1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Microchip KSZ8795 switch driver
4 *
5 * Copyright (C) 2017 Microchip Technology Inc.
6 * Tristram Ha <Tristram.Ha@microchip.com>
7 */
8
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/export.h>
12 #include <linux/gpio.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/platform_data/microchip-ksz.h>
16 #include <linux/phy.h>
17 #include <linux/etherdevice.h>
18 #include <linux/if_bridge.h>
19 #include <linux/micrel_phy.h>
20 #include <net/dsa.h>
21 #include <net/switchdev.h>
22 #include <linux/phylink.h>
23
24 #include "ksz_common.h"
25 #include "ksz8795_reg.h"
26 #include "ksz8.h"
27
28 static const u8 ksz8795_regs[] = {
29 [REG_IND_CTRL_0] = 0x6E,
30 [REG_IND_DATA_8] = 0x70,
31 [REG_IND_DATA_CHECK] = 0x72,
32 [REG_IND_DATA_HI] = 0x71,
33 [REG_IND_DATA_LO] = 0x75,
34 [REG_IND_MIB_CHECK] = 0x74,
35 [P_FORCE_CTRL] = 0x0C,
36 [P_LINK_STATUS] = 0x0E,
37 [P_LOCAL_CTRL] = 0x07,
38 [P_NEG_RESTART_CTRL] = 0x0D,
39 [P_REMOTE_STATUS] = 0x08,
40 [P_SPEED_STATUS] = 0x09,
41 [S_TAIL_TAG_CTRL] = 0x0C,
42 };
43
44 static const u32 ksz8795_masks[] = {
45 [PORT_802_1P_REMAPPING] = BIT(7),
46 [SW_TAIL_TAG_ENABLE] = BIT(1),
47 [MIB_COUNTER_OVERFLOW] = BIT(6),
48 [MIB_COUNTER_VALID] = BIT(5),
49 [VLAN_TABLE_FID] = GENMASK(6, 0),
50 [VLAN_TABLE_MEMBERSHIP] = GENMASK(11, 7),
51 [VLAN_TABLE_VALID] = BIT(12),
52 [STATIC_MAC_TABLE_VALID] = BIT(21),
53 [STATIC_MAC_TABLE_USE_FID] = BIT(23),
54 [STATIC_MAC_TABLE_FID] = GENMASK(30, 24),
55 [STATIC_MAC_TABLE_OVERRIDE] = BIT(26),
56 [STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(24, 20),
57 [DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(6, 0),
58 [DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(8),
59 [DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7),
60 [DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 29),
61 [DYNAMIC_MAC_TABLE_FID] = GENMASK(26, 20),
62 [DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(26, 24),
63 [DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(28, 27),
64 };
65
66 static const u8 ksz8795_shifts[] = {
67 [VLAN_TABLE_MEMBERSHIP_S] = 7,
68 [VLAN_TABLE] = 16,
69 [STATIC_MAC_FWD_PORTS] = 16,
70 [STATIC_MAC_FID] = 24,
71 [DYNAMIC_MAC_ENTRIES_H] = 3,
72 [DYNAMIC_MAC_ENTRIES] = 29,
73 [DYNAMIC_MAC_FID] = 16,
74 [DYNAMIC_MAC_TIMESTAMP] = 27,
75 [DYNAMIC_MAC_SRC_PORT] = 24,
76 };
77
78 static const u8 ksz8863_regs[] = {
79 [REG_IND_CTRL_0] = 0x79,
80 [REG_IND_DATA_8] = 0x7B,
81 [REG_IND_DATA_CHECK] = 0x7B,
82 [REG_IND_DATA_HI] = 0x7C,
83 [REG_IND_DATA_LO] = 0x80,
84 [REG_IND_MIB_CHECK] = 0x80,
85 [P_FORCE_CTRL] = 0x0C,
86 [P_LINK_STATUS] = 0x0E,
87 [P_LOCAL_CTRL] = 0x0C,
88 [P_NEG_RESTART_CTRL] = 0x0D,
89 [P_REMOTE_STATUS] = 0x0E,
90 [P_SPEED_STATUS] = 0x0F,
91 [S_TAIL_TAG_CTRL] = 0x03,
92 };
93
94 static const u32 ksz8863_masks[] = {
95 [PORT_802_1P_REMAPPING] = BIT(3),
96 [SW_TAIL_TAG_ENABLE] = BIT(6),
97 [MIB_COUNTER_OVERFLOW] = BIT(7),
98 [MIB_COUNTER_VALID] = BIT(6),
99 [VLAN_TABLE_FID] = GENMASK(15, 12),
100 [VLAN_TABLE_MEMBERSHIP] = GENMASK(18, 16),
101 [VLAN_TABLE_VALID] = BIT(19),
102 [STATIC_MAC_TABLE_VALID] = BIT(19),
103 [STATIC_MAC_TABLE_USE_FID] = BIT(21),
104 [STATIC_MAC_TABLE_FID] = GENMASK(29, 26),
105 [STATIC_MAC_TABLE_OVERRIDE] = BIT(20),
106 [STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(18, 16),
107 [DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(5, 0),
108 [DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(7),
109 [DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7),
110 [DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 28),
111 [DYNAMIC_MAC_TABLE_FID] = GENMASK(19, 16),
112 [DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(21, 20),
113 [DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(23, 22),
114 };
115
116 static u8 ksz8863_shifts[] = {
117 [VLAN_TABLE_MEMBERSHIP_S] = 16,
118 [STATIC_MAC_FWD_PORTS] = 16,
119 [STATIC_MAC_FID] = 22,
120 [DYNAMIC_MAC_ENTRIES_H] = 3,
121 [DYNAMIC_MAC_ENTRIES] = 24,
122 [DYNAMIC_MAC_FID] = 16,
123 [DYNAMIC_MAC_TIMESTAMP] = 24,
124 [DYNAMIC_MAC_SRC_PORT] = 20,
125 };
126
127 struct mib_names {
128 char string[ETH_GSTRING_LEN];
129 };
130
131 static const struct mib_names ksz87xx_mib_names[] = {
132 { "rx_hi" },
133 { "rx_undersize" },
134 { "rx_fragments" },
135 { "rx_oversize" },
136 { "rx_jabbers" },
137 { "rx_symbol_err" },
138 { "rx_crc_err" },
139 { "rx_align_err" },
140 { "rx_mac_ctrl" },
141 { "rx_pause" },
142 { "rx_bcast" },
143 { "rx_mcast" },
144 { "rx_ucast" },
145 { "rx_64_or_less" },
146 { "rx_65_127" },
147 { "rx_128_255" },
148 { "rx_256_511" },
149 { "rx_512_1023" },
150 { "rx_1024_1522" },
151 { "rx_1523_2000" },
152 { "rx_2001" },
153 { "tx_hi" },
154 { "tx_late_col" },
155 { "tx_pause" },
156 { "tx_bcast" },
157 { "tx_mcast" },
158 { "tx_ucast" },
159 { "tx_deferred" },
160 { "tx_total_col" },
161 { "tx_exc_col" },
162 { "tx_single_col" },
163 { "tx_mult_col" },
164 { "rx_total" },
165 { "tx_total" },
166 { "rx_discards" },
167 { "tx_discards" },
168 };
169
170 static const struct mib_names ksz88xx_mib_names[] = {
171 { "rx" },
172 { "rx_hi" },
173 { "rx_undersize" },
174 { "rx_fragments" },
175 { "rx_oversize" },
176 { "rx_jabbers" },
177 { "rx_symbol_err" },
178 { "rx_crc_err" },
179 { "rx_align_err" },
180 { "rx_mac_ctrl" },
181 { "rx_pause" },
182 { "rx_bcast" },
183 { "rx_mcast" },
184 { "rx_ucast" },
185 { "rx_64_or_less" },
186 { "rx_65_127" },
187 { "rx_128_255" },
188 { "rx_256_511" },
189 { "rx_512_1023" },
190 { "rx_1024_1522" },
191 { "tx" },
192 { "tx_hi" },
193 { "tx_late_col" },
194 { "tx_pause" },
195 { "tx_bcast" },
196 { "tx_mcast" },
197 { "tx_ucast" },
198 { "tx_deferred" },
199 { "tx_total_col" },
200 { "tx_exc_col" },
201 { "tx_single_col" },
202 { "tx_mult_col" },
203 { "rx_discards" },
204 { "tx_discards" },
205 };
206
ksz_is_ksz88x3(struct ksz_device * dev)207 static bool ksz_is_ksz88x3(struct ksz_device *dev)
208 {
209 return dev->chip_id == 0x8830;
210 }
211
ksz_cfg(struct ksz_device * dev,u32 addr,u8 bits,bool set)212 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
213 {
214 regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
215 }
216
ksz_port_cfg(struct ksz_device * dev,int port,int offset,u8 bits,bool set)217 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
218 bool set)
219 {
220 regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
221 bits, set ? bits : 0);
222 }
223
ksz8_reset_switch(struct ksz_device * dev)224 static int ksz8_reset_switch(struct ksz_device *dev)
225 {
226 if (ksz_is_ksz88x3(dev)) {
227 /* reset switch */
228 ksz_cfg(dev, KSZ8863_REG_SW_RESET,
229 KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
230 ksz_cfg(dev, KSZ8863_REG_SW_RESET,
231 KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
232 } else {
233 /* reset switch */
234 ksz_write8(dev, REG_POWER_MANAGEMENT_1,
235 SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
236 ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
237 }
238
239 return 0;
240 }
241
ksz8795_set_prio_queue(struct ksz_device * dev,int port,int queue)242 static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue)
243 {
244 u8 hi, lo;
245
246 /* Number of queues can only be 1, 2, or 4. */
247 switch (queue) {
248 case 4:
249 case 3:
250 queue = PORT_QUEUE_SPLIT_4;
251 break;
252 case 2:
253 queue = PORT_QUEUE_SPLIT_2;
254 break;
255 default:
256 queue = PORT_QUEUE_SPLIT_1;
257 }
258 ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo);
259 ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi);
260 lo &= ~PORT_QUEUE_SPLIT_L;
261 if (queue & PORT_QUEUE_SPLIT_2)
262 lo |= PORT_QUEUE_SPLIT_L;
263 hi &= ~PORT_QUEUE_SPLIT_H;
264 if (queue & PORT_QUEUE_SPLIT_4)
265 hi |= PORT_QUEUE_SPLIT_H;
266 ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo);
267 ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi);
268
269 /* Default is port based for egress rate limit. */
270 if (queue != PORT_QUEUE_SPLIT_1)
271 ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED,
272 true);
273 }
274
ksz8_r_mib_cnt(struct ksz_device * dev,int port,u16 addr,u64 * cnt)275 static void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
276 {
277 struct ksz8 *ksz8 = dev->priv;
278 const u32 *masks;
279 const u8 *regs;
280 u16 ctrl_addr;
281 u32 data;
282 u8 check;
283 int loop;
284
285 masks = ksz8->masks;
286 regs = ksz8->regs;
287
288 ctrl_addr = addr + dev->reg_mib_cnt * port;
289 ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
290
291 mutex_lock(&dev->alu_mutex);
292 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
293
294 /* It is almost guaranteed to always read the valid bit because of
295 * slow SPI speed.
296 */
297 for (loop = 2; loop > 0; loop--) {
298 ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
299
300 if (check & masks[MIB_COUNTER_VALID]) {
301 ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
302 if (check & masks[MIB_COUNTER_OVERFLOW])
303 *cnt += MIB_COUNTER_VALUE + 1;
304 *cnt += data & MIB_COUNTER_VALUE;
305 break;
306 }
307 }
308 mutex_unlock(&dev->alu_mutex);
309 }
310
ksz8795_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)311 static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
312 u64 *dropped, u64 *cnt)
313 {
314 struct ksz8 *ksz8 = dev->priv;
315 const u32 *masks;
316 const u8 *regs;
317 u16 ctrl_addr;
318 u32 data;
319 u8 check;
320 int loop;
321
322 masks = ksz8->masks;
323 regs = ksz8->regs;
324
325 addr -= dev->reg_mib_cnt;
326 ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
327 ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
328 ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
329
330 mutex_lock(&dev->alu_mutex);
331 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
332
333 /* It is almost guaranteed to always read the valid bit because of
334 * slow SPI speed.
335 */
336 for (loop = 2; loop > 0; loop--) {
337 ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
338
339 if (check & masks[MIB_COUNTER_VALID]) {
340 ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
341 if (addr < 2) {
342 u64 total;
343
344 total = check & MIB_TOTAL_BYTES_H;
345 total <<= 32;
346 *cnt += total;
347 *cnt += data;
348 if (check & masks[MIB_COUNTER_OVERFLOW]) {
349 total = MIB_TOTAL_BYTES_H + 1;
350 total <<= 32;
351 *cnt += total;
352 }
353 } else {
354 if (check & masks[MIB_COUNTER_OVERFLOW])
355 *cnt += MIB_PACKET_DROPPED + 1;
356 *cnt += data & MIB_PACKET_DROPPED;
357 }
358 break;
359 }
360 }
361 mutex_unlock(&dev->alu_mutex);
362 }
363
ksz8863_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)364 static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
365 u64 *dropped, u64 *cnt)
366 {
367 struct ksz8 *ksz8 = dev->priv;
368 const u8 *regs = ksz8->regs;
369 u32 *last = (u32 *)dropped;
370 u16 ctrl_addr;
371 u32 data;
372 u32 cur;
373
374 addr -= dev->reg_mib_cnt;
375 ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
376 KSZ8863_MIB_PACKET_DROPPED_RX_0;
377 ctrl_addr += port;
378 ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
379
380 mutex_lock(&dev->alu_mutex);
381 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
382 ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
383 mutex_unlock(&dev->alu_mutex);
384
385 data &= MIB_PACKET_DROPPED;
386 cur = last[addr];
387 if (data != cur) {
388 last[addr] = data;
389 if (data < cur)
390 data += MIB_PACKET_DROPPED + 1;
391 data -= cur;
392 *cnt += data;
393 }
394 }
395
ksz8_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)396 static void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
397 u64 *dropped, u64 *cnt)
398 {
399 if (ksz_is_ksz88x3(dev))
400 ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
401 else
402 ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
403 }
404
ksz8_freeze_mib(struct ksz_device * dev,int port,bool freeze)405 static void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
406 {
407 if (ksz_is_ksz88x3(dev))
408 return;
409
410 /* enable the port for flush/freeze function */
411 if (freeze)
412 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
413 ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
414
415 /* disable the port after freeze is done */
416 if (!freeze)
417 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
418 }
419
ksz8_port_init_cnt(struct ksz_device * dev,int port)420 static void ksz8_port_init_cnt(struct ksz_device *dev, int port)
421 {
422 struct ksz_port_mib *mib = &dev->ports[port].mib;
423 u64 *dropped;
424
425 if (!ksz_is_ksz88x3(dev)) {
426 /* flush all enabled port MIB counters */
427 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
428 ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
429 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
430 }
431
432 mib->cnt_ptr = 0;
433
434 /* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
435 while (mib->cnt_ptr < dev->reg_mib_cnt) {
436 dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
437 &mib->counters[mib->cnt_ptr]);
438 ++mib->cnt_ptr;
439 }
440
441 /* last one in storage */
442 dropped = &mib->counters[dev->mib_cnt];
443
444 /* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
445 while (mib->cnt_ptr < dev->mib_cnt) {
446 dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
447 dropped, &mib->counters[mib->cnt_ptr]);
448 ++mib->cnt_ptr;
449 }
450 mib->cnt_ptr = 0;
451 memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
452 }
453
ksz8_r_table(struct ksz_device * dev,int table,u16 addr,u64 * data)454 static void ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
455 {
456 struct ksz8 *ksz8 = dev->priv;
457 const u8 *regs = ksz8->regs;
458 u16 ctrl_addr;
459
460 ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
461
462 mutex_lock(&dev->alu_mutex);
463 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
464 ksz_read64(dev, regs[REG_IND_DATA_HI], data);
465 mutex_unlock(&dev->alu_mutex);
466 }
467
ksz8_w_table(struct ksz_device * dev,int table,u16 addr,u64 data)468 static void ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
469 {
470 struct ksz8 *ksz8 = dev->priv;
471 const u8 *regs = ksz8->regs;
472 u16 ctrl_addr;
473
474 ctrl_addr = IND_ACC_TABLE(table) | addr;
475
476 mutex_lock(&dev->alu_mutex);
477 ksz_write64(dev, regs[REG_IND_DATA_HI], data);
478 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
479 mutex_unlock(&dev->alu_mutex);
480 }
481
ksz8_valid_dyn_entry(struct ksz_device * dev,u8 * data)482 static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
483 {
484 struct ksz8 *ksz8 = dev->priv;
485 int timeout = 100;
486 const u32 *masks;
487 const u8 *regs;
488
489 masks = ksz8->masks;
490 regs = ksz8->regs;
491
492 do {
493 ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
494 timeout--;
495 } while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
496
497 /* Entry is not ready for accessing. */
498 if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) {
499 return -EAGAIN;
500 /* Entry is ready for accessing. */
501 } else {
502 ksz_read8(dev, regs[REG_IND_DATA_8], data);
503
504 /* There is no valid entry in the table. */
505 if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY])
506 return -ENXIO;
507 }
508 return 0;
509 }
510
ksz8_r_dyn_mac_table(struct ksz_device * dev,u16 addr,u8 * mac_addr,u8 * fid,u8 * src_port,u8 * timestamp,u16 * entries)511 static int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr,
512 u8 *mac_addr, u8 *fid, u8 *src_port,
513 u8 *timestamp, u16 *entries)
514 {
515 struct ksz8 *ksz8 = dev->priv;
516 u32 data_hi, data_lo;
517 const u8 *shifts;
518 const u32 *masks;
519 const u8 *regs;
520 u16 ctrl_addr;
521 u8 data;
522 int rc;
523
524 shifts = ksz8->shifts;
525 masks = ksz8->masks;
526 regs = ksz8->regs;
527
528 ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
529
530 mutex_lock(&dev->alu_mutex);
531 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
532
533 rc = ksz8_valid_dyn_entry(dev, &data);
534 if (rc == -EAGAIN) {
535 if (addr == 0)
536 *entries = 0;
537 } else if (rc == -ENXIO) {
538 *entries = 0;
539 /* At least one valid entry in the table. */
540 } else {
541 u64 buf = 0;
542 int cnt;
543
544 ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
545 data_hi = (u32)(buf >> 32);
546 data_lo = (u32)buf;
547
548 /* Check out how many valid entry in the table. */
549 cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
550 cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
551 cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
552 shifts[DYNAMIC_MAC_ENTRIES];
553 *entries = cnt + 1;
554
555 *fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
556 shifts[DYNAMIC_MAC_FID];
557 *src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
558 shifts[DYNAMIC_MAC_SRC_PORT];
559 *timestamp = (data_hi & masks[DYNAMIC_MAC_TABLE_TIMESTAMP]) >>
560 shifts[DYNAMIC_MAC_TIMESTAMP];
561
562 mac_addr[5] = (u8)data_lo;
563 mac_addr[4] = (u8)(data_lo >> 8);
564 mac_addr[3] = (u8)(data_lo >> 16);
565 mac_addr[2] = (u8)(data_lo >> 24);
566
567 mac_addr[1] = (u8)data_hi;
568 mac_addr[0] = (u8)(data_hi >> 8);
569 rc = 0;
570 }
571 mutex_unlock(&dev->alu_mutex);
572
573 return rc;
574 }
575
ksz8_r_sta_mac_table(struct ksz_device * dev,u16 addr,struct alu_struct * alu)576 static int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
577 struct alu_struct *alu)
578 {
579 struct ksz8 *ksz8 = dev->priv;
580 u32 data_hi, data_lo;
581 const u8 *shifts;
582 const u32 *masks;
583 u64 data;
584
585 shifts = ksz8->shifts;
586 masks = ksz8->masks;
587
588 ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
589 data_hi = data >> 32;
590 data_lo = (u32)data;
591 if (data_hi & (masks[STATIC_MAC_TABLE_VALID] |
592 masks[STATIC_MAC_TABLE_OVERRIDE])) {
593 alu->mac[5] = (u8)data_lo;
594 alu->mac[4] = (u8)(data_lo >> 8);
595 alu->mac[3] = (u8)(data_lo >> 16);
596 alu->mac[2] = (u8)(data_lo >> 24);
597 alu->mac[1] = (u8)data_hi;
598 alu->mac[0] = (u8)(data_hi >> 8);
599 alu->port_forward =
600 (data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
601 shifts[STATIC_MAC_FWD_PORTS];
602 alu->is_override =
603 (data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
604 data_hi >>= 1;
605 alu->is_static = true;
606 alu->is_use_fid =
607 (data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
608 alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
609 shifts[STATIC_MAC_FID];
610 return 0;
611 }
612 return -ENXIO;
613 }
614
ksz8_w_sta_mac_table(struct ksz_device * dev,u16 addr,struct alu_struct * alu)615 static void ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
616 struct alu_struct *alu)
617 {
618 struct ksz8 *ksz8 = dev->priv;
619 u32 data_hi, data_lo;
620 const u8 *shifts;
621 const u32 *masks;
622 u64 data;
623
624 shifts = ksz8->shifts;
625 masks = ksz8->masks;
626
627 data_lo = ((u32)alu->mac[2] << 24) |
628 ((u32)alu->mac[3] << 16) |
629 ((u32)alu->mac[4] << 8) | alu->mac[5];
630 data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
631 data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
632
633 if (alu->is_override)
634 data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
635 if (alu->is_use_fid) {
636 data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
637 data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
638 }
639 if (alu->is_static)
640 data_hi |= masks[STATIC_MAC_TABLE_VALID];
641 else
642 data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
643
644 data = (u64)data_hi << 32 | data_lo;
645 ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
646 }
647
ksz8_from_vlan(struct ksz_device * dev,u32 vlan,u8 * fid,u8 * member,u8 * valid)648 static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
649 u8 *member, u8 *valid)
650 {
651 struct ksz8 *ksz8 = dev->priv;
652 const u8 *shifts;
653 const u32 *masks;
654
655 shifts = ksz8->shifts;
656 masks = ksz8->masks;
657
658 *fid = vlan & masks[VLAN_TABLE_FID];
659 *member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
660 shifts[VLAN_TABLE_MEMBERSHIP_S];
661 *valid = !!(vlan & masks[VLAN_TABLE_VALID]);
662 }
663
ksz8_to_vlan(struct ksz_device * dev,u8 fid,u8 member,u8 valid,u16 * vlan)664 static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
665 u16 *vlan)
666 {
667 struct ksz8 *ksz8 = dev->priv;
668 const u8 *shifts;
669 const u32 *masks;
670
671 shifts = ksz8->shifts;
672 masks = ksz8->masks;
673
674 *vlan = fid;
675 *vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
676 if (valid)
677 *vlan |= masks[VLAN_TABLE_VALID];
678 }
679
ksz8_r_vlan_entries(struct ksz_device * dev,u16 addr)680 static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
681 {
682 struct ksz8 *ksz8 = dev->priv;
683 const u8 *shifts;
684 u64 data;
685 int i;
686
687 shifts = ksz8->shifts;
688
689 ksz8_r_table(dev, TABLE_VLAN, addr, &data);
690 addr *= 4;
691 for (i = 0; i < 4; i++) {
692 dev->vlan_cache[addr + i].table[0] = (u16)data;
693 data >>= shifts[VLAN_TABLE];
694 }
695 }
696
ksz8_r_vlan_table(struct ksz_device * dev,u16 vid,u16 * vlan)697 static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
698 {
699 int index;
700 u16 *data;
701 u16 addr;
702 u64 buf;
703
704 data = (u16 *)&buf;
705 addr = vid / 4;
706 index = vid & 3;
707 ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
708 *vlan = data[index];
709 }
710
ksz8_w_vlan_table(struct ksz_device * dev,u16 vid,u16 vlan)711 static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
712 {
713 int index;
714 u16 *data;
715 u16 addr;
716 u64 buf;
717
718 data = (u16 *)&buf;
719 addr = vid / 4;
720 index = vid & 3;
721 ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
722 data[index] = vlan;
723 dev->vlan_cache[vid].table[0] = vlan;
724 ksz8_w_table(dev, TABLE_VLAN, addr, buf);
725 }
726
ksz8_r_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 * val)727 static void ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
728 {
729 struct ksz8 *ksz8 = dev->priv;
730 u8 restart, speed, ctrl, link;
731 const u8 *regs = ksz8->regs;
732 int processed = true;
733 u8 val1, val2;
734 u16 data = 0;
735 u8 p = phy;
736
737 switch (reg) {
738 case MII_BMCR:
739 ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
740 ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
741 ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
742 if (restart & PORT_PHY_LOOPBACK)
743 data |= BMCR_LOOPBACK;
744 if (ctrl & PORT_FORCE_100_MBIT)
745 data |= BMCR_SPEED100;
746 if (ksz_is_ksz88x3(dev)) {
747 if ((ctrl & PORT_AUTO_NEG_ENABLE))
748 data |= BMCR_ANENABLE;
749 } else {
750 if (!(ctrl & PORT_AUTO_NEG_DISABLE))
751 data |= BMCR_ANENABLE;
752 }
753 if (restart & PORT_POWER_DOWN)
754 data |= BMCR_PDOWN;
755 if (restart & PORT_AUTO_NEG_RESTART)
756 data |= BMCR_ANRESTART;
757 if (ctrl & PORT_FORCE_FULL_DUPLEX)
758 data |= BMCR_FULLDPLX;
759 if (speed & PORT_HP_MDIX)
760 data |= KSZ886X_BMCR_HP_MDIX;
761 if (restart & PORT_FORCE_MDIX)
762 data |= KSZ886X_BMCR_FORCE_MDI;
763 if (restart & PORT_AUTO_MDIX_DISABLE)
764 data |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
765 if (restart & PORT_TX_DISABLE)
766 data |= KSZ886X_BMCR_DISABLE_TRANSMIT;
767 if (restart & PORT_LED_OFF)
768 data |= KSZ886X_BMCR_DISABLE_LED;
769 break;
770 case MII_BMSR:
771 ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
772 data = BMSR_100FULL |
773 BMSR_100HALF |
774 BMSR_10FULL |
775 BMSR_10HALF |
776 BMSR_ANEGCAPABLE;
777 if (link & PORT_AUTO_NEG_COMPLETE)
778 data |= BMSR_ANEGCOMPLETE;
779 if (link & PORT_STAT_LINK_GOOD)
780 data |= BMSR_LSTATUS;
781 break;
782 case MII_PHYSID1:
783 data = KSZ8795_ID_HI;
784 break;
785 case MII_PHYSID2:
786 if (ksz_is_ksz88x3(dev))
787 data = KSZ8863_ID_LO;
788 else
789 data = KSZ8795_ID_LO;
790 break;
791 case MII_ADVERTISE:
792 ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
793 data = ADVERTISE_CSMA;
794 if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
795 data |= ADVERTISE_PAUSE_CAP;
796 if (ctrl & PORT_AUTO_NEG_100BTX_FD)
797 data |= ADVERTISE_100FULL;
798 if (ctrl & PORT_AUTO_NEG_100BTX)
799 data |= ADVERTISE_100HALF;
800 if (ctrl & PORT_AUTO_NEG_10BT_FD)
801 data |= ADVERTISE_10FULL;
802 if (ctrl & PORT_AUTO_NEG_10BT)
803 data |= ADVERTISE_10HALF;
804 break;
805 case MII_LPA:
806 ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
807 data = LPA_SLCT;
808 if (link & PORT_REMOTE_SYM_PAUSE)
809 data |= LPA_PAUSE_CAP;
810 if (link & PORT_REMOTE_100BTX_FD)
811 data |= LPA_100FULL;
812 if (link & PORT_REMOTE_100BTX)
813 data |= LPA_100HALF;
814 if (link & PORT_REMOTE_10BT_FD)
815 data |= LPA_10FULL;
816 if (link & PORT_REMOTE_10BT)
817 data |= LPA_10HALF;
818 if (data & ~LPA_SLCT)
819 data |= LPA_LPACK;
820 break;
821 case PHY_REG_LINK_MD:
822 ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
823 ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
824 if (val1 & PORT_START_CABLE_DIAG)
825 data |= PHY_START_CABLE_DIAG;
826
827 if (val1 & PORT_CABLE_10M_SHORT)
828 data |= PHY_CABLE_10M_SHORT;
829
830 data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
831 FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
832
833 data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
834 (FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
835 FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
836 break;
837 case PHY_REG_PHY_CTRL:
838 ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
839 if (link & PORT_MDIX_STATUS)
840 data |= KSZ886X_CTRL_MDIX_STAT;
841 break;
842 default:
843 processed = false;
844 break;
845 }
846 if (processed)
847 *val = data;
848 }
849
ksz8_w_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 val)850 static void ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
851 {
852 struct ksz8 *ksz8 = dev->priv;
853 u8 restart, speed, ctrl, data;
854 const u8 *regs = ksz8->regs;
855 u8 p = phy;
856
857 switch (reg) {
858 case MII_BMCR:
859
860 /* Do not support PHY reset function. */
861 if (val & BMCR_RESET)
862 break;
863 ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
864 data = speed;
865 if (val & KSZ886X_BMCR_HP_MDIX)
866 data |= PORT_HP_MDIX;
867 else
868 data &= ~PORT_HP_MDIX;
869 if (data != speed)
870 ksz_pwrite8(dev, p, regs[P_SPEED_STATUS], data);
871 ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
872 data = ctrl;
873 if (ksz_is_ksz88x3(dev)) {
874 if ((val & BMCR_ANENABLE))
875 data |= PORT_AUTO_NEG_ENABLE;
876 else
877 data &= ~PORT_AUTO_NEG_ENABLE;
878 } else {
879 if (!(val & BMCR_ANENABLE))
880 data |= PORT_AUTO_NEG_DISABLE;
881 else
882 data &= ~PORT_AUTO_NEG_DISABLE;
883
884 /* Fiber port does not support auto-negotiation. */
885 if (dev->ports[p].fiber)
886 data |= PORT_AUTO_NEG_DISABLE;
887 }
888
889 if (val & BMCR_SPEED100)
890 data |= PORT_FORCE_100_MBIT;
891 else
892 data &= ~PORT_FORCE_100_MBIT;
893 if (val & BMCR_FULLDPLX)
894 data |= PORT_FORCE_FULL_DUPLEX;
895 else
896 data &= ~PORT_FORCE_FULL_DUPLEX;
897 if (data != ctrl)
898 ksz_pwrite8(dev, p, regs[P_FORCE_CTRL], data);
899 ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
900 data = restart;
901 if (val & KSZ886X_BMCR_DISABLE_LED)
902 data |= PORT_LED_OFF;
903 else
904 data &= ~PORT_LED_OFF;
905 if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
906 data |= PORT_TX_DISABLE;
907 else
908 data &= ~PORT_TX_DISABLE;
909 if (val & BMCR_ANRESTART)
910 data |= PORT_AUTO_NEG_RESTART;
911 else
912 data &= ~(PORT_AUTO_NEG_RESTART);
913 if (val & BMCR_PDOWN)
914 data |= PORT_POWER_DOWN;
915 else
916 data &= ~PORT_POWER_DOWN;
917 if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
918 data |= PORT_AUTO_MDIX_DISABLE;
919 else
920 data &= ~PORT_AUTO_MDIX_DISABLE;
921 if (val & KSZ886X_BMCR_FORCE_MDI)
922 data |= PORT_FORCE_MDIX;
923 else
924 data &= ~PORT_FORCE_MDIX;
925 if (val & BMCR_LOOPBACK)
926 data |= PORT_PHY_LOOPBACK;
927 else
928 data &= ~PORT_PHY_LOOPBACK;
929 if (data != restart)
930 ksz_pwrite8(dev, p, regs[P_NEG_RESTART_CTRL], data);
931 break;
932 case MII_ADVERTISE:
933 ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
934 data = ctrl;
935 data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
936 PORT_AUTO_NEG_100BTX_FD |
937 PORT_AUTO_NEG_100BTX |
938 PORT_AUTO_NEG_10BT_FD |
939 PORT_AUTO_NEG_10BT);
940 if (val & ADVERTISE_PAUSE_CAP)
941 data |= PORT_AUTO_NEG_SYM_PAUSE;
942 if (val & ADVERTISE_100FULL)
943 data |= PORT_AUTO_NEG_100BTX_FD;
944 if (val & ADVERTISE_100HALF)
945 data |= PORT_AUTO_NEG_100BTX;
946 if (val & ADVERTISE_10FULL)
947 data |= PORT_AUTO_NEG_10BT_FD;
948 if (val & ADVERTISE_10HALF)
949 data |= PORT_AUTO_NEG_10BT;
950 if (data != ctrl)
951 ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
952 break;
953 case PHY_REG_LINK_MD:
954 if (val & PHY_START_CABLE_DIAG)
955 ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
956 break;
957 default:
958 break;
959 }
960 }
961
ksz8_get_tag_protocol(struct dsa_switch * ds,int port,enum dsa_tag_protocol mp)962 static enum dsa_tag_protocol ksz8_get_tag_protocol(struct dsa_switch *ds,
963 int port,
964 enum dsa_tag_protocol mp)
965 {
966 struct ksz_device *dev = ds->priv;
967
968 /* ksz88x3 uses the same tag schema as KSZ9893 */
969 return ksz_is_ksz88x3(dev) ?
970 DSA_TAG_PROTO_KSZ9893 : DSA_TAG_PROTO_KSZ8795;
971 }
972
ksz8_sw_get_phy_flags(struct dsa_switch * ds,int port)973 static u32 ksz8_sw_get_phy_flags(struct dsa_switch *ds, int port)
974 {
975 /* Silicon Errata Sheet (DS80000830A):
976 * Port 1 does not work with LinkMD Cable-Testing.
977 * Port 1 does not respond to received PAUSE control frames.
978 */
979 if (!port)
980 return MICREL_KSZ8_P1_ERRATA;
981
982 return 0;
983 }
984
ksz8_get_strings(struct dsa_switch * ds,int port,u32 stringset,uint8_t * buf)985 static void ksz8_get_strings(struct dsa_switch *ds, int port,
986 u32 stringset, uint8_t *buf)
987 {
988 struct ksz_device *dev = ds->priv;
989 int i;
990
991 for (i = 0; i < dev->mib_cnt; i++) {
992 memcpy(buf + i * ETH_GSTRING_LEN,
993 dev->mib_names[i].string, ETH_GSTRING_LEN);
994 }
995 }
996
ksz8_cfg_port_member(struct ksz_device * dev,int port,u8 member)997 static void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
998 {
999 u8 data;
1000
1001 ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1002 data &= ~PORT_VLAN_MEMBERSHIP;
1003 data |= (member & dev->port_mask);
1004 ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
1005 }
1006
ksz8_port_stp_state_set(struct dsa_switch * ds,int port,u8 state)1007 static void ksz8_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1008 {
1009 struct ksz_device *dev = ds->priv;
1010 struct ksz_port *p;
1011 u8 data;
1012
1013 ksz_pread8(dev, port, P_STP_CTRL, &data);
1014 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
1015
1016 switch (state) {
1017 case BR_STATE_DISABLED:
1018 data |= PORT_LEARN_DISABLE;
1019 break;
1020 case BR_STATE_LISTENING:
1021 data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
1022 break;
1023 case BR_STATE_LEARNING:
1024 data |= PORT_RX_ENABLE;
1025 break;
1026 case BR_STATE_FORWARDING:
1027 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
1028 break;
1029 case BR_STATE_BLOCKING:
1030 data |= PORT_LEARN_DISABLE;
1031 break;
1032 default:
1033 dev_err(ds->dev, "invalid STP state: %d\n", state);
1034 return;
1035 }
1036
1037 ksz_pwrite8(dev, port, P_STP_CTRL, data);
1038
1039 p = &dev->ports[port];
1040 p->stp_state = state;
1041
1042 ksz_update_port_member(dev, port);
1043 }
1044
ksz8_flush_dyn_mac_table(struct ksz_device * dev,int port)1045 static void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
1046 {
1047 u8 learn[DSA_MAX_PORTS];
1048 int first, index, cnt;
1049 struct ksz_port *p;
1050
1051 if ((uint)port < dev->port_cnt) {
1052 first = port;
1053 cnt = port + 1;
1054 } else {
1055 /* Flush all ports. */
1056 first = 0;
1057 cnt = dev->port_cnt;
1058 }
1059 for (index = first; index < cnt; index++) {
1060 p = &dev->ports[index];
1061 if (!p->on)
1062 continue;
1063 ksz_pread8(dev, index, P_STP_CTRL, &learn[index]);
1064 if (!(learn[index] & PORT_LEARN_DISABLE))
1065 ksz_pwrite8(dev, index, P_STP_CTRL,
1066 learn[index] | PORT_LEARN_DISABLE);
1067 }
1068 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
1069 for (index = first; index < cnt; index++) {
1070 p = &dev->ports[index];
1071 if (!p->on)
1072 continue;
1073 if (!(learn[index] & PORT_LEARN_DISABLE))
1074 ksz_pwrite8(dev, index, P_STP_CTRL, learn[index]);
1075 }
1076 }
1077
ksz8_port_vlan_filtering(struct dsa_switch * ds,int port,bool flag,struct netlink_ext_ack * extack)1078 static int ksz8_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag,
1079 struct netlink_ext_ack *extack)
1080 {
1081 struct ksz_device *dev = ds->priv;
1082
1083 if (ksz_is_ksz88x3(dev))
1084 return -ENOTSUPP;
1085
1086 /* Discard packets with VID not enabled on the switch */
1087 ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
1088
1089 /* Discard packets with VID not enabled on the ingress port */
1090 for (port = 0; port < dev->phy_port_cnt; ++port)
1091 ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
1092 flag);
1093
1094 return 0;
1095 }
1096
ksz8_port_enable_pvid(struct ksz_device * dev,int port,bool state)1097 static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
1098 {
1099 if (ksz_is_ksz88x3(dev)) {
1100 ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
1101 0x03 << (4 - 2 * port), state);
1102 } else {
1103 ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
1104 }
1105 }
1106
ksz8_port_vlan_add(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)1107 static int ksz8_port_vlan_add(struct dsa_switch *ds, int port,
1108 const struct switchdev_obj_port_vlan *vlan,
1109 struct netlink_ext_ack *extack)
1110 {
1111 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1112 struct ksz_device *dev = ds->priv;
1113 struct ksz_port *p = &dev->ports[port];
1114 u16 data, new_pvid = 0;
1115 u8 fid, member, valid;
1116
1117 if (ksz_is_ksz88x3(dev))
1118 return -ENOTSUPP;
1119
1120 /* If a VLAN is added with untagged flag different from the
1121 * port's Remove Tag flag, we need to change the latter.
1122 * Ignore VID 0, which is always untagged.
1123 * Ignore CPU port, which will always be tagged.
1124 */
1125 if (untagged != p->remove_tag && vlan->vid != 0 &&
1126 port != dev->cpu_port) {
1127 unsigned int vid;
1128
1129 /* Reject attempts to add a VLAN that requires the
1130 * Remove Tag flag to be changed, unless there are no
1131 * other VLANs currently configured.
1132 */
1133 for (vid = 1; vid < dev->num_vlans; ++vid) {
1134 /* Skip the VID we are going to add or reconfigure */
1135 if (vid == vlan->vid)
1136 continue;
1137
1138 ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
1139 &fid, &member, &valid);
1140 if (valid && (member & BIT(port)))
1141 return -EINVAL;
1142 }
1143
1144 ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1145 p->remove_tag = untagged;
1146 }
1147
1148 ksz8_r_vlan_table(dev, vlan->vid, &data);
1149 ksz8_from_vlan(dev, data, &fid, &member, &valid);
1150
1151 /* First time to setup the VLAN entry. */
1152 if (!valid) {
1153 /* Need to find a way to map VID to FID. */
1154 fid = 1;
1155 valid = 1;
1156 }
1157 member |= BIT(port);
1158
1159 ksz8_to_vlan(dev, fid, member, valid, &data);
1160 ksz8_w_vlan_table(dev, vlan->vid, data);
1161
1162 /* change PVID */
1163 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1164 new_pvid = vlan->vid;
1165
1166 if (new_pvid) {
1167 u16 vid;
1168
1169 ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1170 vid &= ~VLAN_VID_MASK;
1171 vid |= new_pvid;
1172 ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1173
1174 ksz8_port_enable_pvid(dev, port, true);
1175 }
1176
1177 return 0;
1178 }
1179
ksz8_port_vlan_del(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan)1180 static int ksz8_port_vlan_del(struct dsa_switch *ds, int port,
1181 const struct switchdev_obj_port_vlan *vlan)
1182 {
1183 struct ksz_device *dev = ds->priv;
1184 u16 data, pvid;
1185 u8 fid, member, valid;
1186
1187 if (ksz_is_ksz88x3(dev))
1188 return -ENOTSUPP;
1189
1190 ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
1191 pvid = pvid & 0xFFF;
1192
1193 ksz8_r_vlan_table(dev, vlan->vid, &data);
1194 ksz8_from_vlan(dev, data, &fid, &member, &valid);
1195
1196 member &= ~BIT(port);
1197
1198 /* Invalidate the entry if no more member. */
1199 if (!member) {
1200 fid = 0;
1201 valid = 0;
1202 }
1203
1204 ksz8_to_vlan(dev, fid, member, valid, &data);
1205 ksz8_w_vlan_table(dev, vlan->vid, data);
1206
1207 if (pvid == vlan->vid)
1208 ksz8_port_enable_pvid(dev, port, false);
1209
1210 return 0;
1211 }
1212
ksz8_port_mirror_add(struct dsa_switch * ds,int port,struct dsa_mall_mirror_tc_entry * mirror,bool ingress)1213 static int ksz8_port_mirror_add(struct dsa_switch *ds, int port,
1214 struct dsa_mall_mirror_tc_entry *mirror,
1215 bool ingress)
1216 {
1217 struct ksz_device *dev = ds->priv;
1218
1219 if (ingress) {
1220 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1221 dev->mirror_rx |= BIT(port);
1222 } else {
1223 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1224 dev->mirror_tx |= BIT(port);
1225 }
1226
1227 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1228
1229 /* configure mirror port */
1230 if (dev->mirror_rx || dev->mirror_tx)
1231 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1232 PORT_MIRROR_SNIFFER, true);
1233
1234 return 0;
1235 }
1236
ksz8_port_mirror_del(struct dsa_switch * ds,int port,struct dsa_mall_mirror_tc_entry * mirror)1237 static void ksz8_port_mirror_del(struct dsa_switch *ds, int port,
1238 struct dsa_mall_mirror_tc_entry *mirror)
1239 {
1240 struct ksz_device *dev = ds->priv;
1241 u8 data;
1242
1243 if (mirror->ingress) {
1244 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1245 dev->mirror_rx &= ~BIT(port);
1246 } else {
1247 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1248 dev->mirror_tx &= ~BIT(port);
1249 }
1250
1251 ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1252
1253 if (!dev->mirror_rx && !dev->mirror_tx)
1254 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1255 PORT_MIRROR_SNIFFER, false);
1256 }
1257
ksz8795_cpu_interface_select(struct ksz_device * dev,int port)1258 static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1259 {
1260 struct ksz_port *p = &dev->ports[port];
1261 u8 data8;
1262
1263 if (!p->interface && dev->compat_interface) {
1264 dev_warn(dev->dev,
1265 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1266 "Please update your device tree.\n",
1267 port);
1268 p->interface = dev->compat_interface;
1269 }
1270
1271 /* Configure MII interface for proper network communication. */
1272 ksz_read8(dev, REG_PORT_5_CTRL_6, &data8);
1273 data8 &= ~PORT_INTERFACE_TYPE;
1274 data8 &= ~PORT_GMII_1GPS_MODE;
1275 switch (p->interface) {
1276 case PHY_INTERFACE_MODE_MII:
1277 p->phydev.speed = SPEED_100;
1278 break;
1279 case PHY_INTERFACE_MODE_RMII:
1280 data8 |= PORT_INTERFACE_RMII;
1281 p->phydev.speed = SPEED_100;
1282 break;
1283 case PHY_INTERFACE_MODE_GMII:
1284 data8 |= PORT_GMII_1GPS_MODE;
1285 data8 |= PORT_INTERFACE_GMII;
1286 p->phydev.speed = SPEED_1000;
1287 break;
1288 default:
1289 data8 &= ~PORT_RGMII_ID_IN_ENABLE;
1290 data8 &= ~PORT_RGMII_ID_OUT_ENABLE;
1291 if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1292 p->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1293 data8 |= PORT_RGMII_ID_IN_ENABLE;
1294 if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1295 p->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1296 data8 |= PORT_RGMII_ID_OUT_ENABLE;
1297 data8 |= PORT_GMII_1GPS_MODE;
1298 data8 |= PORT_INTERFACE_RGMII;
1299 p->phydev.speed = SPEED_1000;
1300 break;
1301 }
1302 ksz_write8(dev, REG_PORT_5_CTRL_6, data8);
1303 p->phydev.duplex = 1;
1304 }
1305
ksz8_port_setup(struct ksz_device * dev,int port,bool cpu_port)1306 static void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1307 {
1308 struct dsa_switch *ds = dev->ds;
1309 struct ksz8 *ksz8 = dev->priv;
1310 const u32 *masks;
1311 u8 member;
1312
1313 masks = ksz8->masks;
1314
1315 /* enable broadcast storm limit */
1316 ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1317
1318 if (!ksz_is_ksz88x3(dev))
1319 ksz8795_set_prio_queue(dev, port, 4);
1320
1321 /* disable DiffServ priority */
1322 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false);
1323
1324 /* replace priority */
1325 ksz_port_cfg(dev, port, P_802_1P_CTRL,
1326 masks[PORT_802_1P_REMAPPING], false);
1327
1328 /* enable 802.1p priority */
1329 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true);
1330
1331 if (cpu_port) {
1332 if (!ksz_is_ksz88x3(dev))
1333 ksz8795_cpu_interface_select(dev, port);
1334
1335 member = dsa_user_ports(ds);
1336 } else {
1337 member = BIT(dsa_upstream_port(ds, port));
1338 }
1339
1340 ksz8_cfg_port_member(dev, port, member);
1341 }
1342
ksz8_config_cpu_port(struct dsa_switch * ds)1343 static void ksz8_config_cpu_port(struct dsa_switch *ds)
1344 {
1345 struct ksz_device *dev = ds->priv;
1346 struct ksz8 *ksz8 = dev->priv;
1347 const u8 *regs = ksz8->regs;
1348 struct ksz_port *p;
1349 const u32 *masks;
1350 u8 remote;
1351 int i;
1352
1353 masks = ksz8->masks;
1354
1355 /* Switch marks the maximum frame with extra byte as oversize. */
1356 ksz_cfg(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, true);
1357 ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1358
1359 p = &dev->ports[dev->cpu_port];
1360 p->on = 1;
1361
1362 ksz8_port_setup(dev, dev->cpu_port, true);
1363
1364 for (i = 0; i < dev->phy_port_cnt; i++) {
1365 p = &dev->ports[i];
1366
1367 ksz8_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1368
1369 /* Last port may be disabled. */
1370 if (i == dev->phy_port_cnt)
1371 break;
1372 p->on = 1;
1373 p->phy = 1;
1374 }
1375 for (i = 0; i < dev->phy_port_cnt; i++) {
1376 p = &dev->ports[i];
1377 if (!p->on)
1378 continue;
1379 if (!ksz_is_ksz88x3(dev)) {
1380 ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1381 if (remote & PORT_FIBER_MODE)
1382 p->fiber = 1;
1383 }
1384 if (p->fiber)
1385 ksz_port_cfg(dev, i, P_STP_CTRL, PORT_FORCE_FLOW_CTRL,
1386 true);
1387 else
1388 ksz_port_cfg(dev, i, P_STP_CTRL, PORT_FORCE_FLOW_CTRL,
1389 false);
1390 }
1391 }
1392
ksz8_setup(struct dsa_switch * ds)1393 static int ksz8_setup(struct dsa_switch *ds)
1394 {
1395 struct ksz_device *dev = ds->priv;
1396 struct alu_struct alu;
1397 int i, ret = 0;
1398
1399 dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1400 dev->num_vlans, GFP_KERNEL);
1401 if (!dev->vlan_cache)
1402 return -ENOMEM;
1403
1404 ret = ksz8_reset_switch(dev);
1405 if (ret) {
1406 dev_err(ds->dev, "failed to reset switch\n");
1407 return ret;
1408 }
1409
1410 ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_FLOW_CTRL, true);
1411
1412 /* Enable automatic fast aging when link changed detected. */
1413 ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
1414
1415 /* Enable aggressive back off algorithm in half duplex mode. */
1416 regmap_update_bits(dev->regmap[0], REG_SW_CTRL_1,
1417 SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1418
1419 /*
1420 * Make sure unicast VLAN boundary is set as default and
1421 * enable no excessive collision drop.
1422 */
1423 regmap_update_bits(dev->regmap[0], REG_SW_CTRL_2,
1424 UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1425 UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1426
1427 ksz8_config_cpu_port(ds);
1428
1429 ksz_cfg(dev, REG_SW_CTRL_2, MULTICAST_STORM_DISABLE, true);
1430
1431 ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
1432
1433 ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1434
1435 if (!ksz_is_ksz88x3(dev))
1436 ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
1437
1438 /* set broadcast storm protection 10% rate */
1439 regmap_update_bits(dev->regmap[1], S_REPLACE_VID_CTRL,
1440 BROADCAST_STORM_RATE,
1441 (BROADCAST_STORM_VALUE *
1442 BROADCAST_STORM_PROT_RATE) / 100);
1443
1444 for (i = 0; i < (dev->num_vlans / 4); i++)
1445 ksz8_r_vlan_entries(dev, i);
1446
1447 /* Setup STP address for STP operation. */
1448 memset(&alu, 0, sizeof(alu));
1449 ether_addr_copy(alu.mac, eth_stp_addr);
1450 alu.is_static = true;
1451 alu.is_override = true;
1452 alu.port_forward = dev->host_mask;
1453
1454 ksz8_w_sta_mac_table(dev, 0, &alu);
1455
1456 ksz_init_mib_timer(dev);
1457
1458 ds->configure_vlan_while_not_filtering = false;
1459
1460 return 0;
1461 }
1462
ksz8_validate(struct dsa_switch * ds,int port,unsigned long * supported,struct phylink_link_state * state)1463 static void ksz8_validate(struct dsa_switch *ds, int port,
1464 unsigned long *supported,
1465 struct phylink_link_state *state)
1466 {
1467 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1468 struct ksz_device *dev = ds->priv;
1469
1470 if (port == dev->cpu_port) {
1471 if (state->interface != PHY_INTERFACE_MODE_RMII &&
1472 state->interface != PHY_INTERFACE_MODE_MII &&
1473 state->interface != PHY_INTERFACE_MODE_NA)
1474 goto unsupported;
1475 } else {
1476 if (state->interface != PHY_INTERFACE_MODE_INTERNAL &&
1477 state->interface != PHY_INTERFACE_MODE_NA)
1478 goto unsupported;
1479 }
1480
1481 /* Allow all the expected bits */
1482 phylink_set_port_modes(mask);
1483 phylink_set(mask, Autoneg);
1484
1485 /* Silicon Errata Sheet (DS80000830A):
1486 * "Port 1 does not respond to received flow control PAUSE frames"
1487 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
1488 * switches.
1489 */
1490 if (!ksz_is_ksz88x3(dev) || port)
1491 phylink_set(mask, Pause);
1492
1493 /* Asym pause is not supported on KSZ8863 and KSZ8873 */
1494 if (!ksz_is_ksz88x3(dev))
1495 phylink_set(mask, Asym_Pause);
1496
1497 /* 10M and 100M are only supported */
1498 phylink_set(mask, 10baseT_Half);
1499 phylink_set(mask, 10baseT_Full);
1500 phylink_set(mask, 100baseT_Half);
1501 phylink_set(mask, 100baseT_Full);
1502
1503 linkmode_and(supported, supported, mask);
1504 linkmode_and(state->advertising, state->advertising, mask);
1505
1506 return;
1507
1508 unsupported:
1509 linkmode_zero(supported);
1510 dev_err(ds->dev, "Unsupported interface: %s, port: %d\n",
1511 phy_modes(state->interface), port);
1512 }
1513
1514 static const struct dsa_switch_ops ksz8_switch_ops = {
1515 .get_tag_protocol = ksz8_get_tag_protocol,
1516 .get_phy_flags = ksz8_sw_get_phy_flags,
1517 .setup = ksz8_setup,
1518 .phy_read = ksz_phy_read16,
1519 .phy_write = ksz_phy_write16,
1520 .phylink_validate = ksz8_validate,
1521 .phylink_mac_link_down = ksz_mac_link_down,
1522 .port_enable = ksz_enable_port,
1523 .get_strings = ksz8_get_strings,
1524 .get_ethtool_stats = ksz_get_ethtool_stats,
1525 .get_sset_count = ksz_sset_count,
1526 .port_bridge_join = ksz_port_bridge_join,
1527 .port_bridge_leave = ksz_port_bridge_leave,
1528 .port_stp_state_set = ksz8_port_stp_state_set,
1529 .port_fast_age = ksz_port_fast_age,
1530 .port_vlan_filtering = ksz8_port_vlan_filtering,
1531 .port_vlan_add = ksz8_port_vlan_add,
1532 .port_vlan_del = ksz8_port_vlan_del,
1533 .port_fdb_dump = ksz_port_fdb_dump,
1534 .port_mdb_add = ksz_port_mdb_add,
1535 .port_mdb_del = ksz_port_mdb_del,
1536 .port_mirror_add = ksz8_port_mirror_add,
1537 .port_mirror_del = ksz8_port_mirror_del,
1538 };
1539
ksz8_get_port_addr(int port,int offset)1540 static u32 ksz8_get_port_addr(int port, int offset)
1541 {
1542 return PORT_CTRL_ADDR(port, offset);
1543 }
1544
ksz8_switch_detect(struct ksz_device * dev)1545 static int ksz8_switch_detect(struct ksz_device *dev)
1546 {
1547 u8 id1, id2;
1548 u16 id16;
1549 int ret;
1550
1551 /* read chip id */
1552 ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
1553 if (ret)
1554 return ret;
1555
1556 id1 = id16 >> 8;
1557 id2 = id16 & SW_CHIP_ID_M;
1558
1559 switch (id1) {
1560 case KSZ87_FAMILY_ID:
1561 if ((id2 != CHIP_ID_94 && id2 != CHIP_ID_95))
1562 return -ENODEV;
1563
1564 if (id2 == CHIP_ID_95) {
1565 u8 val;
1566
1567 id2 = 0x95;
1568 ksz_read8(dev, REG_PORT_STATUS_0, &val);
1569 if (val & PORT_FIBER_MODE)
1570 id2 = 0x65;
1571 } else if (id2 == CHIP_ID_94) {
1572 id2 = 0x94;
1573 }
1574 break;
1575 case KSZ88_FAMILY_ID:
1576 if (id2 != CHIP_ID_63)
1577 return -ENODEV;
1578 break;
1579 default:
1580 dev_err(dev->dev, "invalid family id: %d\n", id1);
1581 return -ENODEV;
1582 }
1583 id16 &= ~0xff;
1584 id16 |= id2;
1585 dev->chip_id = id16;
1586
1587 return 0;
1588 }
1589
1590 struct ksz_chip_data {
1591 u16 chip_id;
1592 const char *dev_name;
1593 int num_vlans;
1594 int num_alus;
1595 int num_statics;
1596 int cpu_ports;
1597 int port_cnt;
1598 };
1599
1600 static const struct ksz_chip_data ksz8_switch_chips[] = {
1601 {
1602 .chip_id = 0x8795,
1603 .dev_name = "KSZ8795",
1604 .num_vlans = 4096,
1605 .num_alus = 0,
1606 .num_statics = 8,
1607 .cpu_ports = 0x10, /* can be configured as cpu port */
1608 .port_cnt = 5, /* total cpu and user ports */
1609 },
1610 {
1611 /*
1612 * WARNING
1613 * =======
1614 * KSZ8794 is similar to KSZ8795, except the port map
1615 * contains a gap between external and CPU ports, the
1616 * port map is NOT continuous. The per-port register
1617 * map is shifted accordingly too, i.e. registers at
1618 * offset 0x40 are NOT used on KSZ8794 and they ARE
1619 * used on KSZ8795 for external port 3.
1620 * external cpu
1621 * KSZ8794 0,1,2 4
1622 * KSZ8795 0,1,2,3 4
1623 * KSZ8765 0,1,2,3 4
1624 */
1625 .chip_id = 0x8794,
1626 .dev_name = "KSZ8794",
1627 .num_vlans = 4096,
1628 .num_alus = 0,
1629 .num_statics = 8,
1630 .cpu_ports = 0x10, /* can be configured as cpu port */
1631 .port_cnt = 4, /* total cpu and user ports */
1632 },
1633 {
1634 .chip_id = 0x8765,
1635 .dev_name = "KSZ8765",
1636 .num_vlans = 4096,
1637 .num_alus = 0,
1638 .num_statics = 8,
1639 .cpu_ports = 0x10, /* can be configured as cpu port */
1640 .port_cnt = 5, /* total cpu and user ports */
1641 },
1642 {
1643 .chip_id = 0x8830,
1644 .dev_name = "KSZ8863/KSZ8873",
1645 .num_vlans = 16,
1646 .num_alus = 0,
1647 .num_statics = 8,
1648 .cpu_ports = 0x4, /* can be configured as cpu port */
1649 .port_cnt = 3,
1650 },
1651 };
1652
ksz8_switch_init(struct ksz_device * dev)1653 static int ksz8_switch_init(struct ksz_device *dev)
1654 {
1655 struct ksz8 *ksz8 = dev->priv;
1656 int i;
1657
1658 dev->ds->ops = &ksz8_switch_ops;
1659
1660 for (i = 0; i < ARRAY_SIZE(ksz8_switch_chips); i++) {
1661 const struct ksz_chip_data *chip = &ksz8_switch_chips[i];
1662
1663 if (dev->chip_id == chip->chip_id) {
1664 dev->name = chip->dev_name;
1665 dev->num_vlans = chip->num_vlans;
1666 dev->num_alus = chip->num_alus;
1667 dev->num_statics = chip->num_statics;
1668 dev->port_cnt = fls(chip->cpu_ports);
1669 dev->cpu_port = fls(chip->cpu_ports) - 1;
1670 dev->phy_port_cnt = dev->port_cnt - 1;
1671 dev->cpu_ports = chip->cpu_ports;
1672 dev->host_mask = chip->cpu_ports;
1673 dev->port_mask = (BIT(dev->phy_port_cnt) - 1) |
1674 chip->cpu_ports;
1675 break;
1676 }
1677 }
1678
1679 /* no switch found */
1680 if (!dev->cpu_ports)
1681 return -ENODEV;
1682
1683 if (ksz_is_ksz88x3(dev)) {
1684 ksz8->regs = ksz8863_regs;
1685 ksz8->masks = ksz8863_masks;
1686 ksz8->shifts = ksz8863_shifts;
1687 dev->mib_cnt = ARRAY_SIZE(ksz88xx_mib_names);
1688 dev->mib_names = ksz88xx_mib_names;
1689 } else {
1690 ksz8->regs = ksz8795_regs;
1691 ksz8->masks = ksz8795_masks;
1692 ksz8->shifts = ksz8795_shifts;
1693 dev->mib_cnt = ARRAY_SIZE(ksz87xx_mib_names);
1694 dev->mib_names = ksz87xx_mib_names;
1695 }
1696
1697 dev->reg_mib_cnt = MIB_COUNTER_NUM;
1698
1699 dev->ports = devm_kzalloc(dev->dev,
1700 dev->port_cnt * sizeof(struct ksz_port),
1701 GFP_KERNEL);
1702 if (!dev->ports)
1703 return -ENOMEM;
1704 for (i = 0; i < dev->port_cnt; i++) {
1705 mutex_init(&dev->ports[i].mib.cnt_mutex);
1706 dev->ports[i].mib.counters =
1707 devm_kzalloc(dev->dev,
1708 sizeof(u64) *
1709 (dev->mib_cnt + 1),
1710 GFP_KERNEL);
1711 if (!dev->ports[i].mib.counters)
1712 return -ENOMEM;
1713 }
1714
1715 /* set the real number of ports */
1716 dev->ds->num_ports = dev->port_cnt;
1717
1718 /* We rely on software untagging on the CPU port, so that we
1719 * can support both tagged and untagged VLANs
1720 */
1721 dev->ds->untag_bridge_pvid = true;
1722
1723 /* VLAN filtering is partly controlled by the global VLAN
1724 * Enable flag
1725 */
1726 dev->ds->vlan_filtering_is_global = true;
1727
1728 return 0;
1729 }
1730
ksz8_switch_exit(struct ksz_device * dev)1731 static void ksz8_switch_exit(struct ksz_device *dev)
1732 {
1733 ksz8_reset_switch(dev);
1734 }
1735
1736 static const struct ksz_dev_ops ksz8_dev_ops = {
1737 .get_port_addr = ksz8_get_port_addr,
1738 .cfg_port_member = ksz8_cfg_port_member,
1739 .flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
1740 .port_setup = ksz8_port_setup,
1741 .r_phy = ksz8_r_phy,
1742 .w_phy = ksz8_w_phy,
1743 .r_dyn_mac_table = ksz8_r_dyn_mac_table,
1744 .r_sta_mac_table = ksz8_r_sta_mac_table,
1745 .w_sta_mac_table = ksz8_w_sta_mac_table,
1746 .r_mib_cnt = ksz8_r_mib_cnt,
1747 .r_mib_pkt = ksz8_r_mib_pkt,
1748 .freeze_mib = ksz8_freeze_mib,
1749 .port_init_cnt = ksz8_port_init_cnt,
1750 .shutdown = ksz8_reset_switch,
1751 .detect = ksz8_switch_detect,
1752 .init = ksz8_switch_init,
1753 .exit = ksz8_switch_exit,
1754 };
1755
ksz8_switch_register(struct ksz_device * dev)1756 int ksz8_switch_register(struct ksz_device *dev)
1757 {
1758 return ksz_switch_register(dev, &ksz8_dev_ops);
1759 }
1760 EXPORT_SYMBOL(ksz8_switch_register);
1761
1762 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
1763 MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
1764 MODULE_LICENSE("GPL");
1765