1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Common Performance counter support functions for PowerISA v2.07 processors.
4 *
5 * Copyright 2009 Paul Mackerras, IBM Corporation.
6 * Copyright 2013 Michael Ellerman, IBM Corporation.
7 * Copyright 2016 Madhavan Srinivasan, IBM Corporation.
8 */
9 #include "isa207-common.h"
10
11 PMU_FORMAT_ATTR(event, "config:0-49");
12 PMU_FORMAT_ATTR(pmcxsel, "config:0-7");
13 PMU_FORMAT_ATTR(mark, "config:8");
14 PMU_FORMAT_ATTR(combine, "config:11");
15 PMU_FORMAT_ATTR(unit, "config:12-15");
16 PMU_FORMAT_ATTR(pmc, "config:16-19");
17 PMU_FORMAT_ATTR(cache_sel, "config:20-23");
18 PMU_FORMAT_ATTR(sample_mode, "config:24-28");
19 PMU_FORMAT_ATTR(thresh_sel, "config:29-31");
20 PMU_FORMAT_ATTR(thresh_stop, "config:32-35");
21 PMU_FORMAT_ATTR(thresh_start, "config:36-39");
22 PMU_FORMAT_ATTR(thresh_cmp, "config:40-49");
23
24 static struct attribute *isa207_pmu_format_attr[] = {
25 &format_attr_event.attr,
26 &format_attr_pmcxsel.attr,
27 &format_attr_mark.attr,
28 &format_attr_combine.attr,
29 &format_attr_unit.attr,
30 &format_attr_pmc.attr,
31 &format_attr_cache_sel.attr,
32 &format_attr_sample_mode.attr,
33 &format_attr_thresh_sel.attr,
34 &format_attr_thresh_stop.attr,
35 &format_attr_thresh_start.attr,
36 &format_attr_thresh_cmp.attr,
37 NULL,
38 };
39
40 struct attribute_group isa207_pmu_format_group = {
41 .name = "format",
42 .attrs = isa207_pmu_format_attr,
43 };
44
event_is_fab_match(u64 event)45 static inline bool event_is_fab_match(u64 event)
46 {
47 /* Only check pmc, unit and pmcxsel, ignore the edge bit (0) */
48 event &= 0xff0fe;
49
50 /* PM_MRK_FAB_RSP_MATCH & PM_MRK_FAB_RSP_MATCH_CYC */
51 return (event == 0x30056 || event == 0x4f052);
52 }
53
is_event_valid(u64 event)54 static bool is_event_valid(u64 event)
55 {
56 u64 valid_mask = EVENT_VALID_MASK;
57
58 if (cpu_has_feature(CPU_FTR_ARCH_31))
59 valid_mask = p10_EVENT_VALID_MASK;
60 else if (cpu_has_feature(CPU_FTR_ARCH_300))
61 valid_mask = p9_EVENT_VALID_MASK;
62
63 return !(event & ~valid_mask);
64 }
65
is_event_marked(u64 event)66 static inline bool is_event_marked(u64 event)
67 {
68 if (event & EVENT_IS_MARKED)
69 return true;
70
71 return false;
72 }
73
sdar_mod_val(u64 event)74 static unsigned long sdar_mod_val(u64 event)
75 {
76 if (cpu_has_feature(CPU_FTR_ARCH_31))
77 return p10_SDAR_MODE(event);
78
79 return p9_SDAR_MODE(event);
80 }
81
mmcra_sdar_mode(u64 event,unsigned long * mmcra)82 static void mmcra_sdar_mode(u64 event, unsigned long *mmcra)
83 {
84 /*
85 * MMCRA[SDAR_MODE] specifices how the SDAR should be updated in
86 * continous sampling mode.
87 *
88 * Incase of Power8:
89 * MMCRA[SDAR_MODE] will be programmed as "0b01" for continous sampling
90 * mode and will be un-changed when setting MMCRA[63] (Marked events).
91 *
92 * Incase of Power9/power10:
93 * Marked event: MMCRA[SDAR_MODE] will be set to 0b00 ('No Updates'),
94 * or if group already have any marked events.
95 * For rest
96 * MMCRA[SDAR_MODE] will be set from event code.
97 * If sdar_mode from event is zero, default to 0b01. Hardware
98 * requires that we set a non-zero value.
99 */
100 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
101 if (is_event_marked(event) || (*mmcra & MMCRA_SAMPLE_ENABLE))
102 *mmcra &= MMCRA_SDAR_MODE_NO_UPDATES;
103 else if (sdar_mod_val(event))
104 *mmcra |= sdar_mod_val(event) << MMCRA_SDAR_MODE_SHIFT;
105 else
106 *mmcra |= MMCRA_SDAR_MODE_DCACHE;
107 } else
108 *mmcra |= MMCRA_SDAR_MODE_TLB;
109 }
110
p10_thresh_cmp_val(u64 value)111 static u64 p10_thresh_cmp_val(u64 value)
112 {
113 int exp = 0;
114 u64 result = value;
115
116 if (!value)
117 return value;
118
119 /*
120 * Incase of P10, thresh_cmp value is not part of raw event code
121 * and provided via attr.config1 parameter. To program threshold in MMCRA,
122 * take a 18 bit number N and shift right 2 places and increment
123 * the exponent E by 1 until the upper 10 bits of N are zero.
124 * Write E to the threshold exponent and write the lower 8 bits of N
125 * to the threshold mantissa.
126 * The max threshold that can be written is 261120.
127 */
128 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
129 if (value > 261120)
130 value = 261120;
131 while ((64 - __builtin_clzl(value)) > 8) {
132 exp++;
133 value >>= 2;
134 }
135
136 /*
137 * Note that it is invalid to write a mantissa with the
138 * upper 2 bits of mantissa being zero, unless the
139 * exponent is also zero.
140 */
141 if (!(value & 0xC0) && exp)
142 result = 0;
143 else
144 result = (exp << 8) | value;
145 }
146 return result;
147 }
148
thresh_cmp_val(u64 value)149 static u64 thresh_cmp_val(u64 value)
150 {
151 if (cpu_has_feature(CPU_FTR_ARCH_31))
152 value = p10_thresh_cmp_val(value);
153
154 /*
155 * Since location of threshold compare bits in MMCRA
156 * is different for p8, using different shift value.
157 */
158 if (cpu_has_feature(CPU_FTR_ARCH_300))
159 return value << p9_MMCRA_THR_CMP_SHIFT;
160 else
161 return value << MMCRA_THR_CMP_SHIFT;
162 }
163
combine_from_event(u64 event)164 static unsigned long combine_from_event(u64 event)
165 {
166 if (cpu_has_feature(CPU_FTR_ARCH_300))
167 return p9_EVENT_COMBINE(event);
168
169 return EVENT_COMBINE(event);
170 }
171
combine_shift(unsigned long pmc)172 static unsigned long combine_shift(unsigned long pmc)
173 {
174 if (cpu_has_feature(CPU_FTR_ARCH_300))
175 return p9_MMCR1_COMBINE_SHIFT(pmc);
176
177 return MMCR1_COMBINE_SHIFT(pmc);
178 }
179
event_is_threshold(u64 event)180 static inline bool event_is_threshold(u64 event)
181 {
182 return (event >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK;
183 }
184
is_thresh_cmp_valid(u64 event)185 static bool is_thresh_cmp_valid(u64 event)
186 {
187 unsigned int cmp, exp;
188
189 if (cpu_has_feature(CPU_FTR_ARCH_31))
190 return p10_thresh_cmp_val(event) != 0;
191
192 /*
193 * Check the mantissa upper two bits are not zero, unless the
194 * exponent is also zero. See the THRESH_CMP_MANTISSA doc.
195 */
196
197 cmp = (event >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK;
198 exp = cmp >> 7;
199
200 if (exp && (cmp & 0x60) == 0)
201 return false;
202
203 return true;
204 }
205
dc_ic_rld_quad_l1_sel(u64 event)206 static unsigned int dc_ic_rld_quad_l1_sel(u64 event)
207 {
208 unsigned int cache;
209
210 cache = (event >> EVENT_CACHE_SEL_SHIFT) & MMCR1_DC_IC_QUAL_MASK;
211 return cache;
212 }
213
isa207_find_source(u64 idx,u32 sub_idx)214 static inline u64 isa207_find_source(u64 idx, u32 sub_idx)
215 {
216 u64 ret = PERF_MEM_NA;
217
218 switch(idx) {
219 case 0:
220 /* Nothing to do */
221 break;
222 case 1:
223 ret = PH(LVL, L1);
224 break;
225 case 2:
226 ret = PH(LVL, L2);
227 break;
228 case 3:
229 ret = PH(LVL, L3);
230 break;
231 case 4:
232 if (sub_idx <= 1)
233 ret = PH(LVL, LOC_RAM);
234 else if (sub_idx > 1 && sub_idx <= 2)
235 ret = PH(LVL, REM_RAM1);
236 else
237 ret = PH(LVL, REM_RAM2);
238 ret |= P(SNOOP, HIT);
239 break;
240 case 5:
241 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
242 ret = REM | P(HOPS, 0);
243
244 if (sub_idx == 0 || sub_idx == 4)
245 ret |= PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HIT);
246 else if (sub_idx == 1 || sub_idx == 5)
247 ret |= PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HITM);
248 else if (sub_idx == 2 || sub_idx == 6)
249 ret |= PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
250 else if (sub_idx == 3 || sub_idx == 7)
251 ret |= PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
252 } else {
253 if (sub_idx == 0)
254 ret = PH(LVL, L2) | LEVEL(L2) | REM | P(SNOOP, HIT) | P(HOPS, 0);
255 else if (sub_idx == 1)
256 ret = PH(LVL, L2) | LEVEL(L2) | REM | P(SNOOP, HITM) | P(HOPS, 0);
257 else if (sub_idx == 2 || sub_idx == 4)
258 ret = PH(LVL, L3) | LEVEL(L3) | REM | P(SNOOP, HIT) | P(HOPS, 0);
259 else if (sub_idx == 3 || sub_idx == 5)
260 ret = PH(LVL, L3) | LEVEL(L3) | REM | P(SNOOP, HITM) | P(HOPS, 0);
261 }
262 break;
263 case 6:
264 ret = PH(LVL, REM_CCE2);
265 if ((sub_idx == 0) || (sub_idx == 2))
266 ret |= P(SNOOP, HIT);
267 else if ((sub_idx == 1) || (sub_idx == 3))
268 ret |= P(SNOOP, HITM);
269 break;
270 case 7:
271 ret = PM(LVL, L1);
272 break;
273 }
274
275 return ret;
276 }
277
isa207_get_mem_data_src(union perf_mem_data_src * dsrc,u32 flags,struct pt_regs * regs)278 void isa207_get_mem_data_src(union perf_mem_data_src *dsrc, u32 flags,
279 struct pt_regs *regs)
280 {
281 u64 idx;
282 u32 sub_idx;
283 u64 sier;
284 u64 val;
285
286 /* Skip if no SIER support */
287 if (!(flags & PPMU_HAS_SIER)) {
288 dsrc->val = 0;
289 return;
290 }
291
292 sier = mfspr(SPRN_SIER);
293 val = (sier & ISA207_SIER_TYPE_MASK) >> ISA207_SIER_TYPE_SHIFT;
294 if (val != 1 && val != 2 && !(val == 7 && cpu_has_feature(CPU_FTR_ARCH_31)))
295 return;
296
297 idx = (sier & ISA207_SIER_LDST_MASK) >> ISA207_SIER_LDST_SHIFT;
298 sub_idx = (sier & ISA207_SIER_DATA_SRC_MASK) >> ISA207_SIER_DATA_SRC_SHIFT;
299
300 dsrc->val = isa207_find_source(idx, sub_idx);
301 if (val == 7) {
302 u64 mmcra;
303 u32 op_type;
304
305 /*
306 * Type 0b111 denotes either larx or stcx instruction. Use the
307 * MMCRA sampling bits [57:59] along with the type value
308 * to determine the exact instruction type. If the sampling
309 * criteria is neither load or store, set the type as default
310 * to NA.
311 */
312 mmcra = mfspr(SPRN_MMCRA);
313
314 op_type = (mmcra >> MMCRA_SAMP_ELIG_SHIFT) & MMCRA_SAMP_ELIG_MASK;
315 switch (op_type) {
316 case 5:
317 dsrc->val |= P(OP, LOAD);
318 break;
319 case 7:
320 dsrc->val |= P(OP, STORE);
321 break;
322 default:
323 dsrc->val |= P(OP, NA);
324 break;
325 }
326 } else {
327 dsrc->val |= (val == 1) ? P(OP, LOAD) : P(OP, STORE);
328 }
329 }
330
isa207_get_mem_weight(u64 * weight,u64 type)331 void isa207_get_mem_weight(u64 *weight, u64 type)
332 {
333 union perf_sample_weight *weight_fields;
334 u64 weight_lat;
335 u64 mmcra = mfspr(SPRN_MMCRA);
336 u64 exp = MMCRA_THR_CTR_EXP(mmcra);
337 u64 mantissa = MMCRA_THR_CTR_MANT(mmcra);
338 u64 sier = mfspr(SPRN_SIER);
339 u64 val = (sier & ISA207_SIER_TYPE_MASK) >> ISA207_SIER_TYPE_SHIFT;
340
341 if (cpu_has_feature(CPU_FTR_ARCH_31))
342 mantissa = P10_MMCRA_THR_CTR_MANT(mmcra);
343
344 if (val == 0 || (val == 7 && !cpu_has_feature(CPU_FTR_ARCH_31)))
345 weight_lat = 0;
346 else
347 weight_lat = mantissa << (2 * exp);
348
349 /*
350 * Use 64 bit weight field (full) if sample type is
351 * WEIGHT.
352 *
353 * if sample type is WEIGHT_STRUCT:
354 * - store memory latency in the lower 32 bits.
355 * - For ISA v3.1, use remaining two 16 bit fields of
356 * perf_sample_weight to store cycle counter values
357 * from sier2.
358 */
359 weight_fields = (union perf_sample_weight *)weight;
360 if (type & PERF_SAMPLE_WEIGHT)
361 weight_fields->full = weight_lat;
362 else {
363 weight_fields->var1_dw = (u32)weight_lat;
364 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
365 weight_fields->var2_w = P10_SIER2_FINISH_CYC(mfspr(SPRN_SIER2));
366 weight_fields->var3_w = P10_SIER2_DISPATCH_CYC(mfspr(SPRN_SIER2));
367 }
368 }
369 }
370
isa207_get_constraint(u64 event,unsigned long * maskp,unsigned long * valp,u64 event_config1)371 int isa207_get_constraint(u64 event, unsigned long *maskp, unsigned long *valp, u64 event_config1)
372 {
373 unsigned int unit, pmc, cache, ebb;
374 unsigned long mask, value;
375
376 mask = value = 0;
377
378 if (!is_event_valid(event))
379 return -1;
380
381 pmc = (event >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
382 unit = (event >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK;
383 if (cpu_has_feature(CPU_FTR_ARCH_31))
384 cache = (event >> EVENT_CACHE_SEL_SHIFT) &
385 p10_EVENT_CACHE_SEL_MASK;
386 else
387 cache = (event >> EVENT_CACHE_SEL_SHIFT) &
388 EVENT_CACHE_SEL_MASK;
389 ebb = (event >> EVENT_EBB_SHIFT) & EVENT_EBB_MASK;
390
391 if (pmc) {
392 u64 base_event;
393
394 if (pmc > 6)
395 return -1;
396
397 /* Ignore Linux defined bits when checking event below */
398 base_event = event & ~EVENT_LINUX_MASK;
399
400 if (pmc >= 5 && base_event != 0x500fa &&
401 base_event != 0x600f4)
402 return -1;
403
404 mask |= CNST_PMC_MASK(pmc);
405 value |= CNST_PMC_VAL(pmc);
406
407 /*
408 * PMC5 and PMC6 are used to count cycles and instructions and
409 * they do not support most of the constraint bits. Add a check
410 * to exclude PMC5/6 from most of the constraints except for
411 * EBB/BHRB.
412 */
413 if (pmc >= 5)
414 goto ebb_bhrb;
415 }
416
417 if (pmc <= 4) {
418 /*
419 * Add to number of counters in use. Note this includes events with
420 * a PMC of 0 - they still need a PMC, it's just assigned later.
421 * Don't count events on PMC 5 & 6, there is only one valid event
422 * on each of those counters, and they are handled above.
423 */
424 mask |= CNST_NC_MASK;
425 value |= CNST_NC_VAL;
426 }
427
428 if (unit >= 6 && unit <= 9) {
429 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
430 if (unit == 6) {
431 mask |= CNST_L2L3_GROUP_MASK;
432 value |= CNST_L2L3_GROUP_VAL(event >> p10_L2L3_EVENT_SHIFT);
433 }
434 } else if (cpu_has_feature(CPU_FTR_ARCH_300)) {
435 mask |= CNST_CACHE_GROUP_MASK;
436 value |= CNST_CACHE_GROUP_VAL(event & 0xff);
437
438 mask |= CNST_CACHE_PMC4_MASK;
439 if (pmc == 4)
440 value |= CNST_CACHE_PMC4_VAL;
441 } else if (cache & 0x7) {
442 /*
443 * L2/L3 events contain a cache selector field, which is
444 * supposed to be programmed into MMCRC. However MMCRC is only
445 * HV writable, and there is no API for guest kernels to modify
446 * it. The solution is for the hypervisor to initialise the
447 * field to zeroes, and for us to only ever allow events that
448 * have a cache selector of zero. The bank selector (bit 3) is
449 * irrelevant, as long as the rest of the value is 0.
450 */
451 return -1;
452 }
453
454 } else if (cpu_has_feature(CPU_FTR_ARCH_300) || (event & EVENT_IS_L1)) {
455 mask |= CNST_L1_QUAL_MASK;
456 value |= CNST_L1_QUAL_VAL(cache);
457 }
458
459 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
460 mask |= CNST_RADIX_SCOPE_GROUP_MASK;
461 value |= CNST_RADIX_SCOPE_GROUP_VAL(event >> p10_EVENT_RADIX_SCOPE_QUAL_SHIFT);
462 }
463
464 if (is_event_marked(event)) {
465 mask |= CNST_SAMPLE_MASK;
466 value |= CNST_SAMPLE_VAL(event >> EVENT_SAMPLE_SHIFT);
467 }
468
469 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
470 if (event_is_threshold(event) && is_thresh_cmp_valid(event_config1)) {
471 mask |= CNST_THRESH_CTL_SEL_MASK;
472 value |= CNST_THRESH_CTL_SEL_VAL(event >> EVENT_THRESH_SHIFT);
473 mask |= p10_CNST_THRESH_CMP_MASK;
474 value |= p10_CNST_THRESH_CMP_VAL(p10_thresh_cmp_val(event_config1));
475 }
476 } else if (cpu_has_feature(CPU_FTR_ARCH_300)) {
477 if (event_is_threshold(event) && is_thresh_cmp_valid(event)) {
478 mask |= CNST_THRESH_MASK;
479 value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
480 }
481 } else {
482 /*
483 * Special case for PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
484 * the threshold control bits are used for the match value.
485 */
486 if (event_is_fab_match(event)) {
487 mask |= CNST_FAB_MATCH_MASK;
488 value |= CNST_FAB_MATCH_VAL(event >> EVENT_THR_CTL_SHIFT);
489 } else {
490 if (!is_thresh_cmp_valid(event))
491 return -1;
492
493 mask |= CNST_THRESH_MASK;
494 value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
495 }
496 }
497
498 ebb_bhrb:
499 if (!pmc && ebb)
500 /* EBB events must specify the PMC */
501 return -1;
502
503 if (event & EVENT_WANTS_BHRB) {
504 if (!ebb)
505 /* Only EBB events can request BHRB */
506 return -1;
507
508 mask |= CNST_IFM_MASK;
509 value |= CNST_IFM_VAL(event >> EVENT_IFM_SHIFT);
510 }
511
512 /*
513 * All events must agree on EBB, either all request it or none.
514 * EBB events are pinned & exclusive, so this should never actually
515 * hit, but we leave it as a fallback in case.
516 */
517 mask |= CNST_EBB_MASK;
518 value |= CNST_EBB_VAL(ebb);
519
520 *maskp = mask;
521 *valp = value;
522
523 return 0;
524 }
525
isa207_compute_mmcr(u64 event[],int n_ev,unsigned int hwc[],struct mmcr_regs * mmcr,struct perf_event * pevents[],u32 flags)526 int isa207_compute_mmcr(u64 event[], int n_ev,
527 unsigned int hwc[], struct mmcr_regs *mmcr,
528 struct perf_event *pevents[], u32 flags)
529 {
530 unsigned long mmcra, mmcr1, mmcr2, unit, combine, psel, cache, val;
531 unsigned long mmcr3;
532 unsigned int pmc, pmc_inuse;
533 int i;
534
535 pmc_inuse = 0;
536
537 /* First pass to count resource use */
538 for (i = 0; i < n_ev; ++i) {
539 pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
540 if (pmc)
541 pmc_inuse |= 1 << pmc;
542 }
543
544 mmcra = mmcr1 = mmcr2 = mmcr3 = 0;
545
546 /*
547 * Disable bhrb unless explicitly requested
548 * by setting MMCRA (BHRBRD) bit.
549 */
550 if (cpu_has_feature(CPU_FTR_ARCH_31))
551 mmcra |= MMCRA_BHRB_DISABLE;
552
553 /* Second pass: assign PMCs, set all MMCR1 fields */
554 for (i = 0; i < n_ev; ++i) {
555 pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
556 unit = (event[i] >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK;
557 combine = combine_from_event(event[i]);
558 psel = event[i] & EVENT_PSEL_MASK;
559
560 if (!pmc) {
561 for (pmc = 1; pmc <= 4; ++pmc) {
562 if (!(pmc_inuse & (1 << pmc)))
563 break;
564 }
565
566 pmc_inuse |= 1 << pmc;
567 }
568
569 if (pmc <= 4) {
570 mmcr1 |= unit << MMCR1_UNIT_SHIFT(pmc);
571 mmcr1 |= combine << combine_shift(pmc);
572 mmcr1 |= psel << MMCR1_PMCSEL_SHIFT(pmc);
573 }
574
575 /* In continuous sampling mode, update SDAR on TLB miss */
576 mmcra_sdar_mode(event[i], &mmcra);
577
578 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
579 cache = dc_ic_rld_quad_l1_sel(event[i]);
580 mmcr1 |= (cache) << MMCR1_DC_IC_QUAL_SHIFT;
581 } else {
582 if (event[i] & EVENT_IS_L1) {
583 cache = dc_ic_rld_quad_l1_sel(event[i]);
584 mmcr1 |= (cache) << MMCR1_DC_IC_QUAL_SHIFT;
585 }
586 }
587
588 /* Set RADIX_SCOPE_QUAL bit */
589 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
590 val = (event[i] >> p10_EVENT_RADIX_SCOPE_QUAL_SHIFT) &
591 p10_EVENT_RADIX_SCOPE_QUAL_MASK;
592 mmcr1 |= val << p10_MMCR1_RADIX_SCOPE_QUAL_SHIFT;
593 }
594
595 if (is_event_marked(event[i])) {
596 mmcra |= MMCRA_SAMPLE_ENABLE;
597
598 val = (event[i] >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK;
599 if (val) {
600 mmcra |= (val & 3) << MMCRA_SAMP_MODE_SHIFT;
601 mmcra |= (val >> 2) << MMCRA_SAMP_ELIG_SHIFT;
602 }
603 }
604
605 /*
606 * PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
607 * the threshold bits are used for the match value.
608 */
609 if (!cpu_has_feature(CPU_FTR_ARCH_300) && event_is_fab_match(event[i])) {
610 mmcr1 |= ((event[i] >> EVENT_THR_CTL_SHIFT) &
611 EVENT_THR_CTL_MASK) << MMCR1_FAB_SHIFT;
612 } else {
613 val = (event[i] >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK;
614 mmcra |= val << MMCRA_THR_CTL_SHIFT;
615 val = (event[i] >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK;
616 mmcra |= val << MMCRA_THR_SEL_SHIFT;
617 if (!cpu_has_feature(CPU_FTR_ARCH_31)) {
618 val = (event[i] >> EVENT_THR_CMP_SHIFT) &
619 EVENT_THR_CMP_MASK;
620 mmcra |= thresh_cmp_val(val);
621 } else if (flags & PPMU_HAS_ATTR_CONFIG1) {
622 val = (pevents[i]->attr.config1 >> p10_EVENT_THR_CMP_SHIFT) &
623 p10_EVENT_THR_CMP_MASK;
624 mmcra |= thresh_cmp_val(val);
625 }
626 }
627
628 if (cpu_has_feature(CPU_FTR_ARCH_31) && (unit == 6)) {
629 val = (event[i] >> p10_L2L3_EVENT_SHIFT) &
630 p10_EVENT_L2L3_SEL_MASK;
631 mmcr2 |= val << p10_L2L3_SEL_SHIFT;
632 }
633
634 if (event[i] & EVENT_WANTS_BHRB) {
635 val = (event[i] >> EVENT_IFM_SHIFT) & EVENT_IFM_MASK;
636 mmcra |= val << MMCRA_IFM_SHIFT;
637 }
638
639 /* set MMCRA (BHRBRD) to 0 if there is user request for BHRB */
640 if (cpu_has_feature(CPU_FTR_ARCH_31) &&
641 (has_branch_stack(pevents[i]) || (event[i] & EVENT_WANTS_BHRB)))
642 mmcra &= ~MMCRA_BHRB_DISABLE;
643
644 if (pevents[i]->attr.exclude_user)
645 mmcr2 |= MMCR2_FCP(pmc);
646
647 if (pevents[i]->attr.exclude_hv)
648 mmcr2 |= MMCR2_FCH(pmc);
649
650 if (pevents[i]->attr.exclude_kernel) {
651 if (cpu_has_feature(CPU_FTR_HVMODE))
652 mmcr2 |= MMCR2_FCH(pmc);
653 else
654 mmcr2 |= MMCR2_FCS(pmc);
655 }
656
657 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
658 if (pmc <= 4) {
659 val = (event[i] >> p10_EVENT_MMCR3_SHIFT) &
660 p10_EVENT_MMCR3_MASK;
661 mmcr3 |= val << MMCR3_SHIFT(pmc);
662 }
663 }
664
665 hwc[i] = pmc - 1;
666 }
667
668 /* Return MMCRx values */
669 mmcr->mmcr0 = 0;
670
671 /* pmc_inuse is 1-based */
672 if (pmc_inuse & 2)
673 mmcr->mmcr0 = MMCR0_PMC1CE;
674
675 if (pmc_inuse & 0x7c)
676 mmcr->mmcr0 |= MMCR0_PMCjCE;
677
678 /* If we're not using PMC 5 or 6, freeze them */
679 if (!(pmc_inuse & 0x60))
680 mmcr->mmcr0 |= MMCR0_FC56;
681
682 /*
683 * Set mmcr0 (PMCCEXT) for p10 which
684 * will restrict access to group B registers
685 * when MMCR0 PMCC=0b00.
686 */
687 if (cpu_has_feature(CPU_FTR_ARCH_31))
688 mmcr->mmcr0 |= MMCR0_PMCCEXT;
689
690 mmcr->mmcr1 = mmcr1;
691 mmcr->mmcra = mmcra;
692 mmcr->mmcr2 = mmcr2;
693 mmcr->mmcr3 = mmcr3;
694
695 return 0;
696 }
697
isa207_disable_pmc(unsigned int pmc,struct mmcr_regs * mmcr)698 void isa207_disable_pmc(unsigned int pmc, struct mmcr_regs *mmcr)
699 {
700 if (pmc <= 3)
701 mmcr->mmcr1 &= ~(0xffUL << MMCR1_PMCSEL_SHIFT(pmc + 1));
702 }
703
find_alternative(u64 event,const unsigned int ev_alt[][MAX_ALT],int size)704 static int find_alternative(u64 event, const unsigned int ev_alt[][MAX_ALT], int size)
705 {
706 int i, j;
707
708 for (i = 0; i < size; ++i) {
709 if (event < ev_alt[i][0])
710 break;
711
712 for (j = 0; j < MAX_ALT && ev_alt[i][j]; ++j)
713 if (event == ev_alt[i][j])
714 return i;
715 }
716
717 return -1;
718 }
719
isa207_get_alternatives(u64 event,u64 alt[],int size,unsigned int flags,const unsigned int ev_alt[][MAX_ALT])720 int isa207_get_alternatives(u64 event, u64 alt[], int size, unsigned int flags,
721 const unsigned int ev_alt[][MAX_ALT])
722 {
723 int i, j, num_alt = 0;
724 u64 alt_event;
725
726 alt[num_alt++] = event;
727 i = find_alternative(event, ev_alt, size);
728 if (i >= 0) {
729 /* Filter out the original event, it's already in alt[0] */
730 for (j = 0; j < MAX_ALT; ++j) {
731 alt_event = ev_alt[i][j];
732 if (alt_event && alt_event != event)
733 alt[num_alt++] = alt_event;
734 }
735 }
736
737 if (flags & PPMU_ONLY_COUNT_RUN) {
738 /*
739 * We're only counting in RUN state, so PM_CYC is equivalent to
740 * PM_RUN_CYC and PM_INST_CMPL === PM_RUN_INST_CMPL.
741 */
742 j = num_alt;
743 for (i = 0; i < num_alt; ++i) {
744 switch (alt[i]) {
745 case 0x1e: /* PMC_CYC */
746 alt[j++] = 0x600f4; /* PM_RUN_CYC */
747 break;
748 case 0x600f4:
749 alt[j++] = 0x1e;
750 break;
751 case 0x2: /* PM_INST_CMPL */
752 alt[j++] = 0x500fa; /* PM_RUN_INST_CMPL */
753 break;
754 case 0x500fa:
755 alt[j++] = 0x2;
756 break;
757 }
758 }
759 num_alt = j;
760 }
761
762 return num_alt;
763 }
764
isa3XX_check_attr_config(struct perf_event * ev)765 int isa3XX_check_attr_config(struct perf_event *ev)
766 {
767 u64 val, sample_mode;
768 u64 event = ev->attr.config;
769
770 val = (event >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK;
771 sample_mode = val & 0x3;
772
773 /*
774 * MMCRA[61:62] is Random Sampling Mode (SM).
775 * value of 0b11 is reserved.
776 */
777 if (sample_mode == 0x3)
778 return -EINVAL;
779
780 /*
781 * Check for all reserved value
782 * Source: Performance Monitoring Unit User Guide
783 */
784 switch (val) {
785 case 0x5:
786 case 0x9:
787 case 0xD:
788 case 0x19:
789 case 0x1D:
790 case 0x1A:
791 case 0x1E:
792 return -EINVAL;
793 }
794
795 /*
796 * MMCRA[48:51]/[52:55]) Threshold Start/Stop
797 * Events Selection.
798 * 0b11110000/0b00001111 is reserved.
799 */
800 val = (event >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK;
801 if (((val & 0xF0) == 0xF0) || ((val & 0xF) == 0xF))
802 return -EINVAL;
803
804 return 0;
805 }
806