1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Generic pwmlib implementation
4 *
5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6 * Copyright (C) 2011-2012 Avionic Design GmbH
7 */
8
9 #include <linux/acpi.h>
10 #include <linux/module.h>
11 #include <linux/pwm.h>
12 #include <linux/radix-tree.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/debugfs.h>
19 #include <linux/seq_file.h>
20
21 #include <dt-bindings/pwm/pwm.h>
22
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/pwm.h>
25
26 #define MAX_PWMS 1024
27
28 static DEFINE_MUTEX(pwm_lookup_lock);
29 static LIST_HEAD(pwm_lookup_list);
30 static DEFINE_MUTEX(pwm_lock);
31 static LIST_HEAD(pwm_chips);
32 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
33 static RADIX_TREE(pwm_tree, GFP_KERNEL);
34
pwm_to_device(unsigned int pwm)35 static struct pwm_device *pwm_to_device(unsigned int pwm)
36 {
37 return radix_tree_lookup(&pwm_tree, pwm);
38 }
39
alloc_pwms(unsigned int count)40 static int alloc_pwms(unsigned int count)
41 {
42 unsigned int start;
43
44 start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0,
45 count, 0);
46
47 if (start + count > MAX_PWMS)
48 return -ENOSPC;
49
50 return start;
51 }
52
free_pwms(struct pwm_chip * chip)53 static void free_pwms(struct pwm_chip *chip)
54 {
55 unsigned int i;
56
57 for (i = 0; i < chip->npwm; i++) {
58 struct pwm_device *pwm = &chip->pwms[i];
59
60 radix_tree_delete(&pwm_tree, pwm->pwm);
61 }
62
63 bitmap_clear(allocated_pwms, chip->base, chip->npwm);
64
65 kfree(chip->pwms);
66 chip->pwms = NULL;
67 }
68
pwmchip_find_by_name(const char * name)69 static struct pwm_chip *pwmchip_find_by_name(const char *name)
70 {
71 struct pwm_chip *chip;
72
73 if (!name)
74 return NULL;
75
76 mutex_lock(&pwm_lock);
77
78 list_for_each_entry(chip, &pwm_chips, list) {
79 const char *chip_name = dev_name(chip->dev);
80
81 if (chip_name && strcmp(chip_name, name) == 0) {
82 mutex_unlock(&pwm_lock);
83 return chip;
84 }
85 }
86
87 mutex_unlock(&pwm_lock);
88
89 return NULL;
90 }
91
pwm_device_request(struct pwm_device * pwm,const char * label)92 static int pwm_device_request(struct pwm_device *pwm, const char *label)
93 {
94 int err;
95
96 if (test_bit(PWMF_REQUESTED, &pwm->flags))
97 return -EBUSY;
98
99 if (!try_module_get(pwm->chip->ops->owner))
100 return -ENODEV;
101
102 if (pwm->chip->ops->request) {
103 err = pwm->chip->ops->request(pwm->chip, pwm);
104 if (err) {
105 module_put(pwm->chip->ops->owner);
106 return err;
107 }
108 }
109
110 if (pwm->chip->ops->get_state) {
111 pwm->chip->ops->get_state(pwm->chip, pwm, &pwm->state);
112 trace_pwm_get(pwm, &pwm->state);
113
114 if (IS_ENABLED(CONFIG_PWM_DEBUG))
115 pwm->last = pwm->state;
116 }
117
118 set_bit(PWMF_REQUESTED, &pwm->flags);
119 pwm->label = label;
120
121 return 0;
122 }
123
124 struct pwm_device *
of_pwm_xlate_with_flags(struct pwm_chip * pc,const struct of_phandle_args * args)125 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
126 {
127 struct pwm_device *pwm;
128
129 if (pc->of_pwm_n_cells < 2)
130 return ERR_PTR(-EINVAL);
131
132 /* flags in the third cell are optional */
133 if (args->args_count < 2)
134 return ERR_PTR(-EINVAL);
135
136 if (args->args[0] >= pc->npwm)
137 return ERR_PTR(-EINVAL);
138
139 pwm = pwm_request_from_chip(pc, args->args[0], NULL);
140 if (IS_ERR(pwm))
141 return pwm;
142
143 pwm->args.period = args->args[1];
144 pwm->args.polarity = PWM_POLARITY_NORMAL;
145
146 if (pc->of_pwm_n_cells >= 3) {
147 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
148 pwm->args.polarity = PWM_POLARITY_INVERSED;
149 }
150
151 return pwm;
152 }
153 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
154
of_pwmchip_add(struct pwm_chip * chip)155 static void of_pwmchip_add(struct pwm_chip *chip)
156 {
157 if (!chip->dev || !chip->dev->of_node)
158 return;
159
160 if (!chip->of_xlate) {
161 u32 pwm_cells;
162
163 if (of_property_read_u32(chip->dev->of_node, "#pwm-cells",
164 &pwm_cells))
165 pwm_cells = 2;
166
167 chip->of_xlate = of_pwm_xlate_with_flags;
168 chip->of_pwm_n_cells = pwm_cells;
169 }
170
171 of_node_get(chip->dev->of_node);
172 }
173
of_pwmchip_remove(struct pwm_chip * chip)174 static void of_pwmchip_remove(struct pwm_chip *chip)
175 {
176 if (chip->dev)
177 of_node_put(chip->dev->of_node);
178 }
179
180 /**
181 * pwm_set_chip_data() - set private chip data for a PWM
182 * @pwm: PWM device
183 * @data: pointer to chip-specific data
184 *
185 * Returns: 0 on success or a negative error code on failure.
186 */
pwm_set_chip_data(struct pwm_device * pwm,void * data)187 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
188 {
189 if (!pwm)
190 return -EINVAL;
191
192 pwm->chip_data = data;
193
194 return 0;
195 }
196 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
197
198 /**
199 * pwm_get_chip_data() - get private chip data for a PWM
200 * @pwm: PWM device
201 *
202 * Returns: A pointer to the chip-private data for the PWM device.
203 */
pwm_get_chip_data(struct pwm_device * pwm)204 void *pwm_get_chip_data(struct pwm_device *pwm)
205 {
206 return pwm ? pwm->chip_data : NULL;
207 }
208 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
209
pwm_ops_check(const struct pwm_chip * chip)210 static bool pwm_ops_check(const struct pwm_chip *chip)
211 {
212
213 const struct pwm_ops *ops = chip->ops;
214
215 /* driver supports legacy, non-atomic operation */
216 if (ops->config && ops->enable && ops->disable) {
217 if (IS_ENABLED(CONFIG_PWM_DEBUG))
218 dev_warn(chip->dev,
219 "Driver needs updating to atomic API\n");
220
221 return true;
222 }
223
224 if (!ops->apply)
225 return false;
226
227 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
228 dev_warn(chip->dev,
229 "Please implement the .get_state() callback\n");
230
231 return true;
232 }
233
234 /**
235 * pwmchip_add() - register a new PWM chip
236 * @chip: the PWM chip to add
237 *
238 * Register a new PWM chip.
239 *
240 * Returns: 0 on success or a negative error code on failure.
241 */
pwmchip_add(struct pwm_chip * chip)242 int pwmchip_add(struct pwm_chip *chip)
243 {
244 struct pwm_device *pwm;
245 unsigned int i;
246 int ret;
247
248 if (!chip || !chip->dev || !chip->ops || !chip->npwm)
249 return -EINVAL;
250
251 if (!pwm_ops_check(chip))
252 return -EINVAL;
253
254 mutex_lock(&pwm_lock);
255
256 ret = alloc_pwms(chip->npwm);
257 if (ret < 0)
258 goto out;
259
260 chip->base = ret;
261
262 chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
263 if (!chip->pwms) {
264 ret = -ENOMEM;
265 goto out;
266 }
267
268 for (i = 0; i < chip->npwm; i++) {
269 pwm = &chip->pwms[i];
270
271 pwm->chip = chip;
272 pwm->pwm = chip->base + i;
273 pwm->hwpwm = i;
274
275 radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
276 }
277
278 bitmap_set(allocated_pwms, chip->base, chip->npwm);
279
280 INIT_LIST_HEAD(&chip->list);
281 list_add(&chip->list, &pwm_chips);
282
283 ret = 0;
284
285 if (IS_ENABLED(CONFIG_OF))
286 of_pwmchip_add(chip);
287
288 out:
289 mutex_unlock(&pwm_lock);
290
291 if (!ret)
292 pwmchip_sysfs_export(chip);
293
294 return ret;
295 }
296 EXPORT_SYMBOL_GPL(pwmchip_add);
297
298 /**
299 * pwmchip_remove() - remove a PWM chip
300 * @chip: the PWM chip to remove
301 *
302 * Removes a PWM chip. This function may return busy if the PWM chip provides
303 * a PWM device that is still requested.
304 *
305 * Returns: 0 on success or a negative error code on failure.
306 */
pwmchip_remove(struct pwm_chip * chip)307 void pwmchip_remove(struct pwm_chip *chip)
308 {
309 pwmchip_sysfs_unexport(chip);
310
311 mutex_lock(&pwm_lock);
312
313 list_del_init(&chip->list);
314
315 if (IS_ENABLED(CONFIG_OF))
316 of_pwmchip_remove(chip);
317
318 free_pwms(chip);
319
320 mutex_unlock(&pwm_lock);
321 }
322 EXPORT_SYMBOL_GPL(pwmchip_remove);
323
devm_pwmchip_remove(void * data)324 static void devm_pwmchip_remove(void *data)
325 {
326 struct pwm_chip *chip = data;
327
328 pwmchip_remove(chip);
329 }
330
devm_pwmchip_add(struct device * dev,struct pwm_chip * chip)331 int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
332 {
333 int ret;
334
335 ret = pwmchip_add(chip);
336 if (ret)
337 return ret;
338
339 return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
340 }
341 EXPORT_SYMBOL_GPL(devm_pwmchip_add);
342
343 /**
344 * pwm_request() - request a PWM device
345 * @pwm: global PWM device index
346 * @label: PWM device label
347 *
348 * This function is deprecated, use pwm_get() instead.
349 *
350 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
351 * failure.
352 */
pwm_request(int pwm,const char * label)353 struct pwm_device *pwm_request(int pwm, const char *label)
354 {
355 struct pwm_device *dev;
356 int err;
357
358 if (pwm < 0 || pwm >= MAX_PWMS)
359 return ERR_PTR(-EINVAL);
360
361 mutex_lock(&pwm_lock);
362
363 dev = pwm_to_device(pwm);
364 if (!dev) {
365 dev = ERR_PTR(-EPROBE_DEFER);
366 goto out;
367 }
368
369 err = pwm_device_request(dev, label);
370 if (err < 0)
371 dev = ERR_PTR(err);
372
373 out:
374 mutex_unlock(&pwm_lock);
375
376 return dev;
377 }
378 EXPORT_SYMBOL_GPL(pwm_request);
379
380 /**
381 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
382 * @chip: PWM chip
383 * @index: per-chip index of the PWM to request
384 * @label: a literal description string of this PWM
385 *
386 * Returns: A pointer to the PWM device at the given index of the given PWM
387 * chip. A negative error code is returned if the index is not valid for the
388 * specified PWM chip or if the PWM device cannot be requested.
389 */
pwm_request_from_chip(struct pwm_chip * chip,unsigned int index,const char * label)390 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
391 unsigned int index,
392 const char *label)
393 {
394 struct pwm_device *pwm;
395 int err;
396
397 if (!chip || index >= chip->npwm)
398 return ERR_PTR(-EINVAL);
399
400 mutex_lock(&pwm_lock);
401 pwm = &chip->pwms[index];
402
403 err = pwm_device_request(pwm, label);
404 if (err < 0)
405 pwm = ERR_PTR(err);
406
407 mutex_unlock(&pwm_lock);
408 return pwm;
409 }
410 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
411
412 /**
413 * pwm_free() - free a PWM device
414 * @pwm: PWM device
415 *
416 * This function is deprecated, use pwm_put() instead.
417 */
pwm_free(struct pwm_device * pwm)418 void pwm_free(struct pwm_device *pwm)
419 {
420 pwm_put(pwm);
421 }
422 EXPORT_SYMBOL_GPL(pwm_free);
423
pwm_apply_state_debug(struct pwm_device * pwm,const struct pwm_state * state)424 static void pwm_apply_state_debug(struct pwm_device *pwm,
425 const struct pwm_state *state)
426 {
427 struct pwm_state *last = &pwm->last;
428 struct pwm_chip *chip = pwm->chip;
429 struct pwm_state s1, s2;
430 int err;
431
432 if (!IS_ENABLED(CONFIG_PWM_DEBUG))
433 return;
434
435 /* No reasonable diagnosis possible without .get_state() */
436 if (!chip->ops->get_state)
437 return;
438
439 /*
440 * *state was just applied. Read out the hardware state and do some
441 * checks.
442 */
443
444 chip->ops->get_state(chip, pwm, &s1);
445 trace_pwm_get(pwm, &s1);
446
447 /*
448 * The lowlevel driver either ignored .polarity (which is a bug) or as
449 * best effort inverted .polarity and fixed .duty_cycle respectively.
450 * Undo this inversion and fixup for further tests.
451 */
452 if (s1.enabled && s1.polarity != state->polarity) {
453 s2.polarity = state->polarity;
454 s2.duty_cycle = s1.period - s1.duty_cycle;
455 s2.period = s1.period;
456 s2.enabled = s1.enabled;
457 } else {
458 s2 = s1;
459 }
460
461 if (s2.polarity != state->polarity &&
462 state->duty_cycle < state->period)
463 dev_warn(chip->dev, ".apply ignored .polarity\n");
464
465 if (state->enabled &&
466 last->polarity == state->polarity &&
467 last->period > s2.period &&
468 last->period <= state->period)
469 dev_warn(chip->dev,
470 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
471 state->period, s2.period, last->period);
472
473 if (state->enabled && state->period < s2.period)
474 dev_warn(chip->dev,
475 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
476 state->period, s2.period);
477
478 if (state->enabled &&
479 last->polarity == state->polarity &&
480 last->period == s2.period &&
481 last->duty_cycle > s2.duty_cycle &&
482 last->duty_cycle <= state->duty_cycle)
483 dev_warn(chip->dev,
484 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
485 state->duty_cycle, state->period,
486 s2.duty_cycle, s2.period,
487 last->duty_cycle, last->period);
488
489 if (state->enabled && state->duty_cycle < s2.duty_cycle)
490 dev_warn(chip->dev,
491 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
492 state->duty_cycle, state->period,
493 s2.duty_cycle, s2.period);
494
495 if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
496 dev_warn(chip->dev,
497 "requested disabled, but yielded enabled with duty > 0\n");
498
499 /* reapply the state that the driver reported being configured. */
500 err = chip->ops->apply(chip, pwm, &s1);
501 if (err) {
502 *last = s1;
503 dev_err(chip->dev, "failed to reapply current setting\n");
504 return;
505 }
506
507 trace_pwm_apply(pwm, &s1);
508
509 chip->ops->get_state(chip, pwm, last);
510 trace_pwm_get(pwm, last);
511
512 /* reapplication of the current state should give an exact match */
513 if (s1.enabled != last->enabled ||
514 s1.polarity != last->polarity ||
515 (s1.enabled && s1.period != last->period) ||
516 (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
517 dev_err(chip->dev,
518 ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
519 s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
520 last->enabled, last->polarity, last->duty_cycle,
521 last->period);
522 }
523 }
524
525 /**
526 * pwm_apply_state() - atomically apply a new state to a PWM device
527 * @pwm: PWM device
528 * @state: new state to apply
529 */
pwm_apply_state(struct pwm_device * pwm,const struct pwm_state * state)530 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
531 {
532 struct pwm_chip *chip;
533 int err;
534
535 /*
536 * Some lowlevel driver's implementations of .apply() make use of
537 * mutexes, also with some drivers only returning when the new
538 * configuration is active calling pwm_apply_state() from atomic context
539 * is a bad idea. So make it explicit that calling this function might
540 * sleep.
541 */
542 might_sleep();
543
544 if (!pwm || !state || !state->period ||
545 state->duty_cycle > state->period)
546 return -EINVAL;
547
548 chip = pwm->chip;
549
550 if (state->period == pwm->state.period &&
551 state->duty_cycle == pwm->state.duty_cycle &&
552 state->polarity == pwm->state.polarity &&
553 state->enabled == pwm->state.enabled &&
554 state->usage_power == pwm->state.usage_power)
555 return 0;
556
557 if (chip->ops->apply) {
558 err = chip->ops->apply(chip, pwm, state);
559 if (err)
560 return err;
561
562 trace_pwm_apply(pwm, state);
563
564 pwm->state = *state;
565
566 /*
567 * only do this after pwm->state was applied as some
568 * implementations of .get_state depend on this
569 */
570 pwm_apply_state_debug(pwm, state);
571 } else {
572 /*
573 * FIXME: restore the initial state in case of error.
574 */
575 if (state->polarity != pwm->state.polarity) {
576 if (!chip->ops->set_polarity)
577 return -EINVAL;
578
579 /*
580 * Changing the polarity of a running PWM is
581 * only allowed when the PWM driver implements
582 * ->apply().
583 */
584 if (pwm->state.enabled) {
585 chip->ops->disable(chip, pwm);
586 pwm->state.enabled = false;
587 }
588
589 err = chip->ops->set_polarity(chip, pwm,
590 state->polarity);
591 if (err)
592 return err;
593
594 pwm->state.polarity = state->polarity;
595 }
596
597 if (state->period != pwm->state.period ||
598 state->duty_cycle != pwm->state.duty_cycle) {
599 err = chip->ops->config(pwm->chip, pwm,
600 state->duty_cycle,
601 state->period);
602 if (err)
603 return err;
604
605 pwm->state.duty_cycle = state->duty_cycle;
606 pwm->state.period = state->period;
607 }
608
609 if (state->enabled != pwm->state.enabled) {
610 if (state->enabled) {
611 err = chip->ops->enable(chip, pwm);
612 if (err)
613 return err;
614 } else {
615 chip->ops->disable(chip, pwm);
616 }
617
618 pwm->state.enabled = state->enabled;
619 }
620 }
621
622 return 0;
623 }
624 EXPORT_SYMBOL_GPL(pwm_apply_state);
625
626 /**
627 * pwm_capture() - capture and report a PWM signal
628 * @pwm: PWM device
629 * @result: structure to fill with capture result
630 * @timeout: time to wait, in milliseconds, before giving up on capture
631 *
632 * Returns: 0 on success or a negative error code on failure.
633 */
pwm_capture(struct pwm_device * pwm,struct pwm_capture * result,unsigned long timeout)634 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
635 unsigned long timeout)
636 {
637 int err;
638
639 if (!pwm || !pwm->chip->ops)
640 return -EINVAL;
641
642 if (!pwm->chip->ops->capture)
643 return -ENOSYS;
644
645 mutex_lock(&pwm_lock);
646 err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
647 mutex_unlock(&pwm_lock);
648
649 return err;
650 }
651 EXPORT_SYMBOL_GPL(pwm_capture);
652
653 /**
654 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
655 * @pwm: PWM device
656 *
657 * This function will adjust the PWM config to the PWM arguments provided
658 * by the DT or PWM lookup table. This is particularly useful to adapt
659 * the bootloader config to the Linux one.
660 */
pwm_adjust_config(struct pwm_device * pwm)661 int pwm_adjust_config(struct pwm_device *pwm)
662 {
663 struct pwm_state state;
664 struct pwm_args pargs;
665
666 pwm_get_args(pwm, &pargs);
667 pwm_get_state(pwm, &state);
668
669 /*
670 * If the current period is zero it means that either the PWM driver
671 * does not support initial state retrieval or the PWM has not yet
672 * been configured.
673 *
674 * In either case, we setup the new period and polarity, and assign a
675 * duty cycle of 0.
676 */
677 if (!state.period) {
678 state.duty_cycle = 0;
679 state.period = pargs.period;
680 state.polarity = pargs.polarity;
681
682 return pwm_apply_state(pwm, &state);
683 }
684
685 /*
686 * Adjust the PWM duty cycle/period based on the period value provided
687 * in PWM args.
688 */
689 if (pargs.period != state.period) {
690 u64 dutycycle = (u64)state.duty_cycle * pargs.period;
691
692 do_div(dutycycle, state.period);
693 state.duty_cycle = dutycycle;
694 state.period = pargs.period;
695 }
696
697 /*
698 * If the polarity changed, we should also change the duty cycle.
699 */
700 if (pargs.polarity != state.polarity) {
701 state.polarity = pargs.polarity;
702 state.duty_cycle = state.period - state.duty_cycle;
703 }
704
705 return pwm_apply_state(pwm, &state);
706 }
707 EXPORT_SYMBOL_GPL(pwm_adjust_config);
708
fwnode_to_pwmchip(struct fwnode_handle * fwnode)709 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
710 {
711 struct pwm_chip *chip;
712
713 mutex_lock(&pwm_lock);
714
715 list_for_each_entry(chip, &pwm_chips, list)
716 if (chip->dev && dev_fwnode(chip->dev) == fwnode) {
717 mutex_unlock(&pwm_lock);
718 return chip;
719 }
720
721 mutex_unlock(&pwm_lock);
722
723 return ERR_PTR(-EPROBE_DEFER);
724 }
725
pwm_device_link_add(struct device * dev,struct pwm_device * pwm)726 static struct device_link *pwm_device_link_add(struct device *dev,
727 struct pwm_device *pwm)
728 {
729 struct device_link *dl;
730
731 if (!dev) {
732 /*
733 * No device for the PWM consumer has been provided. It may
734 * impact the PM sequence ordering: the PWM supplier may get
735 * suspended before the consumer.
736 */
737 dev_warn(pwm->chip->dev,
738 "No consumer device specified to create a link to\n");
739 return NULL;
740 }
741
742 dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
743 if (!dl) {
744 dev_err(dev, "failed to create device link to %s\n",
745 dev_name(pwm->chip->dev));
746 return ERR_PTR(-EINVAL);
747 }
748
749 return dl;
750 }
751
752 /**
753 * of_pwm_get() - request a PWM via the PWM framework
754 * @dev: device for PWM consumer
755 * @np: device node to get the PWM from
756 * @con_id: consumer name
757 *
758 * Returns the PWM device parsed from the phandle and index specified in the
759 * "pwms" property of a device tree node or a negative error-code on failure.
760 * Values parsed from the device tree are stored in the returned PWM device
761 * object.
762 *
763 * If con_id is NULL, the first PWM device listed in the "pwms" property will
764 * be requested. Otherwise the "pwm-names" property is used to do a reverse
765 * lookup of the PWM index. This also means that the "pwm-names" property
766 * becomes mandatory for devices that look up the PWM device via the con_id
767 * parameter.
768 *
769 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
770 * error code on failure.
771 */
of_pwm_get(struct device * dev,struct device_node * np,const char * con_id)772 struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
773 const char *con_id)
774 {
775 struct pwm_device *pwm = NULL;
776 struct of_phandle_args args;
777 struct device_link *dl;
778 struct pwm_chip *pc;
779 int index = 0;
780 int err;
781
782 if (con_id) {
783 index = of_property_match_string(np, "pwm-names", con_id);
784 if (index < 0)
785 return ERR_PTR(index);
786 }
787
788 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
789 &args);
790 if (err) {
791 pr_err("%s(): can't parse \"pwms\" property\n", __func__);
792 return ERR_PTR(err);
793 }
794
795 pc = fwnode_to_pwmchip(of_fwnode_handle(args.np));
796 if (IS_ERR(pc)) {
797 if (PTR_ERR(pc) != -EPROBE_DEFER)
798 pr_err("%s(): PWM chip not found\n", __func__);
799
800 pwm = ERR_CAST(pc);
801 goto put;
802 }
803
804 pwm = pc->of_xlate(pc, &args);
805 if (IS_ERR(pwm))
806 goto put;
807
808 dl = pwm_device_link_add(dev, pwm);
809 if (IS_ERR(dl)) {
810 /* of_xlate ended up calling pwm_request_from_chip() */
811 pwm_free(pwm);
812 pwm = ERR_CAST(dl);
813 goto put;
814 }
815
816 /*
817 * If a consumer name was not given, try to look it up from the
818 * "pwm-names" property if it exists. Otherwise use the name of
819 * the user device node.
820 */
821 if (!con_id) {
822 err = of_property_read_string_index(np, "pwm-names", index,
823 &con_id);
824 if (err < 0)
825 con_id = np->name;
826 }
827
828 pwm->label = con_id;
829
830 put:
831 of_node_put(args.np);
832
833 return pwm;
834 }
835 EXPORT_SYMBOL_GPL(of_pwm_get);
836
837 /**
838 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
839 * @fwnode: firmware node to get the "pwms" property from
840 *
841 * Returns the PWM device parsed from the fwnode and index specified in the
842 * "pwms" property or a negative error-code on failure.
843 * Values parsed from the device tree are stored in the returned PWM device
844 * object.
845 *
846 * This is analogous to of_pwm_get() except con_id is not yet supported.
847 * ACPI entries must look like
848 * Package () {"pwms", Package ()
849 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
850 *
851 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
852 * error code on failure.
853 */
acpi_pwm_get(const struct fwnode_handle * fwnode)854 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
855 {
856 struct pwm_device *pwm;
857 struct fwnode_reference_args args;
858 struct pwm_chip *chip;
859 int ret;
860
861 memset(&args, 0, sizeof(args));
862
863 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
864 if (ret < 0)
865 return ERR_PTR(ret);
866
867 if (args.nargs < 2)
868 return ERR_PTR(-EPROTO);
869
870 chip = fwnode_to_pwmchip(args.fwnode);
871 if (IS_ERR(chip))
872 return ERR_CAST(chip);
873
874 pwm = pwm_request_from_chip(chip, args.args[0], NULL);
875 if (IS_ERR(pwm))
876 return pwm;
877
878 pwm->args.period = args.args[1];
879 pwm->args.polarity = PWM_POLARITY_NORMAL;
880
881 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
882 pwm->args.polarity = PWM_POLARITY_INVERSED;
883
884 return pwm;
885 }
886
887 /**
888 * pwm_add_table() - register PWM device consumers
889 * @table: array of consumers to register
890 * @num: number of consumers in table
891 */
pwm_add_table(struct pwm_lookup * table,size_t num)892 void pwm_add_table(struct pwm_lookup *table, size_t num)
893 {
894 mutex_lock(&pwm_lookup_lock);
895
896 while (num--) {
897 list_add_tail(&table->list, &pwm_lookup_list);
898 table++;
899 }
900
901 mutex_unlock(&pwm_lookup_lock);
902 }
903
904 /**
905 * pwm_remove_table() - unregister PWM device consumers
906 * @table: array of consumers to unregister
907 * @num: number of consumers in table
908 */
pwm_remove_table(struct pwm_lookup * table,size_t num)909 void pwm_remove_table(struct pwm_lookup *table, size_t num)
910 {
911 mutex_lock(&pwm_lookup_lock);
912
913 while (num--) {
914 list_del(&table->list);
915 table++;
916 }
917
918 mutex_unlock(&pwm_lookup_lock);
919 }
920
921 /**
922 * pwm_get() - look up and request a PWM device
923 * @dev: device for PWM consumer
924 * @con_id: consumer name
925 *
926 * Lookup is first attempted using DT. If the device was not instantiated from
927 * a device tree, a PWM chip and a relative index is looked up via a table
928 * supplied by board setup code (see pwm_add_table()).
929 *
930 * Once a PWM chip has been found the specified PWM device will be requested
931 * and is ready to be used.
932 *
933 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
934 * error code on failure.
935 */
pwm_get(struct device * dev,const char * con_id)936 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
937 {
938 const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
939 const char *dev_id = dev ? dev_name(dev) : NULL;
940 struct pwm_device *pwm;
941 struct pwm_chip *chip;
942 struct device_link *dl;
943 unsigned int best = 0;
944 struct pwm_lookup *p, *chosen = NULL;
945 unsigned int match;
946 int err;
947
948 /* look up via DT first */
949 if (is_of_node(fwnode))
950 return of_pwm_get(dev, to_of_node(fwnode), con_id);
951
952 /* then lookup via ACPI */
953 if (is_acpi_node(fwnode)) {
954 pwm = acpi_pwm_get(fwnode);
955 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
956 return pwm;
957 }
958
959 /*
960 * We look up the provider in the static table typically provided by
961 * board setup code. We first try to lookup the consumer device by
962 * name. If the consumer device was passed in as NULL or if no match
963 * was found, we try to find the consumer by directly looking it up
964 * by name.
965 *
966 * If a match is found, the provider PWM chip is looked up by name
967 * and a PWM device is requested using the PWM device per-chip index.
968 *
969 * The lookup algorithm was shamelessly taken from the clock
970 * framework:
971 *
972 * We do slightly fuzzy matching here:
973 * An entry with a NULL ID is assumed to be a wildcard.
974 * If an entry has a device ID, it must match
975 * If an entry has a connection ID, it must match
976 * Then we take the most specific entry - with the following order
977 * of precedence: dev+con > dev only > con only.
978 */
979 mutex_lock(&pwm_lookup_lock);
980
981 list_for_each_entry(p, &pwm_lookup_list, list) {
982 match = 0;
983
984 if (p->dev_id) {
985 if (!dev_id || strcmp(p->dev_id, dev_id))
986 continue;
987
988 match += 2;
989 }
990
991 if (p->con_id) {
992 if (!con_id || strcmp(p->con_id, con_id))
993 continue;
994
995 match += 1;
996 }
997
998 if (match > best) {
999 chosen = p;
1000
1001 if (match != 3)
1002 best = match;
1003 else
1004 break;
1005 }
1006 }
1007
1008 mutex_unlock(&pwm_lookup_lock);
1009
1010 if (!chosen)
1011 return ERR_PTR(-ENODEV);
1012
1013 chip = pwmchip_find_by_name(chosen->provider);
1014
1015 /*
1016 * If the lookup entry specifies a module, load the module and retry
1017 * the PWM chip lookup. This can be used to work around driver load
1018 * ordering issues if driver's can't be made to properly support the
1019 * deferred probe mechanism.
1020 */
1021 if (!chip && chosen->module) {
1022 err = request_module(chosen->module);
1023 if (err == 0)
1024 chip = pwmchip_find_by_name(chosen->provider);
1025 }
1026
1027 if (!chip)
1028 return ERR_PTR(-EPROBE_DEFER);
1029
1030 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1031 if (IS_ERR(pwm))
1032 return pwm;
1033
1034 dl = pwm_device_link_add(dev, pwm);
1035 if (IS_ERR(dl)) {
1036 pwm_free(pwm);
1037 return ERR_CAST(dl);
1038 }
1039
1040 pwm->args.period = chosen->period;
1041 pwm->args.polarity = chosen->polarity;
1042
1043 return pwm;
1044 }
1045 EXPORT_SYMBOL_GPL(pwm_get);
1046
1047 /**
1048 * pwm_put() - release a PWM device
1049 * @pwm: PWM device
1050 */
pwm_put(struct pwm_device * pwm)1051 void pwm_put(struct pwm_device *pwm)
1052 {
1053 if (!pwm)
1054 return;
1055
1056 mutex_lock(&pwm_lock);
1057
1058 if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1059 pr_warn("PWM device already freed\n");
1060 goto out;
1061 }
1062
1063 if (pwm->chip->ops->free)
1064 pwm->chip->ops->free(pwm->chip, pwm);
1065
1066 pwm_set_chip_data(pwm, NULL);
1067 pwm->label = NULL;
1068
1069 module_put(pwm->chip->ops->owner);
1070 out:
1071 mutex_unlock(&pwm_lock);
1072 }
1073 EXPORT_SYMBOL_GPL(pwm_put);
1074
devm_pwm_release(void * pwm)1075 static void devm_pwm_release(void *pwm)
1076 {
1077 pwm_put(pwm);
1078 }
1079
1080 /**
1081 * devm_pwm_get() - resource managed pwm_get()
1082 * @dev: device for PWM consumer
1083 * @con_id: consumer name
1084 *
1085 * This function performs like pwm_get() but the acquired PWM device will
1086 * automatically be released on driver detach.
1087 *
1088 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1089 * error code on failure.
1090 */
devm_pwm_get(struct device * dev,const char * con_id)1091 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1092 {
1093 struct pwm_device *pwm;
1094 int ret;
1095
1096 pwm = pwm_get(dev, con_id);
1097 if (IS_ERR(pwm))
1098 return pwm;
1099
1100 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1101 if (ret)
1102 return ERR_PTR(ret);
1103
1104 return pwm;
1105 }
1106 EXPORT_SYMBOL_GPL(devm_pwm_get);
1107
1108 /**
1109 * devm_of_pwm_get() - resource managed of_pwm_get()
1110 * @dev: device for PWM consumer
1111 * @np: device node to get the PWM from
1112 * @con_id: consumer name
1113 *
1114 * This function performs like of_pwm_get() but the acquired PWM device will
1115 * automatically be released on driver detach.
1116 *
1117 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1118 * error code on failure.
1119 */
devm_of_pwm_get(struct device * dev,struct device_node * np,const char * con_id)1120 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1121 const char *con_id)
1122 {
1123 struct pwm_device *pwm;
1124 int ret;
1125
1126 pwm = of_pwm_get(dev, np, con_id);
1127 if (IS_ERR(pwm))
1128 return pwm;
1129
1130 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1131 if (ret)
1132 return ERR_PTR(ret);
1133
1134 return pwm;
1135 }
1136 EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1137
1138 /**
1139 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1140 * @dev: device for PWM consumer
1141 * @fwnode: firmware node to get the PWM from
1142 * @con_id: consumer name
1143 *
1144 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1145 * acpi_pwm_get() for a detailed description.
1146 *
1147 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1148 * error code on failure.
1149 */
devm_fwnode_pwm_get(struct device * dev,struct fwnode_handle * fwnode,const char * con_id)1150 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1151 struct fwnode_handle *fwnode,
1152 const char *con_id)
1153 {
1154 struct pwm_device *pwm = ERR_PTR(-ENODEV);
1155 int ret;
1156
1157 if (is_of_node(fwnode))
1158 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1159 else if (is_acpi_node(fwnode))
1160 pwm = acpi_pwm_get(fwnode);
1161 if (IS_ERR(pwm))
1162 return pwm;
1163
1164 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1165 if (ret)
1166 return ERR_PTR(ret);
1167
1168 return pwm;
1169 }
1170 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1171
1172 #ifdef CONFIG_DEBUG_FS
pwm_dbg_show(struct pwm_chip * chip,struct seq_file * s)1173 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1174 {
1175 unsigned int i;
1176
1177 for (i = 0; i < chip->npwm; i++) {
1178 struct pwm_device *pwm = &chip->pwms[i];
1179 struct pwm_state state;
1180
1181 pwm_get_state(pwm, &state);
1182
1183 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1184
1185 if (test_bit(PWMF_REQUESTED, &pwm->flags))
1186 seq_puts(s, " requested");
1187
1188 if (state.enabled)
1189 seq_puts(s, " enabled");
1190
1191 seq_printf(s, " period: %llu ns", state.period);
1192 seq_printf(s, " duty: %llu ns", state.duty_cycle);
1193 seq_printf(s, " polarity: %s",
1194 state.polarity ? "inverse" : "normal");
1195
1196 if (state.usage_power)
1197 seq_puts(s, " usage_power");
1198
1199 seq_puts(s, "\n");
1200 }
1201 }
1202
pwm_seq_start(struct seq_file * s,loff_t * pos)1203 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1204 {
1205 mutex_lock(&pwm_lock);
1206 s->private = "";
1207
1208 return seq_list_start(&pwm_chips, *pos);
1209 }
1210
pwm_seq_next(struct seq_file * s,void * v,loff_t * pos)1211 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1212 {
1213 s->private = "\n";
1214
1215 return seq_list_next(v, &pwm_chips, pos);
1216 }
1217
pwm_seq_stop(struct seq_file * s,void * v)1218 static void pwm_seq_stop(struct seq_file *s, void *v)
1219 {
1220 mutex_unlock(&pwm_lock);
1221 }
1222
pwm_seq_show(struct seq_file * s,void * v)1223 static int pwm_seq_show(struct seq_file *s, void *v)
1224 {
1225 struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1226
1227 seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1228 chip->dev->bus ? chip->dev->bus->name : "no-bus",
1229 dev_name(chip->dev), chip->npwm,
1230 (chip->npwm != 1) ? "s" : "");
1231
1232 pwm_dbg_show(chip, s);
1233
1234 return 0;
1235 }
1236
1237 static const struct seq_operations pwm_debugfs_sops = {
1238 .start = pwm_seq_start,
1239 .next = pwm_seq_next,
1240 .stop = pwm_seq_stop,
1241 .show = pwm_seq_show,
1242 };
1243
1244 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1245
pwm_debugfs_init(void)1246 static int __init pwm_debugfs_init(void)
1247 {
1248 debugfs_create_file("pwm", S_IFREG | 0444, NULL, NULL,
1249 &pwm_debugfs_fops);
1250
1251 return 0;
1252 }
1253 subsys_initcall(pwm_debugfs_init);
1254 #endif /* CONFIG_DEBUG_FS */
1255