1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions for working with the Flattened Device Tree data format
4 *
5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6 * benh@kernel.crashing.org
7 */
8
9 #define pr_fmt(fmt) "OF: fdt: " fmt
10
11 #include <linux/crash_dump.h>
12 #include <linux/crc32.h>
13 #include <linux/kernel.h>
14 #include <linux/initrd.h>
15 #include <linux/memblock.h>
16 #include <linux/mutex.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_reserved_mem.h>
20 #include <linux/sizes.h>
21 #include <linux/string.h>
22 #include <linux/errno.h>
23 #include <linux/slab.h>
24 #include <linux/libfdt.h>
25 #include <linux/debugfs.h>
26 #include <linux/serial_core.h>
27 #include <linux/sysfs.h>
28 #include <linux/random.h>
29
30 #include <asm/setup.h> /* for COMMAND_LINE_SIZE */
31 #include <asm/page.h>
32
33 #include "of_private.h"
34
35 /*
36 * of_fdt_limit_memory - limit the number of regions in the /memory node
37 * @limit: maximum entries
38 *
39 * Adjust the flattened device tree to have at most 'limit' number of
40 * memory entries in the /memory node. This function may be called
41 * any time after initial_boot_param is set.
42 */
of_fdt_limit_memory(int limit)43 void __init of_fdt_limit_memory(int limit)
44 {
45 int memory;
46 int len;
47 const void *val;
48 int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
49 int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
50 const __be32 *addr_prop;
51 const __be32 *size_prop;
52 int root_offset;
53 int cell_size;
54
55 root_offset = fdt_path_offset(initial_boot_params, "/");
56 if (root_offset < 0)
57 return;
58
59 addr_prop = fdt_getprop(initial_boot_params, root_offset,
60 "#address-cells", NULL);
61 if (addr_prop)
62 nr_address_cells = fdt32_to_cpu(*addr_prop);
63
64 size_prop = fdt_getprop(initial_boot_params, root_offset,
65 "#size-cells", NULL);
66 if (size_prop)
67 nr_size_cells = fdt32_to_cpu(*size_prop);
68
69 cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
70
71 memory = fdt_path_offset(initial_boot_params, "/memory");
72 if (memory > 0) {
73 val = fdt_getprop(initial_boot_params, memory, "reg", &len);
74 if (len > limit*cell_size) {
75 len = limit*cell_size;
76 pr_debug("Limiting number of entries to %d\n", limit);
77 fdt_setprop(initial_boot_params, memory, "reg", val,
78 len);
79 }
80 }
81 }
82
of_fdt_device_is_available(const void * blob,unsigned long node)83 static bool of_fdt_device_is_available(const void *blob, unsigned long node)
84 {
85 const char *status = fdt_getprop(blob, node, "status", NULL);
86
87 if (!status)
88 return true;
89
90 if (!strcmp(status, "ok") || !strcmp(status, "okay"))
91 return true;
92
93 return false;
94 }
95
unflatten_dt_alloc(void ** mem,unsigned long size,unsigned long align)96 static void *unflatten_dt_alloc(void **mem, unsigned long size,
97 unsigned long align)
98 {
99 void *res;
100
101 *mem = PTR_ALIGN(*mem, align);
102 res = *mem;
103 *mem += size;
104
105 return res;
106 }
107
populate_properties(const void * blob,int offset,void ** mem,struct device_node * np,const char * nodename,bool dryrun)108 static void populate_properties(const void *blob,
109 int offset,
110 void **mem,
111 struct device_node *np,
112 const char *nodename,
113 bool dryrun)
114 {
115 struct property *pp, **pprev = NULL;
116 int cur;
117 bool has_name = false;
118
119 pprev = &np->properties;
120 for (cur = fdt_first_property_offset(blob, offset);
121 cur >= 0;
122 cur = fdt_next_property_offset(blob, cur)) {
123 const __be32 *val;
124 const char *pname;
125 u32 sz;
126
127 val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
128 if (!val) {
129 pr_warn("Cannot locate property at 0x%x\n", cur);
130 continue;
131 }
132
133 if (!pname) {
134 pr_warn("Cannot find property name at 0x%x\n", cur);
135 continue;
136 }
137
138 if (!strcmp(pname, "name"))
139 has_name = true;
140
141 pp = unflatten_dt_alloc(mem, sizeof(struct property),
142 __alignof__(struct property));
143 if (dryrun)
144 continue;
145
146 /* We accept flattened tree phandles either in
147 * ePAPR-style "phandle" properties, or the
148 * legacy "linux,phandle" properties. If both
149 * appear and have different values, things
150 * will get weird. Don't do that.
151 */
152 if (!strcmp(pname, "phandle") ||
153 !strcmp(pname, "linux,phandle")) {
154 if (!np->phandle)
155 np->phandle = be32_to_cpup(val);
156 }
157
158 /* And we process the "ibm,phandle" property
159 * used in pSeries dynamic device tree
160 * stuff
161 */
162 if (!strcmp(pname, "ibm,phandle"))
163 np->phandle = be32_to_cpup(val);
164
165 pp->name = (char *)pname;
166 pp->length = sz;
167 pp->value = (__be32 *)val;
168 *pprev = pp;
169 pprev = &pp->next;
170 }
171
172 /* With version 0x10 we may not have the name property,
173 * recreate it here from the unit name if absent
174 */
175 if (!has_name) {
176 const char *p = nodename, *ps = p, *pa = NULL;
177 int len;
178
179 while (*p) {
180 if ((*p) == '@')
181 pa = p;
182 else if ((*p) == '/')
183 ps = p + 1;
184 p++;
185 }
186
187 if (pa < ps)
188 pa = p;
189 len = (pa - ps) + 1;
190 pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
191 __alignof__(struct property));
192 if (!dryrun) {
193 pp->name = "name";
194 pp->length = len;
195 pp->value = pp + 1;
196 *pprev = pp;
197 memcpy(pp->value, ps, len - 1);
198 ((char *)pp->value)[len - 1] = 0;
199 pr_debug("fixed up name for %s -> %s\n",
200 nodename, (char *)pp->value);
201 }
202 }
203 }
204
populate_node(const void * blob,int offset,void ** mem,struct device_node * dad,struct device_node ** pnp,bool dryrun)205 static int populate_node(const void *blob,
206 int offset,
207 void **mem,
208 struct device_node *dad,
209 struct device_node **pnp,
210 bool dryrun)
211 {
212 struct device_node *np;
213 const char *pathp;
214 int len;
215
216 pathp = fdt_get_name(blob, offset, &len);
217 if (!pathp) {
218 *pnp = NULL;
219 return len;
220 }
221
222 len++;
223
224 np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len,
225 __alignof__(struct device_node));
226 if (!dryrun) {
227 char *fn;
228 of_node_init(np);
229 np->full_name = fn = ((char *)np) + sizeof(*np);
230
231 memcpy(fn, pathp, len);
232
233 if (dad != NULL) {
234 np->parent = dad;
235 np->sibling = dad->child;
236 dad->child = np;
237 }
238 }
239
240 populate_properties(blob, offset, mem, np, pathp, dryrun);
241 if (!dryrun) {
242 np->name = of_get_property(np, "name", NULL);
243 if (!np->name)
244 np->name = "<NULL>";
245 }
246
247 *pnp = np;
248 return true;
249 }
250
reverse_nodes(struct device_node * parent)251 static void reverse_nodes(struct device_node *parent)
252 {
253 struct device_node *child, *next;
254
255 /* In-depth first */
256 child = parent->child;
257 while (child) {
258 reverse_nodes(child);
259
260 child = child->sibling;
261 }
262
263 /* Reverse the nodes in the child list */
264 child = parent->child;
265 parent->child = NULL;
266 while (child) {
267 next = child->sibling;
268
269 child->sibling = parent->child;
270 parent->child = child;
271 child = next;
272 }
273 }
274
275 /**
276 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
277 * @blob: The parent device tree blob
278 * @mem: Memory chunk to use for allocating device nodes and properties
279 * @dad: Parent struct device_node
280 * @nodepp: The device_node tree created by the call
281 *
282 * Return: The size of unflattened device tree or error code
283 */
unflatten_dt_nodes(const void * blob,void * mem,struct device_node * dad,struct device_node ** nodepp)284 static int unflatten_dt_nodes(const void *blob,
285 void *mem,
286 struct device_node *dad,
287 struct device_node **nodepp)
288 {
289 struct device_node *root;
290 int offset = 0, depth = 0, initial_depth = 0;
291 #define FDT_MAX_DEPTH 64
292 struct device_node *nps[FDT_MAX_DEPTH];
293 void *base = mem;
294 bool dryrun = !base;
295 int ret;
296
297 if (nodepp)
298 *nodepp = NULL;
299
300 /*
301 * We're unflattening device sub-tree if @dad is valid. There are
302 * possibly multiple nodes in the first level of depth. We need
303 * set @depth to 1 to make fdt_next_node() happy as it bails
304 * immediately when negative @depth is found. Otherwise, the device
305 * nodes except the first one won't be unflattened successfully.
306 */
307 if (dad)
308 depth = initial_depth = 1;
309
310 root = dad;
311 nps[depth] = dad;
312
313 for (offset = 0;
314 offset >= 0 && depth >= initial_depth;
315 offset = fdt_next_node(blob, offset, &depth)) {
316 if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
317 continue;
318
319 if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
320 !of_fdt_device_is_available(blob, offset))
321 continue;
322
323 ret = populate_node(blob, offset, &mem, nps[depth],
324 &nps[depth+1], dryrun);
325 if (ret < 0)
326 return ret;
327
328 if (!dryrun && nodepp && !*nodepp)
329 *nodepp = nps[depth+1];
330 if (!dryrun && !root)
331 root = nps[depth+1];
332 }
333
334 if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
335 pr_err("Error %d processing FDT\n", offset);
336 return -EINVAL;
337 }
338
339 /*
340 * Reverse the child list. Some drivers assumes node order matches .dts
341 * node order
342 */
343 if (!dryrun)
344 reverse_nodes(root);
345
346 return mem - base;
347 }
348
349 /**
350 * __unflatten_device_tree - create tree of device_nodes from flat blob
351 * @blob: The blob to expand
352 * @dad: Parent device node
353 * @mynodes: The device_node tree created by the call
354 * @dt_alloc: An allocator that provides a virtual address to memory
355 * for the resulting tree
356 * @detached: if true set OF_DETACHED on @mynodes
357 *
358 * unflattens a device-tree, creating the tree of struct device_node. It also
359 * fills the "name" and "type" pointers of the nodes so the normal device-tree
360 * walking functions can be used.
361 *
362 * Return: NULL on failure or the memory chunk containing the unflattened
363 * device tree on success.
364 */
__unflatten_device_tree(const void * blob,struct device_node * dad,struct device_node ** mynodes,void * (* dt_alloc)(u64 size,u64 align),bool detached)365 void *__unflatten_device_tree(const void *blob,
366 struct device_node *dad,
367 struct device_node **mynodes,
368 void *(*dt_alloc)(u64 size, u64 align),
369 bool detached)
370 {
371 int size;
372 void *mem;
373 int ret;
374
375 if (mynodes)
376 *mynodes = NULL;
377
378 pr_debug(" -> unflatten_device_tree()\n");
379
380 if (!blob) {
381 pr_debug("No device tree pointer\n");
382 return NULL;
383 }
384
385 pr_debug("Unflattening device tree:\n");
386 pr_debug("magic: %08x\n", fdt_magic(blob));
387 pr_debug("size: %08x\n", fdt_totalsize(blob));
388 pr_debug("version: %08x\n", fdt_version(blob));
389
390 if (fdt_check_header(blob)) {
391 pr_err("Invalid device tree blob header\n");
392 return NULL;
393 }
394
395 /* First pass, scan for size */
396 size = unflatten_dt_nodes(blob, NULL, dad, NULL);
397 if (size <= 0)
398 return NULL;
399
400 size = ALIGN(size, 4);
401 pr_debug(" size is %d, allocating...\n", size);
402
403 /* Allocate memory for the expanded device tree */
404 mem = dt_alloc(size + 4, __alignof__(struct device_node));
405 if (!mem)
406 return NULL;
407
408 memset(mem, 0, size);
409
410 *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
411
412 pr_debug(" unflattening %p...\n", mem);
413
414 /* Second pass, do actual unflattening */
415 ret = unflatten_dt_nodes(blob, mem, dad, mynodes);
416
417 if (be32_to_cpup(mem + size) != 0xdeadbeef)
418 pr_warn("End of tree marker overwritten: %08x\n",
419 be32_to_cpup(mem + size));
420
421 if (ret <= 0)
422 return NULL;
423
424 if (detached && mynodes && *mynodes) {
425 of_node_set_flag(*mynodes, OF_DETACHED);
426 pr_debug("unflattened tree is detached\n");
427 }
428
429 pr_debug(" <- unflatten_device_tree()\n");
430 return mem;
431 }
432
kernel_tree_alloc(u64 size,u64 align)433 static void *kernel_tree_alloc(u64 size, u64 align)
434 {
435 return kzalloc(size, GFP_KERNEL);
436 }
437
438 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
439
440 /**
441 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
442 * @blob: Flat device tree blob
443 * @dad: Parent device node
444 * @mynodes: The device tree created by the call
445 *
446 * unflattens the device-tree passed by the firmware, creating the
447 * tree of struct device_node. It also fills the "name" and "type"
448 * pointers of the nodes so the normal device-tree walking functions
449 * can be used.
450 *
451 * Return: NULL on failure or the memory chunk containing the unflattened
452 * device tree on success.
453 */
of_fdt_unflatten_tree(const unsigned long * blob,struct device_node * dad,struct device_node ** mynodes)454 void *of_fdt_unflatten_tree(const unsigned long *blob,
455 struct device_node *dad,
456 struct device_node **mynodes)
457 {
458 void *mem;
459
460 mutex_lock(&of_fdt_unflatten_mutex);
461 mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
462 true);
463 mutex_unlock(&of_fdt_unflatten_mutex);
464
465 return mem;
466 }
467 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
468
469 /* Everything below here references initial_boot_params directly. */
470 int __initdata dt_root_addr_cells;
471 int __initdata dt_root_size_cells;
472
473 void *initial_boot_params __ro_after_init;
474
475 #ifdef CONFIG_OF_EARLY_FLATTREE
476
477 static u32 of_fdt_crc32;
478
early_init_dt_reserve_memory_arch(phys_addr_t base,phys_addr_t size,bool nomap)479 static int __init early_init_dt_reserve_memory_arch(phys_addr_t base,
480 phys_addr_t size, bool nomap)
481 {
482 if (nomap) {
483 /*
484 * If the memory is already reserved (by another region), we
485 * should not allow it to be marked nomap.
486 */
487 if (memblock_is_region_reserved(base, size))
488 return -EBUSY;
489
490 return memblock_mark_nomap(base, size);
491 }
492 return memblock_reserve(base, size);
493 }
494
495 /*
496 * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
497 */
__reserved_mem_reserve_reg(unsigned long node,const char * uname)498 static int __init __reserved_mem_reserve_reg(unsigned long node,
499 const char *uname)
500 {
501 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
502 phys_addr_t base, size;
503 int len;
504 const __be32 *prop;
505 int first = 1;
506 bool nomap;
507
508 prop = of_get_flat_dt_prop(node, "reg", &len);
509 if (!prop)
510 return -ENOENT;
511
512 if (len && len % t_len != 0) {
513 pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
514 uname);
515 return -EINVAL;
516 }
517
518 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
519
520 while (len >= t_len) {
521 base = dt_mem_next_cell(dt_root_addr_cells, &prop);
522 size = dt_mem_next_cell(dt_root_size_cells, &prop);
523
524 if (size &&
525 early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
526 pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
527 uname, &base, (unsigned long)(size / SZ_1M));
528 else
529 pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
530 uname, &base, (unsigned long)(size / SZ_1M));
531
532 len -= t_len;
533 if (first) {
534 fdt_reserved_mem_save_node(node, uname, base, size);
535 first = 0;
536 }
537 }
538 return 0;
539 }
540
541 /*
542 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
543 * in /reserved-memory matches the values supported by the current implementation,
544 * also check if ranges property has been provided
545 */
__reserved_mem_check_root(unsigned long node)546 static int __init __reserved_mem_check_root(unsigned long node)
547 {
548 const __be32 *prop;
549
550 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
551 if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
552 return -EINVAL;
553
554 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
555 if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
556 return -EINVAL;
557
558 prop = of_get_flat_dt_prop(node, "ranges", NULL);
559 if (!prop)
560 return -EINVAL;
561 return 0;
562 }
563
564 /*
565 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
566 */
fdt_scan_reserved_mem(void)567 static int __init fdt_scan_reserved_mem(void)
568 {
569 int node, child;
570 const void *fdt = initial_boot_params;
571
572 node = fdt_path_offset(fdt, "/reserved-memory");
573 if (node < 0)
574 return -ENODEV;
575
576 if (__reserved_mem_check_root(node) != 0) {
577 pr_err("Reserved memory: unsupported node format, ignoring\n");
578 return -EINVAL;
579 }
580
581 fdt_for_each_subnode(child, fdt, node) {
582 const char *uname;
583 int err;
584
585 if (!of_fdt_device_is_available(fdt, child))
586 continue;
587
588 uname = fdt_get_name(fdt, child, NULL);
589
590 err = __reserved_mem_reserve_reg(child, uname);
591 if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL))
592 fdt_reserved_mem_save_node(child, uname, 0, 0);
593 }
594 return 0;
595 }
596
597 /*
598 * fdt_reserve_elfcorehdr() - reserves memory for elf core header
599 *
600 * This function reserves the memory occupied by an elf core header
601 * described in the device tree. This region contains all the
602 * information about primary kernel's core image and is used by a dump
603 * capture kernel to access the system memory on primary kernel.
604 */
fdt_reserve_elfcorehdr(void)605 static void __init fdt_reserve_elfcorehdr(void)
606 {
607 if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size)
608 return;
609
610 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
611 pr_warn("elfcorehdr is overlapped\n");
612 return;
613 }
614
615 memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
616
617 pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
618 elfcorehdr_size >> 10, elfcorehdr_addr);
619 }
620
621 /**
622 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
623 *
624 * This function grabs memory from early allocator for device exclusive use
625 * defined in device tree structures. It should be called by arch specific code
626 * once the early allocator (i.e. memblock) has been fully activated.
627 */
early_init_fdt_scan_reserved_mem(void)628 void __init early_init_fdt_scan_reserved_mem(void)
629 {
630 int n;
631 u64 base, size;
632
633 if (!initial_boot_params)
634 return;
635
636 /* Process header /memreserve/ fields */
637 for (n = 0; ; n++) {
638 fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
639 if (!size)
640 break;
641 early_init_dt_reserve_memory_arch(base, size, false);
642 }
643
644 fdt_scan_reserved_mem();
645 fdt_init_reserved_mem();
646 fdt_reserve_elfcorehdr();
647 }
648
649 /**
650 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
651 */
early_init_fdt_reserve_self(void)652 void __init early_init_fdt_reserve_self(void)
653 {
654 if (!initial_boot_params)
655 return;
656
657 /* Reserve the dtb region */
658 early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
659 fdt_totalsize(initial_boot_params),
660 false);
661 }
662
663 /**
664 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
665 * @it: callback function
666 * @data: context data pointer
667 *
668 * This function is used to scan the flattened device-tree, it is
669 * used to extract the memory information at boot before we can
670 * unflatten the tree
671 */
of_scan_flat_dt(int (* it)(unsigned long node,const char * uname,int depth,void * data),void * data)672 int __init of_scan_flat_dt(int (*it)(unsigned long node,
673 const char *uname, int depth,
674 void *data),
675 void *data)
676 {
677 const void *blob = initial_boot_params;
678 const char *pathp;
679 int offset, rc = 0, depth = -1;
680
681 if (!blob)
682 return 0;
683
684 for (offset = fdt_next_node(blob, -1, &depth);
685 offset >= 0 && depth >= 0 && !rc;
686 offset = fdt_next_node(blob, offset, &depth)) {
687
688 pathp = fdt_get_name(blob, offset, NULL);
689 rc = it(offset, pathp, depth, data);
690 }
691 return rc;
692 }
693
694 /**
695 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
696 * @parent: parent node
697 * @it: callback function
698 * @data: context data pointer
699 *
700 * This function is used to scan sub-nodes of a node.
701 */
of_scan_flat_dt_subnodes(unsigned long parent,int (* it)(unsigned long node,const char * uname,void * data),void * data)702 int __init of_scan_flat_dt_subnodes(unsigned long parent,
703 int (*it)(unsigned long node,
704 const char *uname,
705 void *data),
706 void *data)
707 {
708 const void *blob = initial_boot_params;
709 int node;
710
711 fdt_for_each_subnode(node, blob, parent) {
712 const char *pathp;
713 int rc;
714
715 pathp = fdt_get_name(blob, node, NULL);
716 rc = it(node, pathp, data);
717 if (rc)
718 return rc;
719 }
720 return 0;
721 }
722
723 /**
724 * of_get_flat_dt_subnode_by_name - get the subnode by given name
725 *
726 * @node: the parent node
727 * @uname: the name of subnode
728 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
729 */
730
of_get_flat_dt_subnode_by_name(unsigned long node,const char * uname)731 int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
732 {
733 return fdt_subnode_offset(initial_boot_params, node, uname);
734 }
735
736 /*
737 * of_get_flat_dt_root - find the root node in the flat blob
738 */
of_get_flat_dt_root(void)739 unsigned long __init of_get_flat_dt_root(void)
740 {
741 return 0;
742 }
743
744 /*
745 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
746 *
747 * This function can be used within scan_flattened_dt callback to get
748 * access to properties
749 */
of_get_flat_dt_prop(unsigned long node,const char * name,int * size)750 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
751 int *size)
752 {
753 return fdt_getprop(initial_boot_params, node, name, size);
754 }
755
756 /**
757 * of_fdt_is_compatible - Return true if given node from the given blob has
758 * compat in its compatible list
759 * @blob: A device tree blob
760 * @node: node to test
761 * @compat: compatible string to compare with compatible list.
762 *
763 * Return: a non-zero value on match with smaller values returned for more
764 * specific compatible values.
765 */
of_fdt_is_compatible(const void * blob,unsigned long node,const char * compat)766 static int of_fdt_is_compatible(const void *blob,
767 unsigned long node, const char *compat)
768 {
769 const char *cp;
770 int cplen;
771 unsigned long l, score = 0;
772
773 cp = fdt_getprop(blob, node, "compatible", &cplen);
774 if (cp == NULL)
775 return 0;
776 while (cplen > 0) {
777 score++;
778 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
779 return score;
780 l = strlen(cp) + 1;
781 cp += l;
782 cplen -= l;
783 }
784
785 return 0;
786 }
787
788 /**
789 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
790 * @node: node to test
791 * @compat: compatible string to compare with compatible list.
792 */
of_flat_dt_is_compatible(unsigned long node,const char * compat)793 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
794 {
795 return of_fdt_is_compatible(initial_boot_params, node, compat);
796 }
797
798 /*
799 * of_flat_dt_match - Return true if node matches a list of compatible values
800 */
of_flat_dt_match(unsigned long node,const char * const * compat)801 static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
802 {
803 unsigned int tmp, score = 0;
804
805 if (!compat)
806 return 0;
807
808 while (*compat) {
809 tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
810 if (tmp && (score == 0 || (tmp < score)))
811 score = tmp;
812 compat++;
813 }
814
815 return score;
816 }
817
818 /*
819 * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle
820 */
of_get_flat_dt_phandle(unsigned long node)821 uint32_t __init of_get_flat_dt_phandle(unsigned long node)
822 {
823 return fdt_get_phandle(initial_boot_params, node);
824 }
825
826 struct fdt_scan_status {
827 const char *name;
828 int namelen;
829 int depth;
830 int found;
831 int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
832 void *data;
833 };
834
of_flat_dt_get_machine_name(void)835 const char * __init of_flat_dt_get_machine_name(void)
836 {
837 const char *name;
838 unsigned long dt_root = of_get_flat_dt_root();
839
840 name = of_get_flat_dt_prop(dt_root, "model", NULL);
841 if (!name)
842 name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
843 return name;
844 }
845
846 /**
847 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
848 *
849 * @default_match: A machine specific ptr to return in case of no match.
850 * @get_next_compat: callback function to return next compatible match table.
851 *
852 * Iterate through machine match tables to find the best match for the machine
853 * compatible string in the FDT.
854 */
of_flat_dt_match_machine(const void * default_match,const void * (* get_next_compat)(const char * const **))855 const void * __init of_flat_dt_match_machine(const void *default_match,
856 const void * (*get_next_compat)(const char * const**))
857 {
858 const void *data = NULL;
859 const void *best_data = default_match;
860 const char *const *compat;
861 unsigned long dt_root;
862 unsigned int best_score = ~1, score = 0;
863
864 dt_root = of_get_flat_dt_root();
865 while ((data = get_next_compat(&compat))) {
866 score = of_flat_dt_match(dt_root, compat);
867 if (score > 0 && score < best_score) {
868 best_data = data;
869 best_score = score;
870 }
871 }
872 if (!best_data) {
873 const char *prop;
874 int size;
875
876 pr_err("\n unrecognized device tree list:\n[ ");
877
878 prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
879 if (prop) {
880 while (size > 0) {
881 printk("'%s' ", prop);
882 size -= strlen(prop) + 1;
883 prop += strlen(prop) + 1;
884 }
885 }
886 printk("]\n\n");
887 return NULL;
888 }
889
890 pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
891
892 return best_data;
893 }
894
__early_init_dt_declare_initrd(unsigned long start,unsigned long end)895 static void __early_init_dt_declare_initrd(unsigned long start,
896 unsigned long end)
897 {
898 /* ARM64 would cause a BUG to occur here when CONFIG_DEBUG_VM is
899 * enabled since __va() is called too early. ARM64 does make use
900 * of phys_initrd_start/phys_initrd_size so we can skip this
901 * conversion.
902 */
903 if (!IS_ENABLED(CONFIG_ARM64)) {
904 initrd_start = (unsigned long)__va(start);
905 initrd_end = (unsigned long)__va(end);
906 initrd_below_start_ok = 1;
907 }
908 }
909
910 /**
911 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
912 * @node: reference to node containing initrd location ('chosen')
913 */
early_init_dt_check_for_initrd(unsigned long node)914 static void __init early_init_dt_check_for_initrd(unsigned long node)
915 {
916 u64 start, end;
917 int len;
918 const __be32 *prop;
919
920 if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD))
921 return;
922
923 pr_debug("Looking for initrd properties... ");
924
925 prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
926 if (!prop)
927 return;
928 start = of_read_number(prop, len/4);
929
930 prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
931 if (!prop)
932 return;
933 end = of_read_number(prop, len/4);
934
935 __early_init_dt_declare_initrd(start, end);
936 phys_initrd_start = start;
937 phys_initrd_size = end - start;
938
939 pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n", start, end);
940 }
941
942 /**
943 * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat
944 * tree
945 * @node: reference to node containing elfcorehdr location ('chosen')
946 */
early_init_dt_check_for_elfcorehdr(unsigned long node)947 static void __init early_init_dt_check_for_elfcorehdr(unsigned long node)
948 {
949 const __be32 *prop;
950 int len;
951
952 if (!IS_ENABLED(CONFIG_CRASH_DUMP))
953 return;
954
955 pr_debug("Looking for elfcorehdr property... ");
956
957 prop = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
958 if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
959 return;
960
961 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
962 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &prop);
963
964 pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n",
965 elfcorehdr_addr, elfcorehdr_size);
966 }
967
968 static phys_addr_t cap_mem_addr;
969 static phys_addr_t cap_mem_size;
970
971 /**
972 * early_init_dt_check_for_usable_mem_range - Decode usable memory range
973 * location from flat tree
974 * @node: reference to node containing usable memory range location ('chosen')
975 */
early_init_dt_check_for_usable_mem_range(unsigned long node)976 static void __init early_init_dt_check_for_usable_mem_range(unsigned long node)
977 {
978 const __be32 *prop;
979 int len;
980
981 pr_debug("Looking for usable-memory-range property... ");
982
983 prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
984 if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
985 return;
986
987 cap_mem_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
988 cap_mem_size = dt_mem_next_cell(dt_root_size_cells, &prop);
989
990 pr_debug("cap_mem_start=%pa cap_mem_size=%pa\n", &cap_mem_addr,
991 &cap_mem_size);
992 }
993
994 #ifdef CONFIG_SERIAL_EARLYCON
995
early_init_dt_scan_chosen_stdout(void)996 int __init early_init_dt_scan_chosen_stdout(void)
997 {
998 int offset;
999 const char *p, *q, *options = NULL;
1000 int l;
1001 const struct earlycon_id *match;
1002 const void *fdt = initial_boot_params;
1003
1004 offset = fdt_path_offset(fdt, "/chosen");
1005 if (offset < 0)
1006 offset = fdt_path_offset(fdt, "/chosen@0");
1007 if (offset < 0)
1008 return -ENOENT;
1009
1010 p = fdt_getprop(fdt, offset, "stdout-path", &l);
1011 if (!p)
1012 p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
1013 if (!p || !l)
1014 return -ENOENT;
1015
1016 q = strchrnul(p, ':');
1017 if (*q != '\0')
1018 options = q + 1;
1019 l = q - p;
1020
1021 /* Get the node specified by stdout-path */
1022 offset = fdt_path_offset_namelen(fdt, p, l);
1023 if (offset < 0) {
1024 pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
1025 return 0;
1026 }
1027
1028 for (match = __earlycon_table; match < __earlycon_table_end; match++) {
1029 if (!match->compatible[0])
1030 continue;
1031
1032 if (fdt_node_check_compatible(fdt, offset, match->compatible))
1033 continue;
1034
1035 if (of_setup_earlycon(match, offset, options) == 0)
1036 return 0;
1037 }
1038 return -ENODEV;
1039 }
1040 #endif
1041
1042 /*
1043 * early_init_dt_scan_root - fetch the top level address and size cells
1044 */
early_init_dt_scan_root(unsigned long node,const char * uname,int depth,void * data)1045 int __init early_init_dt_scan_root(unsigned long node, const char *uname,
1046 int depth, void *data)
1047 {
1048 const __be32 *prop;
1049
1050 if (depth != 0)
1051 return 0;
1052
1053 dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
1054 dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
1055
1056 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1057 if (prop)
1058 dt_root_size_cells = be32_to_cpup(prop);
1059 pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1060
1061 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1062 if (prop)
1063 dt_root_addr_cells = be32_to_cpup(prop);
1064 pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1065
1066 /* break now */
1067 return 1;
1068 }
1069
dt_mem_next_cell(int s,const __be32 ** cellp)1070 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1071 {
1072 const __be32 *p = *cellp;
1073
1074 *cellp = p + s;
1075 return of_read_number(p, s);
1076 }
1077
1078 /*
1079 * early_init_dt_scan_memory - Look for and parse memory nodes
1080 */
early_init_dt_scan_memory(unsigned long node,const char * uname,int depth,void * data)1081 int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
1082 int depth, void *data)
1083 {
1084 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1085 const __be32 *reg, *endp;
1086 int l;
1087 bool hotpluggable;
1088
1089 /* We are scanning "memory" nodes only */
1090 if (type == NULL || strcmp(type, "memory") != 0)
1091 return 0;
1092
1093 reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1094 if (reg == NULL)
1095 reg = of_get_flat_dt_prop(node, "reg", &l);
1096 if (reg == NULL)
1097 return 0;
1098
1099 endp = reg + (l / sizeof(__be32));
1100 hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1101
1102 pr_debug("memory scan node %s, reg size %d,\n", uname, l);
1103
1104 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1105 u64 base, size;
1106
1107 base = dt_mem_next_cell(dt_root_addr_cells, ®);
1108 size = dt_mem_next_cell(dt_root_size_cells, ®);
1109
1110 if (size == 0)
1111 continue;
1112 pr_debug(" - %llx, %llx\n", base, size);
1113
1114 early_init_dt_add_memory_arch(base, size);
1115
1116 if (!hotpluggable)
1117 continue;
1118
1119 if (memblock_mark_hotplug(base, size))
1120 pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1121 base, base + size);
1122 }
1123
1124 return 0;
1125 }
1126
early_init_dt_scan_chosen(unsigned long node,const char * uname,int depth,void * data)1127 int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1128 int depth, void *data)
1129 {
1130 int l;
1131 const char *p;
1132 const void *rng_seed;
1133
1134 pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1135
1136 if (depth != 1 || !data ||
1137 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1138 return 0;
1139
1140 early_init_dt_check_for_initrd(node);
1141 early_init_dt_check_for_elfcorehdr(node);
1142 early_init_dt_check_for_usable_mem_range(node);
1143
1144 /* Retrieve command line */
1145 p = of_get_flat_dt_prop(node, "bootargs", &l);
1146 if (p != NULL && l > 0)
1147 strlcpy(data, p, min(l, COMMAND_LINE_SIZE));
1148
1149 /*
1150 * CONFIG_CMDLINE is meant to be a default in case nothing else
1151 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1152 * is set in which case we override whatever was found earlier.
1153 */
1154 #ifdef CONFIG_CMDLINE
1155 #if defined(CONFIG_CMDLINE_EXTEND)
1156 strlcat(data, " ", COMMAND_LINE_SIZE);
1157 strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1158 #elif defined(CONFIG_CMDLINE_FORCE)
1159 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1160 #else
1161 /* No arguments from boot loader, use kernel's cmdl*/
1162 if (!((char *)data)[0])
1163 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1164 #endif
1165 #endif /* CONFIG_CMDLINE */
1166
1167 pr_debug("Command line is: %s\n", (char *)data);
1168
1169 rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1170 if (rng_seed && l > 0) {
1171 add_bootloader_randomness(rng_seed, l);
1172
1173 /* try to clear seed so it won't be found. */
1174 fdt_nop_property(initial_boot_params, node, "rng-seed");
1175
1176 /* update CRC check value */
1177 of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1178 fdt_totalsize(initial_boot_params));
1179 }
1180
1181 /* break now */
1182 return 1;
1183 }
1184
1185 #ifndef MIN_MEMBLOCK_ADDR
1186 #define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET)
1187 #endif
1188 #ifndef MAX_MEMBLOCK_ADDR
1189 #define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0)
1190 #endif
1191
early_init_dt_add_memory_arch(u64 base,u64 size)1192 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1193 {
1194 const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1195
1196 if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1197 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1198 base, base + size);
1199 return;
1200 }
1201
1202 if (!PAGE_ALIGNED(base)) {
1203 size -= PAGE_SIZE - (base & ~PAGE_MASK);
1204 base = PAGE_ALIGN(base);
1205 }
1206 size &= PAGE_MASK;
1207
1208 if (base > MAX_MEMBLOCK_ADDR) {
1209 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1210 base, base + size);
1211 return;
1212 }
1213
1214 if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1215 pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1216 ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1217 size = MAX_MEMBLOCK_ADDR - base + 1;
1218 }
1219
1220 if (base + size < phys_offset) {
1221 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1222 base, base + size);
1223 return;
1224 }
1225 if (base < phys_offset) {
1226 pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1227 base, phys_offset);
1228 size -= phys_offset - base;
1229 base = phys_offset;
1230 }
1231 memblock_add(base, size);
1232 }
1233
early_init_dt_alloc_memory_arch(u64 size,u64 align)1234 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1235 {
1236 void *ptr = memblock_alloc(size, align);
1237
1238 if (!ptr)
1239 panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1240 __func__, size, align);
1241
1242 return ptr;
1243 }
1244
early_init_dt_verify(void * params)1245 bool __init early_init_dt_verify(void *params)
1246 {
1247 if (!params)
1248 return false;
1249
1250 /* check device tree validity */
1251 if (fdt_check_header(params))
1252 return false;
1253
1254 /* Setup flat device-tree pointer */
1255 initial_boot_params = params;
1256 of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1257 fdt_totalsize(initial_boot_params));
1258 return true;
1259 }
1260
1261
early_init_dt_scan_nodes(void)1262 void __init early_init_dt_scan_nodes(void)
1263 {
1264 int rc = 0;
1265
1266 /* Initialize {size,address}-cells info */
1267 of_scan_flat_dt(early_init_dt_scan_root, NULL);
1268
1269 /* Retrieve various information from the /chosen node */
1270 rc = of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1271 if (!rc)
1272 pr_warn("No chosen node found, continuing without\n");
1273
1274 /* Setup memory, calling early_init_dt_add_memory_arch */
1275 of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1276
1277 /* Handle linux,usable-memory-range property */
1278 memblock_cap_memory_range(cap_mem_addr, cap_mem_size);
1279 }
1280
early_init_dt_scan(void * params)1281 bool __init early_init_dt_scan(void *params)
1282 {
1283 bool status;
1284
1285 status = early_init_dt_verify(params);
1286 if (!status)
1287 return false;
1288
1289 early_init_dt_scan_nodes();
1290 return true;
1291 }
1292
1293 /**
1294 * unflatten_device_tree - create tree of device_nodes from flat blob
1295 *
1296 * unflattens the device-tree passed by the firmware, creating the
1297 * tree of struct device_node. It also fills the "name" and "type"
1298 * pointers of the nodes so the normal device-tree walking functions
1299 * can be used.
1300 */
unflatten_device_tree(void)1301 void __init unflatten_device_tree(void)
1302 {
1303 __unflatten_device_tree(initial_boot_params, NULL, &of_root,
1304 early_init_dt_alloc_memory_arch, false);
1305
1306 /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1307 of_alias_scan(early_init_dt_alloc_memory_arch);
1308
1309 unittest_unflatten_overlay_base();
1310 }
1311
1312 /**
1313 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1314 *
1315 * Copies and unflattens the device-tree passed by the firmware, creating the
1316 * tree of struct device_node. It also fills the "name" and "type"
1317 * pointers of the nodes so the normal device-tree walking functions
1318 * can be used. This should only be used when the FDT memory has not been
1319 * reserved such is the case when the FDT is built-in to the kernel init
1320 * section. If the FDT memory is reserved already then unflatten_device_tree
1321 * should be used instead.
1322 */
unflatten_and_copy_device_tree(void)1323 void __init unflatten_and_copy_device_tree(void)
1324 {
1325 int size;
1326 void *dt;
1327
1328 if (!initial_boot_params) {
1329 pr_warn("No valid device tree found, continuing without\n");
1330 return;
1331 }
1332
1333 size = fdt_totalsize(initial_boot_params);
1334 dt = early_init_dt_alloc_memory_arch(size,
1335 roundup_pow_of_two(FDT_V17_SIZE));
1336
1337 if (dt) {
1338 memcpy(dt, initial_boot_params, size);
1339 initial_boot_params = dt;
1340 }
1341 unflatten_device_tree();
1342 }
1343
1344 #ifdef CONFIG_SYSFS
of_fdt_raw_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)1345 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1346 struct bin_attribute *bin_attr,
1347 char *buf, loff_t off, size_t count)
1348 {
1349 memcpy(buf, initial_boot_params + off, count);
1350 return count;
1351 }
1352
of_fdt_raw_init(void)1353 static int __init of_fdt_raw_init(void)
1354 {
1355 static struct bin_attribute of_fdt_raw_attr =
1356 __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1357
1358 if (!initial_boot_params)
1359 return 0;
1360
1361 if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1362 fdt_totalsize(initial_boot_params))) {
1363 pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1364 return 0;
1365 }
1366 of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1367 return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1368 }
1369 late_initcall(of_fdt_raw_init);
1370 #endif
1371
1372 #endif /* CONFIG_OF_EARLY_FLATTREE */
1373