1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2020 ARM Ltd.
4 */
5
6 #include <linux/bitops.h>
7 #include <linux/cpu.h>
8 #include <linux/kernel.h>
9 #include <linux/mm.h>
10 #include <linux/prctl.h>
11 #include <linux/sched.h>
12 #include <linux/sched/mm.h>
13 #include <linux/string.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/thread_info.h>
17 #include <linux/types.h>
18 #include <linux/uio.h>
19
20 #include <asm/barrier.h>
21 #include <asm/cpufeature.h>
22 #include <asm/mte.h>
23 #include <asm/ptrace.h>
24 #include <asm/sysreg.h>
25
26 static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred);
27
28 #ifdef CONFIG_KASAN_HW_TAGS
29 /*
30 * The asynchronous and asymmetric MTE modes have the same behavior for
31 * store operations. This flag is set when either of these modes is enabled.
32 */
33 DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode);
34 EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode);
35 #endif
36
mte_sync_page_tags(struct page * page,pte_t old_pte,bool check_swap,bool pte_is_tagged)37 static void mte_sync_page_tags(struct page *page, pte_t old_pte,
38 bool check_swap, bool pte_is_tagged)
39 {
40 if (check_swap && is_swap_pte(old_pte)) {
41 swp_entry_t entry = pte_to_swp_entry(old_pte);
42
43 if (!non_swap_entry(entry) && mte_restore_tags(entry, page))
44 return;
45 }
46
47 if (!pte_is_tagged)
48 return;
49
50 page_kasan_tag_reset(page);
51 /*
52 * We need smp_wmb() in between setting the flags and clearing the
53 * tags because if another thread reads page->flags and builds a
54 * tagged address out of it, there is an actual dependency to the
55 * memory access, but on the current thread we do not guarantee that
56 * the new page->flags are visible before the tags were updated.
57 */
58 smp_wmb();
59 mte_clear_page_tags(page_address(page));
60 }
61
mte_sync_tags(pte_t old_pte,pte_t pte)62 void mte_sync_tags(pte_t old_pte, pte_t pte)
63 {
64 struct page *page = pte_page(pte);
65 long i, nr_pages = compound_nr(page);
66 bool check_swap = nr_pages == 1;
67 bool pte_is_tagged = pte_tagged(pte);
68
69 /* Early out if there's nothing to do */
70 if (!check_swap && !pte_is_tagged)
71 return;
72
73 /* if PG_mte_tagged is set, tags have already been initialised */
74 for (i = 0; i < nr_pages; i++, page++) {
75 if (!test_and_set_bit(PG_mte_tagged, &page->flags))
76 mte_sync_page_tags(page, old_pte, check_swap,
77 pte_is_tagged);
78 }
79 }
80
memcmp_pages(struct page * page1,struct page * page2)81 int memcmp_pages(struct page *page1, struct page *page2)
82 {
83 char *addr1, *addr2;
84 int ret;
85
86 addr1 = page_address(page1);
87 addr2 = page_address(page2);
88 ret = memcmp(addr1, addr2, PAGE_SIZE);
89
90 if (!system_supports_mte() || ret)
91 return ret;
92
93 /*
94 * If the page content is identical but at least one of the pages is
95 * tagged, return non-zero to avoid KSM merging. If only one of the
96 * pages is tagged, set_pte_at() may zero or change the tags of the
97 * other page via mte_sync_tags().
98 */
99 if (test_bit(PG_mte_tagged, &page1->flags) ||
100 test_bit(PG_mte_tagged, &page2->flags))
101 return addr1 != addr2;
102
103 return ret;
104 }
105
__mte_enable_kernel(const char * mode,unsigned long tcf)106 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf)
107 {
108 /* Enable MTE Sync Mode for EL1. */
109 sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, tcf);
110 isb();
111
112 pr_info_once("MTE: enabled in %s mode at EL1\n", mode);
113 }
114
115 #ifdef CONFIG_KASAN_HW_TAGS
mte_enable_kernel_sync(void)116 void mte_enable_kernel_sync(void)
117 {
118 /*
119 * Make sure we enter this function when no PE has set
120 * async mode previously.
121 */
122 WARN_ONCE(system_uses_mte_async_or_asymm_mode(),
123 "MTE async mode enabled system wide!");
124
125 __mte_enable_kernel("synchronous", SCTLR_ELx_TCF_SYNC);
126 }
127
mte_enable_kernel_async(void)128 void mte_enable_kernel_async(void)
129 {
130 __mte_enable_kernel("asynchronous", SCTLR_ELx_TCF_ASYNC);
131
132 /*
133 * MTE async mode is set system wide by the first PE that
134 * executes this function.
135 *
136 * Note: If in future KASAN acquires a runtime switching
137 * mode in between sync and async, this strategy needs
138 * to be reviewed.
139 */
140 if (!system_uses_mte_async_or_asymm_mode())
141 static_branch_enable(&mte_async_or_asymm_mode);
142 }
143
mte_enable_kernel_asymm(void)144 void mte_enable_kernel_asymm(void)
145 {
146 if (cpus_have_cap(ARM64_MTE_ASYMM)) {
147 __mte_enable_kernel("asymmetric", SCTLR_ELx_TCF_ASYMM);
148
149 /*
150 * MTE asymm mode behaves as async mode for store
151 * operations. The mode is set system wide by the
152 * first PE that executes this function.
153 *
154 * Note: If in future KASAN acquires a runtime switching
155 * mode in between sync and async, this strategy needs
156 * to be reviewed.
157 */
158 if (!system_uses_mte_async_or_asymm_mode())
159 static_branch_enable(&mte_async_or_asymm_mode);
160 } else {
161 /*
162 * If the CPU does not support MTE asymmetric mode the
163 * kernel falls back on synchronous mode which is the
164 * default for kasan=on.
165 */
166 mte_enable_kernel_sync();
167 }
168 }
169 #endif
170
171 #ifdef CONFIG_KASAN_HW_TAGS
mte_check_tfsr_el1(void)172 void mte_check_tfsr_el1(void)
173 {
174 u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1);
175
176 if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) {
177 /*
178 * Note: isb() is not required after this direct write
179 * because there is no indirect read subsequent to it
180 * (per ARM DDI 0487F.c table D13-1).
181 */
182 write_sysreg_s(0, SYS_TFSR_EL1);
183
184 kasan_report_async();
185 }
186 }
187 #endif
188
mte_update_sctlr_user(struct task_struct * task)189 static void mte_update_sctlr_user(struct task_struct *task)
190 {
191 /*
192 * This must be called with preemption disabled and can only be called
193 * on the current or next task since the CPU must match where the thread
194 * is going to run. The caller is responsible for calling
195 * update_sctlr_el1() later in the same preemption disabled block.
196 */
197 unsigned long sctlr = task->thread.sctlr_user;
198 unsigned long mte_ctrl = task->thread.mte_ctrl;
199 unsigned long pref, resolved_mte_tcf;
200
201 pref = __this_cpu_read(mte_tcf_preferred);
202 resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl;
203 sctlr &= ~SCTLR_EL1_TCF0_MASK;
204 if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC)
205 sctlr |= SCTLR_EL1_TCF0_ASYNC;
206 else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC)
207 sctlr |= SCTLR_EL1_TCF0_SYNC;
208 task->thread.sctlr_user = sctlr;
209 }
210
mte_update_gcr_excl(struct task_struct * task)211 static void mte_update_gcr_excl(struct task_struct *task)
212 {
213 /*
214 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by
215 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled.
216 */
217 if (kasan_hw_tags_enabled())
218 return;
219
220 write_sysreg_s(
221 ((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
222 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND,
223 SYS_GCR_EL1);
224 }
225
kasan_hw_tags_enable(struct alt_instr * alt,__le32 * origptr,__le32 * updptr,int nr_inst)226 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
227 __le32 *updptr, int nr_inst)
228 {
229 BUG_ON(nr_inst != 1); /* Branch -> NOP */
230
231 if (kasan_hw_tags_enabled())
232 *updptr = cpu_to_le32(aarch64_insn_gen_nop());
233 }
234
mte_thread_init_user(void)235 void mte_thread_init_user(void)
236 {
237 if (!system_supports_mte())
238 return;
239
240 /* clear any pending asynchronous tag fault */
241 dsb(ish);
242 write_sysreg_s(0, SYS_TFSRE0_EL1);
243 clear_thread_flag(TIF_MTE_ASYNC_FAULT);
244 /* disable tag checking and reset tag generation mask */
245 set_mte_ctrl(current, 0);
246 }
247
mte_thread_switch(struct task_struct * next)248 void mte_thread_switch(struct task_struct *next)
249 {
250 if (!system_supports_mte())
251 return;
252
253 mte_update_sctlr_user(next);
254 mte_update_gcr_excl(next);
255
256 /*
257 * Check if an async tag exception occurred at EL1.
258 *
259 * Note: On the context switch path we rely on the dsb() present
260 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1
261 * are synchronized before this point.
262 */
263 isb();
264 mte_check_tfsr_el1();
265 }
266
mte_suspend_enter(void)267 void mte_suspend_enter(void)
268 {
269 if (!system_supports_mte())
270 return;
271
272 /*
273 * The barriers are required to guarantee that the indirect writes
274 * to TFSR_EL1 are synchronized before we report the state.
275 */
276 dsb(nsh);
277 isb();
278
279 /* Report SYS_TFSR_EL1 before suspend entry */
280 mte_check_tfsr_el1();
281 }
282
set_mte_ctrl(struct task_struct * task,unsigned long arg)283 long set_mte_ctrl(struct task_struct *task, unsigned long arg)
284 {
285 u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) &
286 SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT;
287
288 if (!system_supports_mte())
289 return 0;
290
291 if (arg & PR_MTE_TCF_ASYNC)
292 mte_ctrl |= MTE_CTRL_TCF_ASYNC;
293 if (arg & PR_MTE_TCF_SYNC)
294 mte_ctrl |= MTE_CTRL_TCF_SYNC;
295
296 task->thread.mte_ctrl = mte_ctrl;
297 if (task == current) {
298 preempt_disable();
299 mte_update_sctlr_user(task);
300 mte_update_gcr_excl(task);
301 update_sctlr_el1(task->thread.sctlr_user);
302 preempt_enable();
303 }
304
305 return 0;
306 }
307
get_mte_ctrl(struct task_struct * task)308 long get_mte_ctrl(struct task_struct *task)
309 {
310 unsigned long ret;
311 u64 mte_ctrl = task->thread.mte_ctrl;
312 u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
313 SYS_GCR_EL1_EXCL_MASK;
314
315 if (!system_supports_mte())
316 return 0;
317
318 ret = incl << PR_MTE_TAG_SHIFT;
319 if (mte_ctrl & MTE_CTRL_TCF_ASYNC)
320 ret |= PR_MTE_TCF_ASYNC;
321 if (mte_ctrl & MTE_CTRL_TCF_SYNC)
322 ret |= PR_MTE_TCF_SYNC;
323
324 return ret;
325 }
326
327 /*
328 * Access MTE tags in another process' address space as given in mm. Update
329 * the number of tags copied. Return 0 if any tags copied, error otherwise.
330 * Inspired by __access_remote_vm().
331 */
__access_remote_tags(struct mm_struct * mm,unsigned long addr,struct iovec * kiov,unsigned int gup_flags)332 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
333 struct iovec *kiov, unsigned int gup_flags)
334 {
335 struct vm_area_struct *vma;
336 void __user *buf = kiov->iov_base;
337 size_t len = kiov->iov_len;
338 int ret;
339 int write = gup_flags & FOLL_WRITE;
340
341 if (!access_ok(buf, len))
342 return -EFAULT;
343
344 if (mmap_read_lock_killable(mm))
345 return -EIO;
346
347 while (len) {
348 unsigned long tags, offset;
349 void *maddr;
350 struct page *page = NULL;
351
352 ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page,
353 &vma, NULL);
354 if (ret <= 0)
355 break;
356
357 /*
358 * Only copy tags if the page has been mapped as PROT_MTE
359 * (PG_mte_tagged set). Otherwise the tags are not valid and
360 * not accessible to user. Moreover, an mprotect(PROT_MTE)
361 * would cause the existing tags to be cleared if the page
362 * was never mapped with PROT_MTE.
363 */
364 if (!(vma->vm_flags & VM_MTE)) {
365 ret = -EOPNOTSUPP;
366 put_page(page);
367 break;
368 }
369 WARN_ON_ONCE(!test_bit(PG_mte_tagged, &page->flags));
370
371 /* limit access to the end of the page */
372 offset = offset_in_page(addr);
373 tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
374
375 maddr = page_address(page);
376 if (write) {
377 tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
378 set_page_dirty_lock(page);
379 } else {
380 tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
381 }
382 put_page(page);
383
384 /* error accessing the tracer's buffer */
385 if (!tags)
386 break;
387
388 len -= tags;
389 buf += tags;
390 addr += tags * MTE_GRANULE_SIZE;
391 }
392 mmap_read_unlock(mm);
393
394 /* return an error if no tags copied */
395 kiov->iov_len = buf - kiov->iov_base;
396 if (!kiov->iov_len) {
397 /* check for error accessing the tracee's address space */
398 if (ret <= 0)
399 return -EIO;
400 else
401 return -EFAULT;
402 }
403
404 return 0;
405 }
406
407 /*
408 * Copy MTE tags in another process' address space at 'addr' to/from tracer's
409 * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
410 */
access_remote_tags(struct task_struct * tsk,unsigned long addr,struct iovec * kiov,unsigned int gup_flags)411 static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
412 struct iovec *kiov, unsigned int gup_flags)
413 {
414 struct mm_struct *mm;
415 int ret;
416
417 mm = get_task_mm(tsk);
418 if (!mm)
419 return -EPERM;
420
421 if (!tsk->ptrace || (current != tsk->parent) ||
422 ((get_dumpable(mm) != SUID_DUMP_USER) &&
423 !ptracer_capable(tsk, mm->user_ns))) {
424 mmput(mm);
425 return -EPERM;
426 }
427
428 ret = __access_remote_tags(mm, addr, kiov, gup_flags);
429 mmput(mm);
430
431 return ret;
432 }
433
mte_ptrace_copy_tags(struct task_struct * child,long request,unsigned long addr,unsigned long data)434 int mte_ptrace_copy_tags(struct task_struct *child, long request,
435 unsigned long addr, unsigned long data)
436 {
437 int ret;
438 struct iovec kiov;
439 struct iovec __user *uiov = (void __user *)data;
440 unsigned int gup_flags = FOLL_FORCE;
441
442 if (!system_supports_mte())
443 return -EIO;
444
445 if (get_user(kiov.iov_base, &uiov->iov_base) ||
446 get_user(kiov.iov_len, &uiov->iov_len))
447 return -EFAULT;
448
449 if (request == PTRACE_POKEMTETAGS)
450 gup_flags |= FOLL_WRITE;
451
452 /* align addr to the MTE tag granule */
453 addr &= MTE_GRANULE_MASK;
454
455 ret = access_remote_tags(child, addr, &kiov, gup_flags);
456 if (!ret)
457 ret = put_user(kiov.iov_len, &uiov->iov_len);
458
459 return ret;
460 }
461
mte_tcf_preferred_show(struct device * dev,struct device_attribute * attr,char * buf)462 static ssize_t mte_tcf_preferred_show(struct device *dev,
463 struct device_attribute *attr, char *buf)
464 {
465 switch (per_cpu(mte_tcf_preferred, dev->id)) {
466 case MTE_CTRL_TCF_ASYNC:
467 return sysfs_emit(buf, "async\n");
468 case MTE_CTRL_TCF_SYNC:
469 return sysfs_emit(buf, "sync\n");
470 default:
471 return sysfs_emit(buf, "???\n");
472 }
473 }
474
mte_tcf_preferred_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)475 static ssize_t mte_tcf_preferred_store(struct device *dev,
476 struct device_attribute *attr,
477 const char *buf, size_t count)
478 {
479 u64 tcf;
480
481 if (sysfs_streq(buf, "async"))
482 tcf = MTE_CTRL_TCF_ASYNC;
483 else if (sysfs_streq(buf, "sync"))
484 tcf = MTE_CTRL_TCF_SYNC;
485 else
486 return -EINVAL;
487
488 device_lock(dev);
489 per_cpu(mte_tcf_preferred, dev->id) = tcf;
490 device_unlock(dev);
491
492 return count;
493 }
494 static DEVICE_ATTR_RW(mte_tcf_preferred);
495
register_mte_tcf_preferred_sysctl(void)496 static int register_mte_tcf_preferred_sysctl(void)
497 {
498 unsigned int cpu;
499
500 if (!system_supports_mte())
501 return 0;
502
503 for_each_possible_cpu(cpu) {
504 per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC;
505 device_create_file(get_cpu_device(cpu),
506 &dev_attr_mte_tcf_preferred);
507 }
508
509 return 0;
510 }
511 subsys_initcall(register_mte_tcf_preferred_sysctl);
512