1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe I/O command implementation.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/blkdev.h>
8 #include <linux/blk-integrity.h>
9 #include <linux/module.h>
10 #include "nvmet.h"
11
nvmet_bdev_set_limits(struct block_device * bdev,struct nvme_id_ns * id)12 void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id)
13 {
14 const struct queue_limits *ql = &bdev_get_queue(bdev)->limits;
15 /* Number of logical blocks per physical block. */
16 const u32 lpp = ql->physical_block_size / ql->logical_block_size;
17 /* Logical blocks per physical block, 0's based. */
18 const __le16 lpp0b = to0based(lpp);
19
20 /*
21 * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN,
22 * NAWUPF, and NACWU are defined for this namespace and should be
23 * used by the host for this namespace instead of the AWUN, AWUPF,
24 * and ACWU fields in the Identify Controller data structure. If
25 * any of these fields are zero that means that the corresponding
26 * field from the identify controller data structure should be used.
27 */
28 id->nsfeat |= 1 << 1;
29 id->nawun = lpp0b;
30 id->nawupf = lpp0b;
31 id->nacwu = lpp0b;
32
33 /*
34 * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and
35 * NOWS are defined for this namespace and should be used by
36 * the host for I/O optimization.
37 */
38 id->nsfeat |= 1 << 4;
39 /* NPWG = Namespace Preferred Write Granularity. 0's based */
40 id->npwg = lpp0b;
41 /* NPWA = Namespace Preferred Write Alignment. 0's based */
42 id->npwa = id->npwg;
43 /* NPDG = Namespace Preferred Deallocate Granularity. 0's based */
44 id->npdg = to0based(ql->discard_granularity / ql->logical_block_size);
45 /* NPDG = Namespace Preferred Deallocate Alignment */
46 id->npda = id->npdg;
47 /* NOWS = Namespace Optimal Write Size */
48 id->nows = to0based(ql->io_opt / ql->logical_block_size);
49 }
50
nvmet_bdev_ns_disable(struct nvmet_ns * ns)51 void nvmet_bdev_ns_disable(struct nvmet_ns *ns)
52 {
53 if (ns->bdev) {
54 blkdev_put(ns->bdev, FMODE_WRITE | FMODE_READ);
55 ns->bdev = NULL;
56 }
57 }
58
nvmet_bdev_ns_enable_integrity(struct nvmet_ns * ns)59 static void nvmet_bdev_ns_enable_integrity(struct nvmet_ns *ns)
60 {
61 struct blk_integrity *bi = bdev_get_integrity(ns->bdev);
62
63 if (bi) {
64 ns->metadata_size = bi->tuple_size;
65 if (bi->profile == &t10_pi_type1_crc)
66 ns->pi_type = NVME_NS_DPS_PI_TYPE1;
67 else if (bi->profile == &t10_pi_type3_crc)
68 ns->pi_type = NVME_NS_DPS_PI_TYPE3;
69 else
70 /* Unsupported metadata type */
71 ns->metadata_size = 0;
72 }
73 }
74
nvmet_bdev_ns_enable(struct nvmet_ns * ns)75 int nvmet_bdev_ns_enable(struct nvmet_ns *ns)
76 {
77 int ret;
78
79 ns->bdev = blkdev_get_by_path(ns->device_path,
80 FMODE_READ | FMODE_WRITE, NULL);
81 if (IS_ERR(ns->bdev)) {
82 ret = PTR_ERR(ns->bdev);
83 if (ret != -ENOTBLK) {
84 pr_err("failed to open block device %s: (%ld)\n",
85 ns->device_path, PTR_ERR(ns->bdev));
86 }
87 ns->bdev = NULL;
88 return ret;
89 }
90 ns->size = bdev_nr_bytes(ns->bdev);
91 ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev));
92
93 ns->pi_type = 0;
94 ns->metadata_size = 0;
95 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY_T10))
96 nvmet_bdev_ns_enable_integrity(ns);
97
98 if (bdev_is_zoned(ns->bdev)) {
99 if (!nvmet_bdev_zns_enable(ns)) {
100 nvmet_bdev_ns_disable(ns);
101 return -EINVAL;
102 }
103 ns->csi = NVME_CSI_ZNS;
104 }
105
106 return 0;
107 }
108
nvmet_bdev_ns_revalidate(struct nvmet_ns * ns)109 void nvmet_bdev_ns_revalidate(struct nvmet_ns *ns)
110 {
111 ns->size = bdev_nr_bytes(ns->bdev);
112 }
113
blk_to_nvme_status(struct nvmet_req * req,blk_status_t blk_sts)114 u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts)
115 {
116 u16 status = NVME_SC_SUCCESS;
117
118 if (likely(blk_sts == BLK_STS_OK))
119 return status;
120 /*
121 * Right now there exists M : 1 mapping between block layer error
122 * to the NVMe status code (see nvme_error_status()). For consistency,
123 * when we reverse map we use most appropriate NVMe Status code from
124 * the group of the NVMe staus codes used in the nvme_error_status().
125 */
126 switch (blk_sts) {
127 case BLK_STS_NOSPC:
128 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
129 req->error_loc = offsetof(struct nvme_rw_command, length);
130 break;
131 case BLK_STS_TARGET:
132 status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
133 req->error_loc = offsetof(struct nvme_rw_command, slba);
134 break;
135 case BLK_STS_NOTSUPP:
136 req->error_loc = offsetof(struct nvme_common_command, opcode);
137 switch (req->cmd->common.opcode) {
138 case nvme_cmd_dsm:
139 case nvme_cmd_write_zeroes:
140 status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
141 break;
142 default:
143 status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
144 }
145 break;
146 case BLK_STS_MEDIUM:
147 status = NVME_SC_ACCESS_DENIED;
148 req->error_loc = offsetof(struct nvme_rw_command, nsid);
149 break;
150 case BLK_STS_IOERR:
151 default:
152 status = NVME_SC_INTERNAL | NVME_SC_DNR;
153 req->error_loc = offsetof(struct nvme_common_command, opcode);
154 }
155
156 switch (req->cmd->common.opcode) {
157 case nvme_cmd_read:
158 case nvme_cmd_write:
159 req->error_slba = le64_to_cpu(req->cmd->rw.slba);
160 break;
161 case nvme_cmd_write_zeroes:
162 req->error_slba =
163 le64_to_cpu(req->cmd->write_zeroes.slba);
164 break;
165 default:
166 req->error_slba = 0;
167 }
168 return status;
169 }
170
nvmet_bio_done(struct bio * bio)171 static void nvmet_bio_done(struct bio *bio)
172 {
173 struct nvmet_req *req = bio->bi_private;
174
175 nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status));
176 nvmet_req_bio_put(req, bio);
177 }
178
179 #ifdef CONFIG_BLK_DEV_INTEGRITY
nvmet_bdev_alloc_bip(struct nvmet_req * req,struct bio * bio,struct sg_mapping_iter * miter)180 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
181 struct sg_mapping_iter *miter)
182 {
183 struct blk_integrity *bi;
184 struct bio_integrity_payload *bip;
185 int rc;
186 size_t resid, len;
187
188 bi = bdev_get_integrity(req->ns->bdev);
189 if (unlikely(!bi)) {
190 pr_err("Unable to locate bio_integrity\n");
191 return -ENODEV;
192 }
193
194 bip = bio_integrity_alloc(bio, GFP_NOIO,
195 bio_max_segs(req->metadata_sg_cnt));
196 if (IS_ERR(bip)) {
197 pr_err("Unable to allocate bio_integrity_payload\n");
198 return PTR_ERR(bip);
199 }
200
201 bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio));
202 /* virtual start sector must be in integrity interval units */
203 bip_set_seed(bip, bio->bi_iter.bi_sector >>
204 (bi->interval_exp - SECTOR_SHIFT));
205
206 resid = bip->bip_iter.bi_size;
207 while (resid > 0 && sg_miter_next(miter)) {
208 len = min_t(size_t, miter->length, resid);
209 rc = bio_integrity_add_page(bio, miter->page, len,
210 offset_in_page(miter->addr));
211 if (unlikely(rc != len)) {
212 pr_err("bio_integrity_add_page() failed; %d\n", rc);
213 sg_miter_stop(miter);
214 return -ENOMEM;
215 }
216
217 resid -= len;
218 if (len < miter->length)
219 miter->consumed -= miter->length - len;
220 }
221 sg_miter_stop(miter);
222
223 return 0;
224 }
225 #else
nvmet_bdev_alloc_bip(struct nvmet_req * req,struct bio * bio,struct sg_mapping_iter * miter)226 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
227 struct sg_mapping_iter *miter)
228 {
229 return -EINVAL;
230 }
231 #endif /* CONFIG_BLK_DEV_INTEGRITY */
232
nvmet_bdev_execute_rw(struct nvmet_req * req)233 static void nvmet_bdev_execute_rw(struct nvmet_req *req)
234 {
235 unsigned int sg_cnt = req->sg_cnt;
236 struct bio *bio;
237 struct scatterlist *sg;
238 struct blk_plug plug;
239 sector_t sector;
240 int op, i, rc;
241 struct sg_mapping_iter prot_miter;
242 unsigned int iter_flags;
243 unsigned int total_len = nvmet_rw_data_len(req) + req->metadata_len;
244
245 if (!nvmet_check_transfer_len(req, total_len))
246 return;
247
248 if (!req->sg_cnt) {
249 nvmet_req_complete(req, 0);
250 return;
251 }
252
253 if (req->cmd->rw.opcode == nvme_cmd_write) {
254 op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
255 if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA))
256 op |= REQ_FUA;
257 iter_flags = SG_MITER_TO_SG;
258 } else {
259 op = REQ_OP_READ;
260 iter_flags = SG_MITER_FROM_SG;
261 }
262
263 if (is_pci_p2pdma_page(sg_page(req->sg)))
264 op |= REQ_NOMERGE;
265
266 sector = nvmet_lba_to_sect(req->ns, req->cmd->rw.slba);
267
268 if (nvmet_use_inline_bvec(req)) {
269 bio = &req->b.inline_bio;
270 bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
271 } else {
272 bio = bio_alloc(GFP_KERNEL, bio_max_segs(sg_cnt));
273 }
274 bio_set_dev(bio, req->ns->bdev);
275 bio->bi_iter.bi_sector = sector;
276 bio->bi_private = req;
277 bio->bi_end_io = nvmet_bio_done;
278 bio->bi_opf = op;
279
280 blk_start_plug(&plug);
281 if (req->metadata_len)
282 sg_miter_start(&prot_miter, req->metadata_sg,
283 req->metadata_sg_cnt, iter_flags);
284
285 for_each_sg(req->sg, sg, req->sg_cnt, i) {
286 while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset)
287 != sg->length) {
288 struct bio *prev = bio;
289
290 if (req->metadata_len) {
291 rc = nvmet_bdev_alloc_bip(req, bio,
292 &prot_miter);
293 if (unlikely(rc)) {
294 bio_io_error(bio);
295 return;
296 }
297 }
298
299 bio = bio_alloc(GFP_KERNEL, bio_max_segs(sg_cnt));
300 bio_set_dev(bio, req->ns->bdev);
301 bio->bi_iter.bi_sector = sector;
302 bio->bi_opf = op;
303
304 bio_chain(bio, prev);
305 submit_bio(prev);
306 }
307
308 sector += sg->length >> 9;
309 sg_cnt--;
310 }
311
312 if (req->metadata_len) {
313 rc = nvmet_bdev_alloc_bip(req, bio, &prot_miter);
314 if (unlikely(rc)) {
315 bio_io_error(bio);
316 return;
317 }
318 }
319
320 submit_bio(bio);
321 blk_finish_plug(&plug);
322 }
323
nvmet_bdev_execute_flush(struct nvmet_req * req)324 static void nvmet_bdev_execute_flush(struct nvmet_req *req)
325 {
326 struct bio *bio = &req->b.inline_bio;
327
328 if (!nvmet_check_transfer_len(req, 0))
329 return;
330
331 bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
332 bio_set_dev(bio, req->ns->bdev);
333 bio->bi_private = req;
334 bio->bi_end_io = nvmet_bio_done;
335 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
336
337 submit_bio(bio);
338 }
339
nvmet_bdev_flush(struct nvmet_req * req)340 u16 nvmet_bdev_flush(struct nvmet_req *req)
341 {
342 if (blkdev_issue_flush(req->ns->bdev))
343 return NVME_SC_INTERNAL | NVME_SC_DNR;
344 return 0;
345 }
346
nvmet_bdev_discard_range(struct nvmet_req * req,struct nvme_dsm_range * range,struct bio ** bio)347 static u16 nvmet_bdev_discard_range(struct nvmet_req *req,
348 struct nvme_dsm_range *range, struct bio **bio)
349 {
350 struct nvmet_ns *ns = req->ns;
351 int ret;
352
353 ret = __blkdev_issue_discard(ns->bdev,
354 nvmet_lba_to_sect(ns, range->slba),
355 le32_to_cpu(range->nlb) << (ns->blksize_shift - 9),
356 GFP_KERNEL, 0, bio);
357 if (ret && ret != -EOPNOTSUPP) {
358 req->error_slba = le64_to_cpu(range->slba);
359 return errno_to_nvme_status(req, ret);
360 }
361 return NVME_SC_SUCCESS;
362 }
363
nvmet_bdev_execute_discard(struct nvmet_req * req)364 static void nvmet_bdev_execute_discard(struct nvmet_req *req)
365 {
366 struct nvme_dsm_range range;
367 struct bio *bio = NULL;
368 int i;
369 u16 status;
370
371 for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) {
372 status = nvmet_copy_from_sgl(req, i * sizeof(range), &range,
373 sizeof(range));
374 if (status)
375 break;
376
377 status = nvmet_bdev_discard_range(req, &range, &bio);
378 if (status)
379 break;
380 }
381
382 if (bio) {
383 bio->bi_private = req;
384 bio->bi_end_io = nvmet_bio_done;
385 if (status)
386 bio_io_error(bio);
387 else
388 submit_bio(bio);
389 } else {
390 nvmet_req_complete(req, status);
391 }
392 }
393
nvmet_bdev_execute_dsm(struct nvmet_req * req)394 static void nvmet_bdev_execute_dsm(struct nvmet_req *req)
395 {
396 if (!nvmet_check_data_len_lte(req, nvmet_dsm_len(req)))
397 return;
398
399 switch (le32_to_cpu(req->cmd->dsm.attributes)) {
400 case NVME_DSMGMT_AD:
401 nvmet_bdev_execute_discard(req);
402 return;
403 case NVME_DSMGMT_IDR:
404 case NVME_DSMGMT_IDW:
405 default:
406 /* Not supported yet */
407 nvmet_req_complete(req, 0);
408 return;
409 }
410 }
411
nvmet_bdev_execute_write_zeroes(struct nvmet_req * req)412 static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req)
413 {
414 struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes;
415 struct bio *bio = NULL;
416 sector_t sector;
417 sector_t nr_sector;
418 int ret;
419
420 if (!nvmet_check_transfer_len(req, 0))
421 return;
422
423 sector = nvmet_lba_to_sect(req->ns, write_zeroes->slba);
424 nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) <<
425 (req->ns->blksize_shift - 9));
426
427 ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector,
428 GFP_KERNEL, &bio, 0);
429 if (bio) {
430 bio->bi_private = req;
431 bio->bi_end_io = nvmet_bio_done;
432 submit_bio(bio);
433 } else {
434 nvmet_req_complete(req, errno_to_nvme_status(req, ret));
435 }
436 }
437
nvmet_bdev_parse_io_cmd(struct nvmet_req * req)438 u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req)
439 {
440 switch (req->cmd->common.opcode) {
441 case nvme_cmd_read:
442 case nvme_cmd_write:
443 req->execute = nvmet_bdev_execute_rw;
444 if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns))
445 req->metadata_len = nvmet_rw_metadata_len(req);
446 return 0;
447 case nvme_cmd_flush:
448 req->execute = nvmet_bdev_execute_flush;
449 return 0;
450 case nvme_cmd_dsm:
451 req->execute = nvmet_bdev_execute_dsm;
452 return 0;
453 case nvme_cmd_write_zeroes:
454 req->execute = nvmet_bdev_execute_write_zeroes;
455 return 0;
456 default:
457 return nvmet_report_invalid_opcode(req);
458 }
459 }
460