 &head, &tail);
1508
1509 /*
1510 * ...and generally, our preferred cipher is AES.
1511 * Note that AEADs will be bumped to take preference after sorting by
1512 * strength.
1513 */
1514 ssl_cipher_apply_rule(0, 0, 0, SSL_AES ^ SSL_AESGCM, 0, 0, 0, CIPHER_ADD,
1515 -1, &head, &tail);
1516
1517 /* Temporarily enable everything else for sorting */
1518 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1519
1520 /* Low priority for MD5 */
1521 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head,
1522 &tail);
1523
1524 /*
1525 * Move anonymous ciphers to the end. Usually, these will remain
1526 * disabled. (For applications that allow them, they aren't too bad, but
1527 * we prefer authenticated ciphers.)
1528 */
1529 ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1530 &tail);
1531
1532 ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1533 &tail);
1534 ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1535 &tail);
1536
1537 /* RC4 is sort-of broken -- move to the end */
1538 ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head,
1539 &tail);
1540
1541 /*
1542 * Now sort by symmetric encryption strength. The above ordering remains
1543 * in force within each class
1544 */
1545 if (!ssl_cipher_strength_sort(&head, &tail)) {
1546 OPENSSL_free(co_list);
1547 return NULL;
1548 }
1549
1550 /*
1551 * Partially overrule strength sort to prefer TLS 1.2 ciphers/PRFs.
1552 */
1553 ssl_cipher_apply_rule(0, 0, 0, 0, 0, TLS1_2_VERSION, 0, CIPHER_BUMP, -1,
1554 &head, &tail);
1555
1556 /*
1557 * Irrespective of strength, enforce the following order:
1558 * (EC)DHE + AEAD > (EC)DHE > rest of AEAD > rest.
1559 * Within each group, ciphers remain sorted by strength and previous
1560 * preference, i.e.,
1561 * 1) ECDHE > DHE
1562 * 2) GCM > CHACHA
1563 * 3) AES > rest
1564 * 4) TLS 1.2 > legacy
1565 *
1566 * Because we now bump ciphers to the top of the list, we proceed in
1567 * reverse order of preference.
1568 */
1569 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1,
1570 &head, &tail);
1571 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, 0, 0, 0,
1572 CIPHER_BUMP, -1, &head, &tail);
1573 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, SSL_AEAD, 0, 0,
1574 CIPHER_BUMP, -1, &head, &tail);
1575
1576 /* Now disable everything (maintaining the ordering!) */
1577 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
1578
1579 /*
1580 * We also need cipher aliases for selecting based on the rule_str.
1581 * There might be two types of entries in the rule_str: 1) names
1582 * of ciphers themselves 2) aliases for groups of ciphers.
1583 * For 1) we need the available ciphers and for 2) the cipher
1584 * groups of cipher_aliases added together in one list (otherwise
1585 * we would be happy with just the cipher_aliases table).
1586 */
1587 num_of_group_aliases = OSSL_NELEM(cipher_aliases);
1588 num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
1589 ca_list = OPENSSL_malloc_array(num_of_alias_max, sizeof(*ca_list));
1590 if (ca_list == NULL) {
1591 OPENSSL_free(co_list);
1592 return NULL; /* Failure */
1593 }
1594 ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
1595 disabled_mkey, disabled_auth, disabled_enc,
1596 disabled_mac, head);
1597
1598 /*
1599 * If the rule_string begins with DEFAULT, apply the default rule
1600 * before using the (possibly available) additional rules.
1601 */
1602 ok = 1;
1603 rule_p = rule_str;
1604 if (HAS_PREFIX(rule_str, "DEFAULT")) {
1605 ok = ssl_cipher_process_rulestr(OSSL_default_cipher_list(),
1606 &head, &tail, ca_list, c);
1607 rule_p += 7;
1608 if (*rule_p == ':')
1609 rule_p++;
1610 }
1611
1612 if (ok && (rule_p[0] != '\0'))
1613 ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c);
1614
1615 OPENSSL_free(ca_list); /* Not needed anymore */
1616
1617 if (!ok) { /* Rule processing failure */
1618 OPENSSL_free(co_list);
1619 return NULL;
1620 }
1621
1622 /*
1623 * Allocate new "cipherstack" for the result, return with error
1624 * if we cannot get one.
1625 */
1626 if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
1627 OPENSSL_free(co_list);
1628 return NULL;
1629 }
1630
1631 /* Add TLSv1.3 ciphers first - we always prefer those if possible */
1632 for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++) {
1633 const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1634
1635 /* Don't include any TLSv1.3 ciphers that are disabled */
1636 if ((sslc->algorithm_enc & disabled_enc) != 0
1637 || (ssl_cipher_table_mac[sslc->algorithm2
1638 & SSL_HANDSHAKE_MAC_MASK].mask
1639 & ctx->disabled_mac_mask) != 0) {
1640 sk_SSL_CIPHER_delete(tls13_ciphersuites, i);
1641 i--;
1642 continue;
1643 }
1644
1645 if (!sk_SSL_CIPHER_push(cipherstack, sslc)) {
1646 OPENSSL_free(co_list);
1647 sk_SSL_CIPHER_free(cipherstack);
1648 return NULL;
1649 }
1650 }
1651
1652 OSSL_TRACE_BEGIN(TLS_CIPHER) {
1653 BIO_printf(trc_out, "cipher selection:\n");
1654 }
1655 /*
1656 * The cipher selection for the list is done. The ciphers are added
1657 * to the resulting precedence to the STACK_OF(SSL_CIPHER).
1658 */
1659 for (curr = head; curr != NULL; curr = curr->next) {
1660 if (curr->active) {
1661 if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
1662 OPENSSL_free(co_list);
1663 sk_SSL_CIPHER_free(cipherstack);
1664 OSSL_TRACE_CANCEL(TLS_CIPHER);
1665 return NULL;
1666 }
1667 if (trc_out != NULL)
1668 BIO_printf(trc_out, "<%s>\n", curr->cipher->name);
1669 }
1670 }
1671 OPENSSL_free(co_list); /* Not needed any longer */
1672 OSSL_TRACE_END(TLS_CIPHER);
1673
1674 if (!update_cipher_list_by_id(cipher_list_by_id, cipherstack)) {
1675 sk_SSL_CIPHER_free(cipherstack);
1676 return NULL;
1677 }
1678 sk_SSL_CIPHER_free(*cipher_list);
1679 *cipher_list = cipherstack;
1680
1681 return cipherstack;
1682 }
1683
SSL_CIPHER_description(const SSL_CIPHER * cipher,char * buf,int len)1684 char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
1685 {
1686 const char *ver;
1687 const char *kx, *au, *enc, *mac;
1688 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
1689 static const char *const format = "%-30s %-7s Kx=%-8s Au=%-5s Enc=%-22s Mac=%-4s\n";
1690
1691 if (buf == NULL) {
1692 len = 128;
1693 if ((buf = OPENSSL_malloc(len)) == NULL)
1694 return NULL;
1695 } else if (len < 128) {
1696 return NULL;
1697 }
1698
1699 alg_mkey = cipher->algorithm_mkey;
1700 alg_auth = cipher->algorithm_auth;
1701 alg_enc = cipher->algorithm_enc;
1702 alg_mac = cipher->algorithm_mac;
1703
1704 ver = ssl_protocol_to_string(cipher->min_tls);
1705
1706 switch (alg_mkey) {
1707 case SSL_kRSA:
1708 kx = "RSA";
1709 break;
1710 case SSL_kDHE:
1711 kx = "DH";
1712 break;
1713 case SSL_kECDHE:
1714 kx = "ECDH";
1715 break;
1716 case SSL_kPSK:
1717 kx = "PSK";
1718 break;
1719 case SSL_kRSAPSK:
1720 kx = "RSAPSK";
1721 break;
1722 case SSL_kECDHEPSK:
1723 kx = "ECDHEPSK";
1724 break;
1725 case SSL_kDHEPSK:
1726 kx = "DHEPSK";
1727 break;
1728 case SSL_kSRP:
1729 kx = "SRP";
1730 break;
1731 case SSL_kGOST:
1732 kx = "GOST";
1733 break;
1734 case SSL_kGOST18:
1735 kx = "GOST18";
1736 break;
1737 case SSL_kANY:
1738 kx = "any";
1739 break;
1740 default:
1741 kx = "unknown";
1742 }
1743
1744 switch (alg_auth) {
1745 case SSL_aRSA:
1746 au = "RSA";
1747 break;
1748 case SSL_aDSS:
1749 au = "DSS";
1750 break;
1751 case SSL_aNULL:
1752 au = "None";
1753 break;
1754 case SSL_aECDSA:
1755 au = "ECDSA";
1756 break;
1757 case SSL_aPSK:
1758 au = "PSK";
1759 break;
1760 case SSL_aSRP:
1761 au = "SRP";
1762 break;
1763 case SSL_aGOST01:
1764 au = "GOST01";
1765 break;
1766 /* New GOST ciphersuites have both SSL_aGOST12 and SSL_aGOST01 bits */
1767 case (SSL_aGOST12 | SSL_aGOST01):
1768 au = "GOST12";
1769 break;
1770 case SSL_aANY:
1771 au = "any";
1772 break;
1773 default:
1774 au = "unknown";
1775 break;
1776 }
1777
1778 switch (alg_enc) {
1779 case SSL_DES:
1780 enc = "DES(56)";
1781 break;
1782 case SSL_3DES:
1783 enc = "3DES(168)";
1784 break;
1785 case SSL_RC4:
1786 enc = "RC4(128)";
1787 break;
1788 case SSL_RC2:
1789 enc = "RC2(128)";
1790 break;
1791 case SSL_IDEA:
1792 enc = "IDEA(128)";
1793 break;
1794 case SSL_eNULL:
1795 enc = "None";
1796 break;
1797 case SSL_AES128:
1798 enc = "AES(128)";
1799 break;
1800 case SSL_AES256:
1801 enc = "AES(256)";
1802 break;
1803 case SSL_AES128GCM:
1804 enc = "AESGCM(128)";
1805 break;
1806 case SSL_AES256GCM:
1807 enc = "AESGCM(256)";
1808 break;
1809 case SSL_AES128CCM:
1810 enc = "AESCCM(128)";
1811 break;
1812 case SSL_AES256CCM:
1813 enc = "AESCCM(256)";
1814 break;
1815 case SSL_AES128CCM8:
1816 enc = "AESCCM8(128)";
1817 break;
1818 case SSL_AES256CCM8:
1819 enc = "AESCCM8(256)";
1820 break;
1821 case SSL_CAMELLIA128:
1822 enc = "Camellia(128)";
1823 break;
1824 case SSL_CAMELLIA256:
1825 enc = "Camellia(256)";
1826 break;
1827 case SSL_ARIA128GCM:
1828 enc = "ARIAGCM(128)";
1829 break;
1830 case SSL_ARIA256GCM:
1831 enc = "ARIAGCM(256)";
1832 break;
1833 case SSL_SEED:
1834 enc = "SEED(128)";
1835 break;
1836 case SSL_eGOST2814789CNT:
1837 case SSL_eGOST2814789CNT12:
1838 enc = "GOST89(256)";
1839 break;
1840 case SSL_MAGMA:
1841 enc = "MAGMA";
1842 break;
1843 case SSL_KUZNYECHIK:
1844 enc = "KUZNYECHIK";
1845 break;
1846 case SSL_CHACHA20POLY1305:
1847 enc = "CHACHA20/POLY1305(256)";
1848 break;
1849 default:
1850 enc = "unknown";
1851 break;
1852 }
1853
1854 switch (alg_mac) {
1855 case SSL_MD5:
1856 mac = "MD5";
1857 break;
1858 case SSL_SHA1:
1859 mac = "SHA1";
1860 break;
1861 case SSL_SHA256:
1862 mac = "SHA256";
1863 break;
1864 case SSL_SHA384:
1865 mac = "SHA384";
1866 break;
1867 case SSL_AEAD:
1868 mac = "AEAD";
1869 break;
1870 case SSL_GOST89MAC:
1871 case SSL_GOST89MAC12:
1872 mac = "GOST89";
1873 break;
1874 case SSL_GOST94:
1875 mac = "GOST94";
1876 break;
1877 case SSL_GOST12_256:
1878 case SSL_GOST12_512:
1879 mac = "GOST2012";
1880 break;
1881 default:
1882 mac = "unknown";
1883 break;
1884 }
1885
1886 BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac);
1887
1888 return buf;
1889 }
1890
SSL_CIPHER_get_version(const SSL_CIPHER * c)1891 const char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
1892 {
1893 if (c == NULL)
1894 return "(NONE)";
1895
1896 /*
1897 * Backwards-compatibility crutch. In almost all contexts we report TLS
1898 * 1.0 as "TLSv1", but for ciphers we report "TLSv1.0".
1899 */
1900 if (c->min_tls == TLS1_VERSION)
1901 return "TLSv1.0";
1902 return ssl_protocol_to_string(c->min_tls);
1903 }
1904
1905 /* return the actual cipher being used */
SSL_CIPHER_get_name(const SSL_CIPHER * c)1906 const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
1907 {
1908 if (c != NULL)
1909 return c->name;
1910 return "(NONE)";
1911 }
1912
1913 /* return the actual cipher being used in RFC standard name */
SSL_CIPHER_standard_name(const SSL_CIPHER * c)1914 const char *SSL_CIPHER_standard_name(const SSL_CIPHER *c)
1915 {
1916 if (c != NULL)
1917 return c->stdname;
1918 return "(NONE)";
1919 }
1920
1921 /* return the OpenSSL name based on given RFC standard name */
OPENSSL_cipher_name(const char * stdname)1922 const char *OPENSSL_cipher_name(const char *stdname)
1923 {
1924 const SSL_CIPHER *c;
1925
1926 if (stdname == NULL)
1927 return "(NONE)";
1928 c = ssl3_get_cipher_by_std_name(stdname);
1929 return SSL_CIPHER_get_name(c);
1930 }
1931
1932 /* number of bits for symmetric cipher */
SSL_CIPHER_get_bits(const SSL_CIPHER * c,int * alg_bits)1933 int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
1934 {
1935 int ret = 0;
1936
1937 if (c != NULL) {
1938 if (alg_bits != NULL)
1939 *alg_bits = (int)c->alg_bits;
1940 ret = (int)c->strength_bits;
1941 }
1942 return ret;
1943 }
1944
SSL_CIPHER_get_id(const SSL_CIPHER * c)1945 uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c)
1946 {
1947 return c->id;
1948 }
1949
SSL_CIPHER_get_protocol_id(const SSL_CIPHER * c)1950 uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *c)
1951 {
1952 return c->id & 0xFFFF;
1953 }
1954
ssl3_comp_find(STACK_OF (SSL_COMP)* sk,int n)1955 SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
1956 {
1957 SSL_COMP *ctmp;
1958 SSL_COMP srch_key;
1959 int i;
1960
1961 if ((n == 0) || (sk == NULL))
1962 return NULL;
1963 srch_key.id = n;
1964 i = sk_SSL_COMP_find(sk, &srch_key);
1965 if (i >= 0)
1966 ctmp = sk_SSL_COMP_value(sk, i);
1967 else
1968 ctmp = NULL;
1969
1970 return ctmp;
1971 }
1972
1973 #ifdef OPENSSL_NO_COMP
STACK_OF(SSL_COMP)1974 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1975 {
1976 return NULL;
1977 }
1978
STACK_OF(SSL_COMP)1979 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1980 *meths)
1981 {
1982 return meths;
1983 }
1984
SSL_COMP_add_compression_method(int id,COMP_METHOD * cm)1985 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1986 {
1987 return 1;
1988 }
1989
1990 #else
STACK_OF(SSL_COMP)1991 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1992 {
1993 STACK_OF(SSL_COMP) **rv;
1994
1995 rv = (STACK_OF(SSL_COMP) **)OSSL_LIB_CTX_get_data(NULL,
1996 OSSL_LIB_CTX_COMP_METHODS);
1997 if (rv != NULL)
1998 return *rv;
1999 else
2000 return NULL;
2001 }
2002
STACK_OF(SSL_COMP)2003 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
2004 *meths)
2005 {
2006 STACK_OF(SSL_COMP) **comp_methods;
2007 STACK_OF(SSL_COMP) *old_meths;
2008
2009 comp_methods = (STACK_OF(SSL_COMP) **)OSSL_LIB_CTX_get_data(NULL,
2010 OSSL_LIB_CTX_COMP_METHODS);
2011 if (comp_methods == NULL) {
2012 old_meths = meths;
2013 } else {
2014 old_meths = *comp_methods;
2015 *comp_methods = meths;
2016 }
2017
2018 return old_meths;
2019 }
2020
SSL_COMP_add_compression_method(int id,COMP_METHOD * cm)2021 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
2022 {
2023 STACK_OF(SSL_COMP) *comp_methods;
2024 SSL_COMP *comp;
2025
2026 comp_methods = SSL_COMP_get_compression_methods();
2027
2028 if (comp_methods == NULL)
2029 return 1;
2030
2031 if (cm == NULL || COMP_get_type(cm) == NID_undef)
2032 return 1;
2033
2034 /*-
2035 * According to draft-ietf-tls-compression-04.txt, the
2036 * compression number ranges should be the following:
2037 *
2038 * 0 to 63: methods defined by the IETF
2039 * 64 to 192: external party methods assigned by IANA
2040 * 193 to 255: reserved for private use
2041 */
2042 if (id < 193 || id > 255) {
2043 ERR_raise(ERR_LIB_SSL, SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
2044 return 1;
2045 }
2046
2047 comp = OPENSSL_malloc(sizeof(*comp));
2048 if (comp == NULL)
2049 return 1;
2050
2051 comp->id = id;
2052 if (sk_SSL_COMP_find(comp_methods, comp) >= 0) {
2053 OPENSSL_free(comp);
2054 ERR_raise(ERR_LIB_SSL, SSL_R_DUPLICATE_COMPRESSION_ID);
2055 return 1;
2056 }
2057 if (!sk_SSL_COMP_push(comp_methods, comp)) {
2058 OPENSSL_free(comp);
2059 ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB);
2060 return 1;
2061 }
2062
2063 return 0;
2064 }
2065 #endif
2066
SSL_COMP_get_name(const COMP_METHOD * comp)2067 const char *SSL_COMP_get_name(const COMP_METHOD *comp)
2068 {
2069 #ifndef OPENSSL_NO_COMP
2070 return comp ? COMP_get_name(comp) : NULL;
2071 #else
2072 return NULL;
2073 #endif
2074 }
2075
SSL_COMP_get0_name(const SSL_COMP * comp)2076 const char *SSL_COMP_get0_name(const SSL_COMP *comp)
2077 {
2078 #ifndef OPENSSL_NO_COMP
2079 return comp->name;
2080 #else
2081 return NULL;
2082 #endif
2083 }
2084
SSL_COMP_get_id(const SSL_COMP * comp)2085 int SSL_COMP_get_id(const SSL_COMP *comp)
2086 {
2087 #ifndef OPENSSL_NO_COMP
2088 return comp->id;
2089 #else
2090 return -1;
2091 #endif
2092 }
2093
ssl_get_cipher_by_char(SSL_CONNECTION * s,const unsigned char * ptr,int all)2094 const SSL_CIPHER *ssl_get_cipher_by_char(SSL_CONNECTION *s,
2095 const unsigned char *ptr,
2096 int all)
2097 {
2098 const SSL_CIPHER *c = SSL_CONNECTION_GET_SSL(s)->method->get_cipher_by_char(ptr);
2099
2100 if (c == NULL || (!all && c->valid == 0))
2101 return NULL;
2102 return c;
2103 }
2104
SSL_CIPHER_find(SSL * ssl,const unsigned char * ptr)2105 const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr)
2106 {
2107 return ssl->method->get_cipher_by_char(ptr);
2108 }
2109
SSL_CIPHER_get_cipher_nid(const SSL_CIPHER * c)2110 int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c)
2111 {
2112 int i;
2113 if (c == NULL)
2114 return NID_undef;
2115 i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
2116 if (i == -1)
2117 return NID_undef;
2118 return ssl_cipher_table_cipher[i].nid;
2119 }
2120
SSL_CIPHER_get_digest_nid(const SSL_CIPHER * c)2121 int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c)
2122 {
2123 int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
2124
2125 if (i == -1)
2126 return NID_undef;
2127 return ssl_cipher_table_mac[i].nid;
2128 }
2129
SSL_CIPHER_get_kx_nid(const SSL_CIPHER * c)2130 int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c)
2131 {
2132 int i = ssl_cipher_info_lookup(ssl_cipher_table_kx, c->algorithm_mkey);
2133
2134 if (i == -1)
2135 return NID_undef;
2136 return ssl_cipher_table_kx[i].nid;
2137 }
2138
SSL_CIPHER_get_auth_nid(const SSL_CIPHER * c)2139 int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c)
2140 {
2141 int i = ssl_cipher_info_lookup(ssl_cipher_table_auth, c->algorithm_auth);
2142
2143 if (i == -1)
2144 return NID_undef;
2145 return ssl_cipher_table_auth[i].nid;
2146 }
2147
ssl_get_md_idx(int md_nid)2148 int ssl_get_md_idx(int md_nid) {
2149 int i;
2150
2151 for(i = 0; i < SSL_MD_NUM_IDX; i++) {
2152 if (md_nid == ssl_cipher_table_mac[i].nid)
2153 return i;
2154 }
2155 return -1;
2156 }
2157
SSL_CIPHER_get_handshake_digest(const SSL_CIPHER * c)2158 const EVP_MD *SSL_CIPHER_get_handshake_digest(const SSL_CIPHER *c)
2159 {
2160 int idx = c->algorithm2 & SSL_HANDSHAKE_MAC_MASK;
2161
2162 if (idx < 0 || idx >= SSL_MD_NUM_IDX)
2163 return NULL;
2164 return EVP_get_digestbynid(ssl_cipher_table_mac[idx].nid);
2165 }
2166
SSL_CIPHER_is_aead(const SSL_CIPHER * c)2167 int SSL_CIPHER_is_aead(const SSL_CIPHER *c)
2168 {
2169 return (c->algorithm_mac & SSL_AEAD) ? 1 : 0;
2170 }
2171
ssl_cipher_get_overhead(const SSL_CIPHER * c,size_t * mac_overhead,size_t * int_overhead,size_t * blocksize,size_t * ext_overhead)2172 int ssl_cipher_get_overhead(const SSL_CIPHER *c, size_t *mac_overhead,
2173 size_t *int_overhead, size_t *blocksize,
2174 size_t *ext_overhead)
2175 {
2176 int mac = 0, in = 0, blk = 0, out = 0;
2177
2178 /* Some hard-coded numbers for the CCM/Poly1305 MAC overhead
2179 * because there are no handy #defines for those. */
2180 if (c->algorithm_enc & (SSL_AESGCM | SSL_ARIAGCM)) {
2181 out = EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
2182 } else if (c->algorithm_enc & (SSL_AES128CCM | SSL_AES256CCM)) {
2183 out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 16;
2184 } else if (c->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) {
2185 out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 8;
2186 } else if (c->algorithm_enc & SSL_CHACHA20POLY1305) {
2187 out = 16;
2188 } else if (c->algorithm_mac & SSL_AEAD) {
2189 /* We're supposed to have handled all the AEAD modes above */
2190 return 0;
2191 } else {
2192 /* Non-AEAD modes. Calculate MAC/cipher overhead separately */
2193 int digest_nid = SSL_CIPHER_get_digest_nid(c);
2194 const EVP_MD *e_md = EVP_get_digestbynid(digest_nid);
2195
2196 if (e_md == NULL)
2197 return 0;
2198
2199 mac = EVP_MD_get_size(e_md);
2200 if (mac <= 0)
2201 return 0;
2202 if (c->algorithm_enc != SSL_eNULL) {
2203 int cipher_nid = SSL_CIPHER_get_cipher_nid(c);
2204 const EVP_CIPHER *e_ciph = EVP_get_cipherbynid(cipher_nid);
2205
2206 /* If it wasn't AEAD or SSL_eNULL, we expect it to be a
2207 known CBC cipher. */
2208 if (e_ciph == NULL ||
2209 EVP_CIPHER_get_mode(e_ciph) != EVP_CIPH_CBC_MODE)
2210 return 0;
2211
2212 in = 1; /* padding length byte */
2213 out = EVP_CIPHER_get_iv_length(e_ciph);
2214 if (out < 0)
2215 return 0;
2216 blk = EVP_CIPHER_get_block_size(e_ciph);
2217 if (blk <= 0)
2218 return 0;
2219 }
2220 }
2221
2222 *mac_overhead = (size_t)mac;
2223 *int_overhead = (size_t)in;
2224 *blocksize = (size_t)blk;
2225 *ext_overhead = (size_t)out;
2226
2227 return 1;
2228 }
2229
ssl_cert_is_disabled(SSL_CTX * ctx,size_t idx)2230 int ssl_cert_is_disabled(SSL_CTX *ctx, size_t idx)
2231 {
2232 const SSL_CERT_LOOKUP *cl;
2233
2234 /* A provider-loaded key type is always enabled */
2235 if (idx >= SSL_PKEY_NUM)
2236 return 0;
2237
2238 cl = ssl_cert_lookup_by_idx(idx, ctx);
2239 if (cl == NULL || (cl->amask & ctx->disabled_auth_mask) != 0)
2240 return 1;
2241 return 0;
2242 }
2243
2244 /*
2245 * Default list of TLSv1.2 (and earlier) ciphers
2246 * SSL_DEFAULT_CIPHER_LIST deprecated in 3.0.0
2247 * Update both macro and function simultaneously
2248 */
OSSL_default_cipher_list(void)2249 const char *OSSL_default_cipher_list(void)
2250 {
2251 return "ALL:!COMPLEMENTOFDEFAULT:!eNULL";
2252 }
2253
2254 /*
2255 * Default list of TLSv1.3 (and later) ciphers
2256 * TLS_DEFAULT_CIPHERSUITES deprecated in 3.0.0
2257 * Update both macro and function simultaneously
2258 */
OSSL_default_ciphersuites(void)2259 const char *OSSL_default_ciphersuites(void)
2260 {
2261 return "TLS_AES_256_GCM_SHA384:"
2262 "TLS_CHACHA20_POLY1305_SHA256:"
2263 "TLS_AES_128_GCM_SHA256";
2264 }
2265