1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * KVM paravirt_ops implementation
4 *
5 * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Copyright IBM Corporation, 2007
7 * Authors: Anthony Liguori <aliguori@us.ibm.com>
8 */
9
10 #define pr_fmt(fmt) "kvm-guest: " fmt
11
12 #include <linux/context_tracking.h>
13 #include <linux/init.h>
14 #include <linux/irq.h>
15 #include <linux/kernel.h>
16 #include <linux/kvm_para.h>
17 #include <linux/cpu.h>
18 #include <linux/mm.h>
19 #include <linux/highmem.h>
20 #include <linux/hardirq.h>
21 #include <linux/notifier.h>
22 #include <linux/reboot.h>
23 #include <linux/hash.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/kprobes.h>
27 #include <linux/nmi.h>
28 #include <linux/swait.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/cc_platform.h>
31 #include <linux/efi.h>
32 #include <asm/timer.h>
33 #include <asm/cpu.h>
34 #include <asm/traps.h>
35 #include <asm/desc.h>
36 #include <asm/tlbflush.h>
37 #include <asm/apic.h>
38 #include <asm/apicdef.h>
39 #include <asm/hypervisor.h>
40 #include <asm/tlb.h>
41 #include <asm/cpuidle_haltpoll.h>
42 #include <asm/ptrace.h>
43 #include <asm/reboot.h>
44 #include <asm/svm.h>
45 #include <asm/e820/api.h>
46
47 DEFINE_STATIC_KEY_FALSE(kvm_async_pf_enabled);
48
49 static int kvmapf = 1;
50
parse_no_kvmapf(char * arg)51 static int __init parse_no_kvmapf(char *arg)
52 {
53 kvmapf = 0;
54 return 0;
55 }
56
57 early_param("no-kvmapf", parse_no_kvmapf);
58
59 static int steal_acc = 1;
parse_no_stealacc(char * arg)60 static int __init parse_no_stealacc(char *arg)
61 {
62 steal_acc = 0;
63 return 0;
64 }
65
66 early_param("no-steal-acc", parse_no_stealacc);
67
68 static DEFINE_PER_CPU_DECRYPTED(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
69 DEFINE_PER_CPU_DECRYPTED(struct kvm_steal_time, steal_time) __aligned(64) __visible;
70 static int has_steal_clock = 0;
71
72 /*
73 * No need for any "IO delay" on KVM
74 */
kvm_io_delay(void)75 static void kvm_io_delay(void)
76 {
77 }
78
79 #define KVM_TASK_SLEEP_HASHBITS 8
80 #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
81
82 struct kvm_task_sleep_node {
83 struct hlist_node link;
84 struct swait_queue_head wq;
85 u32 token;
86 int cpu;
87 };
88
89 static struct kvm_task_sleep_head {
90 raw_spinlock_t lock;
91 struct hlist_head list;
92 } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
93
_find_apf_task(struct kvm_task_sleep_head * b,u32 token)94 static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
95 u32 token)
96 {
97 struct hlist_node *p;
98
99 hlist_for_each(p, &b->list) {
100 struct kvm_task_sleep_node *n =
101 hlist_entry(p, typeof(*n), link);
102 if (n->token == token)
103 return n;
104 }
105
106 return NULL;
107 }
108
kvm_async_pf_queue_task(u32 token,struct kvm_task_sleep_node * n)109 static bool kvm_async_pf_queue_task(u32 token, struct kvm_task_sleep_node *n)
110 {
111 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
112 struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
113 struct kvm_task_sleep_node *e;
114
115 raw_spin_lock(&b->lock);
116 e = _find_apf_task(b, token);
117 if (e) {
118 /* dummy entry exist -> wake up was delivered ahead of PF */
119 hlist_del(&e->link);
120 raw_spin_unlock(&b->lock);
121 kfree(e);
122 return false;
123 }
124
125 n->token = token;
126 n->cpu = smp_processor_id();
127 init_swait_queue_head(&n->wq);
128 hlist_add_head(&n->link, &b->list);
129 raw_spin_unlock(&b->lock);
130 return true;
131 }
132
133 /*
134 * kvm_async_pf_task_wait_schedule - Wait for pagefault to be handled
135 * @token: Token to identify the sleep node entry
136 *
137 * Invoked from the async pagefault handling code or from the VM exit page
138 * fault handler. In both cases RCU is watching.
139 */
kvm_async_pf_task_wait_schedule(u32 token)140 void kvm_async_pf_task_wait_schedule(u32 token)
141 {
142 struct kvm_task_sleep_node n;
143 DECLARE_SWAITQUEUE(wait);
144
145 lockdep_assert_irqs_disabled();
146
147 if (!kvm_async_pf_queue_task(token, &n))
148 return;
149
150 for (;;) {
151 prepare_to_swait_exclusive(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
152 if (hlist_unhashed(&n.link))
153 break;
154
155 local_irq_enable();
156 schedule();
157 local_irq_disable();
158 }
159 finish_swait(&n.wq, &wait);
160 }
161 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait_schedule);
162
apf_task_wake_one(struct kvm_task_sleep_node * n)163 static void apf_task_wake_one(struct kvm_task_sleep_node *n)
164 {
165 hlist_del_init(&n->link);
166 if (swq_has_sleeper(&n->wq))
167 swake_up_one(&n->wq);
168 }
169
apf_task_wake_all(void)170 static void apf_task_wake_all(void)
171 {
172 int i;
173
174 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
175 struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
176 struct kvm_task_sleep_node *n;
177 struct hlist_node *p, *next;
178
179 raw_spin_lock(&b->lock);
180 hlist_for_each_safe(p, next, &b->list) {
181 n = hlist_entry(p, typeof(*n), link);
182 if (n->cpu == smp_processor_id())
183 apf_task_wake_one(n);
184 }
185 raw_spin_unlock(&b->lock);
186 }
187 }
188
kvm_async_pf_task_wake(u32 token)189 void kvm_async_pf_task_wake(u32 token)
190 {
191 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
192 struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
193 struct kvm_task_sleep_node *n;
194
195 if (token == ~0) {
196 apf_task_wake_all();
197 return;
198 }
199
200 again:
201 raw_spin_lock(&b->lock);
202 n = _find_apf_task(b, token);
203 if (!n) {
204 /*
205 * async PF was not yet handled.
206 * Add dummy entry for the token.
207 */
208 n = kzalloc(sizeof(*n), GFP_ATOMIC);
209 if (!n) {
210 /*
211 * Allocation failed! Busy wait while other cpu
212 * handles async PF.
213 */
214 raw_spin_unlock(&b->lock);
215 cpu_relax();
216 goto again;
217 }
218 n->token = token;
219 n->cpu = smp_processor_id();
220 init_swait_queue_head(&n->wq);
221 hlist_add_head(&n->link, &b->list);
222 } else {
223 apf_task_wake_one(n);
224 }
225 raw_spin_unlock(&b->lock);
226 return;
227 }
228 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
229
kvm_read_and_reset_apf_flags(void)230 noinstr u32 kvm_read_and_reset_apf_flags(void)
231 {
232 u32 flags = 0;
233
234 if (__this_cpu_read(apf_reason.enabled)) {
235 flags = __this_cpu_read(apf_reason.flags);
236 __this_cpu_write(apf_reason.flags, 0);
237 }
238
239 return flags;
240 }
241 EXPORT_SYMBOL_GPL(kvm_read_and_reset_apf_flags);
242
__kvm_handle_async_pf(struct pt_regs * regs,u32 token)243 noinstr bool __kvm_handle_async_pf(struct pt_regs *regs, u32 token)
244 {
245 u32 flags = kvm_read_and_reset_apf_flags();
246 irqentry_state_t state;
247
248 if (!flags)
249 return false;
250
251 state = irqentry_enter(regs);
252 instrumentation_begin();
253
254 /*
255 * If the host managed to inject an async #PF into an interrupt
256 * disabled region, then die hard as this is not going to end well
257 * and the host side is seriously broken.
258 */
259 if (unlikely(!(regs->flags & X86_EFLAGS_IF)))
260 panic("Host injected async #PF in interrupt disabled region\n");
261
262 if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
263 if (unlikely(!(user_mode(regs))))
264 panic("Host injected async #PF in kernel mode\n");
265 /* Page is swapped out by the host. */
266 kvm_async_pf_task_wait_schedule(token);
267 } else {
268 WARN_ONCE(1, "Unexpected async PF flags: %x\n", flags);
269 }
270
271 instrumentation_end();
272 irqentry_exit(regs, state);
273 return true;
274 }
275
DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt)276 DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt)
277 {
278 struct pt_regs *old_regs = set_irq_regs(regs);
279 u32 token;
280
281 ack_APIC_irq();
282
283 inc_irq_stat(irq_hv_callback_count);
284
285 if (__this_cpu_read(apf_reason.enabled)) {
286 token = __this_cpu_read(apf_reason.token);
287 kvm_async_pf_task_wake(token);
288 __this_cpu_write(apf_reason.token, 0);
289 wrmsrl(MSR_KVM_ASYNC_PF_ACK, 1);
290 }
291
292 set_irq_regs(old_regs);
293 }
294
paravirt_ops_setup(void)295 static void __init paravirt_ops_setup(void)
296 {
297 pv_info.name = "KVM";
298
299 if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
300 pv_ops.cpu.io_delay = kvm_io_delay;
301
302 #ifdef CONFIG_X86_IO_APIC
303 no_timer_check = 1;
304 #endif
305 }
306
kvm_register_steal_time(void)307 static void kvm_register_steal_time(void)
308 {
309 int cpu = smp_processor_id();
310 struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
311
312 if (!has_steal_clock)
313 return;
314
315 wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED));
316 pr_info("stealtime: cpu %d, msr %llx\n", cpu,
317 (unsigned long long) slow_virt_to_phys(st));
318 }
319
320 static DEFINE_PER_CPU_DECRYPTED(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED;
321
kvm_guest_apic_eoi_write(u32 reg,u32 val)322 static notrace void kvm_guest_apic_eoi_write(u32 reg, u32 val)
323 {
324 /**
325 * This relies on __test_and_clear_bit to modify the memory
326 * in a way that is atomic with respect to the local CPU.
327 * The hypervisor only accesses this memory from the local CPU so
328 * there's no need for lock or memory barriers.
329 * An optimization barrier is implied in apic write.
330 */
331 if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi)))
332 return;
333 apic->native_eoi_write(APIC_EOI, APIC_EOI_ACK);
334 }
335
kvm_guest_cpu_init(void)336 static void kvm_guest_cpu_init(void)
337 {
338 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
339 u64 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
340
341 WARN_ON_ONCE(!static_branch_likely(&kvm_async_pf_enabled));
342
343 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
344 pa |= KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
345
346 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_VMEXIT))
347 pa |= KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
348
349 wrmsrl(MSR_KVM_ASYNC_PF_INT, HYPERVISOR_CALLBACK_VECTOR);
350
351 wrmsrl(MSR_KVM_ASYNC_PF_EN, pa);
352 __this_cpu_write(apf_reason.enabled, 1);
353 pr_info("setup async PF for cpu %d\n", smp_processor_id());
354 }
355
356 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) {
357 unsigned long pa;
358
359 /* Size alignment is implied but just to make it explicit. */
360 BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4);
361 __this_cpu_write(kvm_apic_eoi, 0);
362 pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi))
363 | KVM_MSR_ENABLED;
364 wrmsrl(MSR_KVM_PV_EOI_EN, pa);
365 }
366
367 if (has_steal_clock)
368 kvm_register_steal_time();
369 }
370
kvm_pv_disable_apf(void)371 static void kvm_pv_disable_apf(void)
372 {
373 if (!__this_cpu_read(apf_reason.enabled))
374 return;
375
376 wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
377 __this_cpu_write(apf_reason.enabled, 0);
378
379 pr_info("disable async PF for cpu %d\n", smp_processor_id());
380 }
381
kvm_disable_steal_time(void)382 static void kvm_disable_steal_time(void)
383 {
384 if (!has_steal_clock)
385 return;
386
387 wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
388 }
389
kvm_steal_clock(int cpu)390 static u64 kvm_steal_clock(int cpu)
391 {
392 u64 steal;
393 struct kvm_steal_time *src;
394 int version;
395
396 src = &per_cpu(steal_time, cpu);
397 do {
398 version = src->version;
399 virt_rmb();
400 steal = src->steal;
401 virt_rmb();
402 } while ((version & 1) || (version != src->version));
403
404 return steal;
405 }
406
__set_percpu_decrypted(void * ptr,unsigned long size)407 static inline void __set_percpu_decrypted(void *ptr, unsigned long size)
408 {
409 early_set_memory_decrypted((unsigned long) ptr, size);
410 }
411
412 /*
413 * Iterate through all possible CPUs and map the memory region pointed
414 * by apf_reason, steal_time and kvm_apic_eoi as decrypted at once.
415 *
416 * Note: we iterate through all possible CPUs to ensure that CPUs
417 * hotplugged will have their per-cpu variable already mapped as
418 * decrypted.
419 */
sev_map_percpu_data(void)420 static void __init sev_map_percpu_data(void)
421 {
422 int cpu;
423
424 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
425 return;
426
427 for_each_possible_cpu(cpu) {
428 __set_percpu_decrypted(&per_cpu(apf_reason, cpu), sizeof(apf_reason));
429 __set_percpu_decrypted(&per_cpu(steal_time, cpu), sizeof(steal_time));
430 __set_percpu_decrypted(&per_cpu(kvm_apic_eoi, cpu), sizeof(kvm_apic_eoi));
431 }
432 }
433
kvm_guest_cpu_offline(bool shutdown)434 static void kvm_guest_cpu_offline(bool shutdown)
435 {
436 kvm_disable_steal_time();
437 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
438 wrmsrl(MSR_KVM_PV_EOI_EN, 0);
439 if (kvm_para_has_feature(KVM_FEATURE_MIGRATION_CONTROL))
440 wrmsrl(MSR_KVM_MIGRATION_CONTROL, 0);
441 kvm_pv_disable_apf();
442 if (!shutdown)
443 apf_task_wake_all();
444 kvmclock_disable();
445 }
446
kvm_cpu_online(unsigned int cpu)447 static int kvm_cpu_online(unsigned int cpu)
448 {
449 unsigned long flags;
450
451 local_irq_save(flags);
452 kvm_guest_cpu_init();
453 local_irq_restore(flags);
454 return 0;
455 }
456
457 #ifdef CONFIG_SMP
458
459 static DEFINE_PER_CPU(cpumask_var_t, __pv_cpu_mask);
460
pv_tlb_flush_supported(void)461 static bool pv_tlb_flush_supported(void)
462 {
463 return (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH) &&
464 !kvm_para_has_hint(KVM_HINTS_REALTIME) &&
465 kvm_para_has_feature(KVM_FEATURE_STEAL_TIME));
466 }
467
pv_ipi_supported(void)468 static bool pv_ipi_supported(void)
469 {
470 return kvm_para_has_feature(KVM_FEATURE_PV_SEND_IPI);
471 }
472
pv_sched_yield_supported(void)473 static bool pv_sched_yield_supported(void)
474 {
475 return (kvm_para_has_feature(KVM_FEATURE_PV_SCHED_YIELD) &&
476 !kvm_para_has_hint(KVM_HINTS_REALTIME) &&
477 kvm_para_has_feature(KVM_FEATURE_STEAL_TIME));
478 }
479
480 #define KVM_IPI_CLUSTER_SIZE (2 * BITS_PER_LONG)
481
__send_ipi_mask(const struct cpumask * mask,int vector)482 static void __send_ipi_mask(const struct cpumask *mask, int vector)
483 {
484 unsigned long flags;
485 int cpu, apic_id, icr;
486 int min = 0, max = 0;
487 #ifdef CONFIG_X86_64
488 __uint128_t ipi_bitmap = 0;
489 #else
490 u64 ipi_bitmap = 0;
491 #endif
492 long ret;
493
494 if (cpumask_empty(mask))
495 return;
496
497 local_irq_save(flags);
498
499 switch (vector) {
500 default:
501 icr = APIC_DM_FIXED | vector;
502 break;
503 case NMI_VECTOR:
504 icr = APIC_DM_NMI;
505 break;
506 }
507
508 for_each_cpu(cpu, mask) {
509 apic_id = per_cpu(x86_cpu_to_apicid, cpu);
510 if (!ipi_bitmap) {
511 min = max = apic_id;
512 } else if (apic_id < min && max - apic_id < KVM_IPI_CLUSTER_SIZE) {
513 ipi_bitmap <<= min - apic_id;
514 min = apic_id;
515 } else if (apic_id < min + KVM_IPI_CLUSTER_SIZE) {
516 max = apic_id < max ? max : apic_id;
517 } else {
518 ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
519 (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
520 WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
521 ret);
522 min = max = apic_id;
523 ipi_bitmap = 0;
524 }
525 __set_bit(apic_id - min, (unsigned long *)&ipi_bitmap);
526 }
527
528 if (ipi_bitmap) {
529 ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
530 (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
531 WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
532 ret);
533 }
534
535 local_irq_restore(flags);
536 }
537
kvm_send_ipi_mask(const struct cpumask * mask,int vector)538 static void kvm_send_ipi_mask(const struct cpumask *mask, int vector)
539 {
540 __send_ipi_mask(mask, vector);
541 }
542
kvm_send_ipi_mask_allbutself(const struct cpumask * mask,int vector)543 static void kvm_send_ipi_mask_allbutself(const struct cpumask *mask, int vector)
544 {
545 unsigned int this_cpu = smp_processor_id();
546 struct cpumask *new_mask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
547 const struct cpumask *local_mask;
548
549 cpumask_copy(new_mask, mask);
550 cpumask_clear_cpu(this_cpu, new_mask);
551 local_mask = new_mask;
552 __send_ipi_mask(local_mask, vector);
553 }
554
setup_efi_kvm_sev_migration(void)555 static int __init setup_efi_kvm_sev_migration(void)
556 {
557 efi_char16_t efi_sev_live_migration_enabled[] = L"SevLiveMigrationEnabled";
558 efi_guid_t efi_variable_guid = AMD_SEV_MEM_ENCRYPT_GUID;
559 efi_status_t status;
560 unsigned long size;
561 bool enabled;
562
563 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT) ||
564 !kvm_para_has_feature(KVM_FEATURE_MIGRATION_CONTROL))
565 return 0;
566
567 if (!efi_enabled(EFI_BOOT))
568 return 0;
569
570 if (!efi_enabled(EFI_RUNTIME_SERVICES)) {
571 pr_info("%s : EFI runtime services are not enabled\n", __func__);
572 return 0;
573 }
574
575 size = sizeof(enabled);
576
577 /* Get variable contents into buffer */
578 status = efi.get_variable(efi_sev_live_migration_enabled,
579 &efi_variable_guid, NULL, &size, &enabled);
580
581 if (status == EFI_NOT_FOUND) {
582 pr_info("%s : EFI live migration variable not found\n", __func__);
583 return 0;
584 }
585
586 if (status != EFI_SUCCESS) {
587 pr_info("%s : EFI variable retrieval failed\n", __func__);
588 return 0;
589 }
590
591 if (enabled == 0) {
592 pr_info("%s: live migration disabled in EFI\n", __func__);
593 return 0;
594 }
595
596 pr_info("%s : live migration enabled in EFI\n", __func__);
597 wrmsrl(MSR_KVM_MIGRATION_CONTROL, KVM_MIGRATION_READY);
598
599 return 1;
600 }
601
602 late_initcall(setup_efi_kvm_sev_migration);
603
604 /*
605 * Set the IPI entry points
606 */
kvm_setup_pv_ipi(void)607 static void kvm_setup_pv_ipi(void)
608 {
609 apic->send_IPI_mask = kvm_send_ipi_mask;
610 apic->send_IPI_mask_allbutself = kvm_send_ipi_mask_allbutself;
611 pr_info("setup PV IPIs\n");
612 }
613
kvm_smp_send_call_func_ipi(const struct cpumask * mask)614 static void kvm_smp_send_call_func_ipi(const struct cpumask *mask)
615 {
616 int cpu;
617
618 native_send_call_func_ipi(mask);
619
620 /* Make sure other vCPUs get a chance to run if they need to. */
621 for_each_cpu(cpu, mask) {
622 if (vcpu_is_preempted(cpu)) {
623 kvm_hypercall1(KVM_HC_SCHED_YIELD, per_cpu(x86_cpu_to_apicid, cpu));
624 break;
625 }
626 }
627 }
628
kvm_flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)629 static void kvm_flush_tlb_multi(const struct cpumask *cpumask,
630 const struct flush_tlb_info *info)
631 {
632 u8 state;
633 int cpu;
634 struct kvm_steal_time *src;
635 struct cpumask *flushmask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
636
637 cpumask_copy(flushmask, cpumask);
638 /*
639 * We have to call flush only on online vCPUs. And
640 * queue flush_on_enter for pre-empted vCPUs
641 */
642 for_each_cpu(cpu, flushmask) {
643 /*
644 * The local vCPU is never preempted, so we do not explicitly
645 * skip check for local vCPU - it will never be cleared from
646 * flushmask.
647 */
648 src = &per_cpu(steal_time, cpu);
649 state = READ_ONCE(src->preempted);
650 if ((state & KVM_VCPU_PREEMPTED)) {
651 if (try_cmpxchg(&src->preempted, &state,
652 state | KVM_VCPU_FLUSH_TLB))
653 __cpumask_clear_cpu(cpu, flushmask);
654 }
655 }
656
657 native_flush_tlb_multi(flushmask, info);
658 }
659
kvm_alloc_cpumask(void)660 static __init int kvm_alloc_cpumask(void)
661 {
662 int cpu;
663
664 if (!kvm_para_available() || nopv)
665 return 0;
666
667 if (pv_tlb_flush_supported() || pv_ipi_supported())
668 for_each_possible_cpu(cpu) {
669 zalloc_cpumask_var_node(per_cpu_ptr(&__pv_cpu_mask, cpu),
670 GFP_KERNEL, cpu_to_node(cpu));
671 }
672
673 return 0;
674 }
675 arch_initcall(kvm_alloc_cpumask);
676
kvm_smp_prepare_boot_cpu(void)677 static void __init kvm_smp_prepare_boot_cpu(void)
678 {
679 /*
680 * Map the per-cpu variables as decrypted before kvm_guest_cpu_init()
681 * shares the guest physical address with the hypervisor.
682 */
683 sev_map_percpu_data();
684
685 kvm_guest_cpu_init();
686 native_smp_prepare_boot_cpu();
687 kvm_spinlock_init();
688 }
689
kvm_cpu_down_prepare(unsigned int cpu)690 static int kvm_cpu_down_prepare(unsigned int cpu)
691 {
692 unsigned long flags;
693
694 local_irq_save(flags);
695 kvm_guest_cpu_offline(false);
696 local_irq_restore(flags);
697 return 0;
698 }
699
700 #endif
701
kvm_suspend(void)702 static int kvm_suspend(void)
703 {
704 kvm_guest_cpu_offline(false);
705
706 return 0;
707 }
708
kvm_resume(void)709 static void kvm_resume(void)
710 {
711 kvm_cpu_online(raw_smp_processor_id());
712 }
713
714 static struct syscore_ops kvm_syscore_ops = {
715 .suspend = kvm_suspend,
716 .resume = kvm_resume,
717 };
718
kvm_pv_guest_cpu_reboot(void * unused)719 static void kvm_pv_guest_cpu_reboot(void *unused)
720 {
721 kvm_guest_cpu_offline(true);
722 }
723
kvm_pv_reboot_notify(struct notifier_block * nb,unsigned long code,void * unused)724 static int kvm_pv_reboot_notify(struct notifier_block *nb,
725 unsigned long code, void *unused)
726 {
727 if (code == SYS_RESTART)
728 on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1);
729 return NOTIFY_DONE;
730 }
731
732 static struct notifier_block kvm_pv_reboot_nb = {
733 .notifier_call = kvm_pv_reboot_notify,
734 };
735
736 /*
737 * After a PV feature is registered, the host will keep writing to the
738 * registered memory location. If the guest happens to shutdown, this memory
739 * won't be valid. In cases like kexec, in which you install a new kernel, this
740 * means a random memory location will be kept being written.
741 */
742 #ifdef CONFIG_KEXEC_CORE
kvm_crash_shutdown(struct pt_regs * regs)743 static void kvm_crash_shutdown(struct pt_regs *regs)
744 {
745 kvm_guest_cpu_offline(true);
746 native_machine_crash_shutdown(regs);
747 }
748 #endif
749
kvm_guest_init(void)750 static void __init kvm_guest_init(void)
751 {
752 int i;
753
754 paravirt_ops_setup();
755 register_reboot_notifier(&kvm_pv_reboot_nb);
756 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
757 raw_spin_lock_init(&async_pf_sleepers[i].lock);
758
759 if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
760 has_steal_clock = 1;
761 static_call_update(pv_steal_clock, kvm_steal_clock);
762 }
763
764 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
765 apic_set_eoi_write(kvm_guest_apic_eoi_write);
766
767 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
768 static_branch_enable(&kvm_async_pf_enabled);
769 alloc_intr_gate(HYPERVISOR_CALLBACK_VECTOR, asm_sysvec_kvm_asyncpf_interrupt);
770 }
771
772 #ifdef CONFIG_SMP
773 if (pv_tlb_flush_supported()) {
774 pv_ops.mmu.flush_tlb_multi = kvm_flush_tlb_multi;
775 pv_ops.mmu.tlb_remove_table = tlb_remove_table;
776 pr_info("KVM setup pv remote TLB flush\n");
777 }
778
779 smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
780 if (pv_sched_yield_supported()) {
781 smp_ops.send_call_func_ipi = kvm_smp_send_call_func_ipi;
782 pr_info("setup PV sched yield\n");
783 }
784 if (cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/kvm:online",
785 kvm_cpu_online, kvm_cpu_down_prepare) < 0)
786 pr_err("failed to install cpu hotplug callbacks\n");
787 #else
788 sev_map_percpu_data();
789 kvm_guest_cpu_init();
790 #endif
791
792 #ifdef CONFIG_KEXEC_CORE
793 machine_ops.crash_shutdown = kvm_crash_shutdown;
794 #endif
795
796 register_syscore_ops(&kvm_syscore_ops);
797
798 /*
799 * Hard lockup detection is enabled by default. Disable it, as guests
800 * can get false positives too easily, for example if the host is
801 * overcommitted.
802 */
803 hardlockup_detector_disable();
804 }
805
__kvm_cpuid_base(void)806 static noinline uint32_t __kvm_cpuid_base(void)
807 {
808 if (boot_cpu_data.cpuid_level < 0)
809 return 0; /* So we don't blow up on old processors */
810
811 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
812 return hypervisor_cpuid_base(KVM_SIGNATURE, 0);
813
814 return 0;
815 }
816
kvm_cpuid_base(void)817 static inline uint32_t kvm_cpuid_base(void)
818 {
819 static int kvm_cpuid_base = -1;
820
821 if (kvm_cpuid_base == -1)
822 kvm_cpuid_base = __kvm_cpuid_base();
823
824 return kvm_cpuid_base;
825 }
826
kvm_para_available(void)827 bool kvm_para_available(void)
828 {
829 return kvm_cpuid_base() != 0;
830 }
831 EXPORT_SYMBOL_GPL(kvm_para_available);
832
kvm_arch_para_features(void)833 unsigned int kvm_arch_para_features(void)
834 {
835 return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES);
836 }
837
kvm_arch_para_hints(void)838 unsigned int kvm_arch_para_hints(void)
839 {
840 return cpuid_edx(kvm_cpuid_base() | KVM_CPUID_FEATURES);
841 }
842 EXPORT_SYMBOL_GPL(kvm_arch_para_hints);
843
kvm_detect(void)844 static uint32_t __init kvm_detect(void)
845 {
846 return kvm_cpuid_base();
847 }
848
kvm_apic_init(void)849 static void __init kvm_apic_init(void)
850 {
851 #ifdef CONFIG_SMP
852 if (pv_ipi_supported())
853 kvm_setup_pv_ipi();
854 #endif
855 }
856
kvm_msi_ext_dest_id(void)857 static bool __init kvm_msi_ext_dest_id(void)
858 {
859 return kvm_para_has_feature(KVM_FEATURE_MSI_EXT_DEST_ID);
860 }
861
kvm_sev_hc_page_enc_status(unsigned long pfn,int npages,bool enc)862 static void kvm_sev_hc_page_enc_status(unsigned long pfn, int npages, bool enc)
863 {
864 kvm_sev_hypercall3(KVM_HC_MAP_GPA_RANGE, pfn << PAGE_SHIFT, npages,
865 KVM_MAP_GPA_RANGE_ENC_STAT(enc) | KVM_MAP_GPA_RANGE_PAGE_SZ_4K);
866 }
867
kvm_init_platform(void)868 static void __init kvm_init_platform(void)
869 {
870 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT) &&
871 kvm_para_has_feature(KVM_FEATURE_MIGRATION_CONTROL)) {
872 unsigned long nr_pages;
873 int i;
874
875 pv_ops.mmu.notify_page_enc_status_changed =
876 kvm_sev_hc_page_enc_status;
877
878 /*
879 * Reset the host's shared pages list related to kernel
880 * specific page encryption status settings before we load a
881 * new kernel by kexec. Reset the page encryption status
882 * during early boot intead of just before kexec to avoid SMP
883 * races during kvm_pv_guest_cpu_reboot().
884 * NOTE: We cannot reset the complete shared pages list
885 * here as we need to retain the UEFI/OVMF firmware
886 * specific settings.
887 */
888
889 for (i = 0; i < e820_table->nr_entries; i++) {
890 struct e820_entry *entry = &e820_table->entries[i];
891
892 if (entry->type != E820_TYPE_RAM)
893 continue;
894
895 nr_pages = DIV_ROUND_UP(entry->size, PAGE_SIZE);
896
897 kvm_sev_hypercall3(KVM_HC_MAP_GPA_RANGE, entry->addr,
898 nr_pages,
899 KVM_MAP_GPA_RANGE_ENCRYPTED | KVM_MAP_GPA_RANGE_PAGE_SZ_4K);
900 }
901
902 /*
903 * Ensure that _bss_decrypted section is marked as decrypted in the
904 * shared pages list.
905 */
906 nr_pages = DIV_ROUND_UP(__end_bss_decrypted - __start_bss_decrypted,
907 PAGE_SIZE);
908 early_set_mem_enc_dec_hypercall((unsigned long)__start_bss_decrypted,
909 nr_pages, 0);
910
911 /*
912 * If not booted using EFI, enable Live migration support.
913 */
914 if (!efi_enabled(EFI_BOOT))
915 wrmsrl(MSR_KVM_MIGRATION_CONTROL,
916 KVM_MIGRATION_READY);
917 }
918 kvmclock_init();
919 x86_platform.apic_post_init = kvm_apic_init;
920 }
921
922 #if defined(CONFIG_AMD_MEM_ENCRYPT)
kvm_sev_es_hcall_prepare(struct ghcb * ghcb,struct pt_regs * regs)923 static void kvm_sev_es_hcall_prepare(struct ghcb *ghcb, struct pt_regs *regs)
924 {
925 /* RAX and CPL are already in the GHCB */
926 ghcb_set_rbx(ghcb, regs->bx);
927 ghcb_set_rcx(ghcb, regs->cx);
928 ghcb_set_rdx(ghcb, regs->dx);
929 ghcb_set_rsi(ghcb, regs->si);
930 }
931
kvm_sev_es_hcall_finish(struct ghcb * ghcb,struct pt_regs * regs)932 static bool kvm_sev_es_hcall_finish(struct ghcb *ghcb, struct pt_regs *regs)
933 {
934 /* No checking of the return state needed */
935 return true;
936 }
937 #endif
938
939 const __initconst struct hypervisor_x86 x86_hyper_kvm = {
940 .name = "KVM",
941 .detect = kvm_detect,
942 .type = X86_HYPER_KVM,
943 .init.guest_late_init = kvm_guest_init,
944 .init.x2apic_available = kvm_para_available,
945 .init.msi_ext_dest_id = kvm_msi_ext_dest_id,
946 .init.init_platform = kvm_init_platform,
947 #if defined(CONFIG_AMD_MEM_ENCRYPT)
948 .runtime.sev_es_hcall_prepare = kvm_sev_es_hcall_prepare,
949 .runtime.sev_es_hcall_finish = kvm_sev_es_hcall_finish,
950 #endif
951 };
952
activate_jump_labels(void)953 static __init int activate_jump_labels(void)
954 {
955 if (has_steal_clock) {
956 static_key_slow_inc(¶virt_steal_enabled);
957 if (steal_acc)
958 static_key_slow_inc(¶virt_steal_rq_enabled);
959 }
960
961 return 0;
962 }
963 arch_initcall(activate_jump_labels);
964
965 #ifdef CONFIG_PARAVIRT_SPINLOCKS
966
967 /* Kick a cpu by its apicid. Used to wake up a halted vcpu */
kvm_kick_cpu(int cpu)968 static void kvm_kick_cpu(int cpu)
969 {
970 int apicid;
971 unsigned long flags = 0;
972
973 apicid = per_cpu(x86_cpu_to_apicid, cpu);
974 kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid);
975 }
976
977 #include <asm/qspinlock.h>
978
kvm_wait(u8 * ptr,u8 val)979 static void kvm_wait(u8 *ptr, u8 val)
980 {
981 if (in_nmi())
982 return;
983
984 /*
985 * halt until it's our turn and kicked. Note that we do safe halt
986 * for irq enabled case to avoid hang when lock info is overwritten
987 * in irq spinlock slowpath and no spurious interrupt occur to save us.
988 */
989 if (irqs_disabled()) {
990 if (READ_ONCE(*ptr) == val)
991 halt();
992 } else {
993 local_irq_disable();
994
995 /* safe_halt() will enable IRQ */
996 if (READ_ONCE(*ptr) == val)
997 safe_halt();
998 else
999 local_irq_enable();
1000 }
1001 }
1002
1003 #ifdef CONFIG_X86_32
__kvm_vcpu_is_preempted(long cpu)1004 __visible bool __kvm_vcpu_is_preempted(long cpu)
1005 {
1006 struct kvm_steal_time *src = &per_cpu(steal_time, cpu);
1007
1008 return !!(src->preempted & KVM_VCPU_PREEMPTED);
1009 }
1010 PV_CALLEE_SAVE_REGS_THUNK(__kvm_vcpu_is_preempted);
1011
1012 #else
1013
1014 #include <asm/asm-offsets.h>
1015
1016 extern bool __raw_callee_save___kvm_vcpu_is_preempted(long);
1017
1018 /*
1019 * Hand-optimize version for x86-64 to avoid 8 64-bit register saving and
1020 * restoring to/from the stack.
1021 */
1022 asm(
1023 ".pushsection .text;"
1024 ".global __raw_callee_save___kvm_vcpu_is_preempted;"
1025 ".type __raw_callee_save___kvm_vcpu_is_preempted, @function;"
1026 "__raw_callee_save___kvm_vcpu_is_preempted:"
1027 "movq __per_cpu_offset(,%rdi,8), %rax;"
1028 "cmpb $0, " __stringify(KVM_STEAL_TIME_preempted) "+steal_time(%rax);"
1029 "setne %al;"
1030 "ret;"
1031 ".size __raw_callee_save___kvm_vcpu_is_preempted, .-__raw_callee_save___kvm_vcpu_is_preempted;"
1032 ".popsection");
1033
1034 #endif
1035
1036 /*
1037 * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present.
1038 */
kvm_spinlock_init(void)1039 void __init kvm_spinlock_init(void)
1040 {
1041 /*
1042 * In case host doesn't support KVM_FEATURE_PV_UNHALT there is still an
1043 * advantage of keeping virt_spin_lock_key enabled: virt_spin_lock() is
1044 * preferred over native qspinlock when vCPU is preempted.
1045 */
1046 if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT)) {
1047 pr_info("PV spinlocks disabled, no host support\n");
1048 return;
1049 }
1050
1051 /*
1052 * Disable PV spinlocks and use native qspinlock when dedicated pCPUs
1053 * are available.
1054 */
1055 if (kvm_para_has_hint(KVM_HINTS_REALTIME)) {
1056 pr_info("PV spinlocks disabled with KVM_HINTS_REALTIME hints\n");
1057 goto out;
1058 }
1059
1060 if (num_possible_cpus() == 1) {
1061 pr_info("PV spinlocks disabled, single CPU\n");
1062 goto out;
1063 }
1064
1065 if (nopvspin) {
1066 pr_info("PV spinlocks disabled, forced by \"nopvspin\" parameter\n");
1067 goto out;
1068 }
1069
1070 pr_info("PV spinlocks enabled\n");
1071
1072 __pv_init_lock_hash();
1073 pv_ops.lock.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath;
1074 pv_ops.lock.queued_spin_unlock =
1075 PV_CALLEE_SAVE(__pv_queued_spin_unlock);
1076 pv_ops.lock.wait = kvm_wait;
1077 pv_ops.lock.kick = kvm_kick_cpu;
1078
1079 if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
1080 pv_ops.lock.vcpu_is_preempted =
1081 PV_CALLEE_SAVE(__kvm_vcpu_is_preempted);
1082 }
1083 /*
1084 * When PV spinlock is enabled which is preferred over
1085 * virt_spin_lock(), virt_spin_lock_key's value is meaningless.
1086 * Just disable it anyway.
1087 */
1088 out:
1089 static_branch_disable(&virt_spin_lock_key);
1090 }
1091
1092 #endif /* CONFIG_PARAVIRT_SPINLOCKS */
1093
1094 #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
1095
kvm_disable_host_haltpoll(void * i)1096 static void kvm_disable_host_haltpoll(void *i)
1097 {
1098 wrmsrl(MSR_KVM_POLL_CONTROL, 0);
1099 }
1100
kvm_enable_host_haltpoll(void * i)1101 static void kvm_enable_host_haltpoll(void *i)
1102 {
1103 wrmsrl(MSR_KVM_POLL_CONTROL, 1);
1104 }
1105
arch_haltpoll_enable(unsigned int cpu)1106 void arch_haltpoll_enable(unsigned int cpu)
1107 {
1108 if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) {
1109 pr_err_once("host does not support poll control\n");
1110 pr_err_once("host upgrade recommended\n");
1111 return;
1112 }
1113
1114 /* Enable guest halt poll disables host halt poll */
1115 smp_call_function_single(cpu, kvm_disable_host_haltpoll, NULL, 1);
1116 }
1117 EXPORT_SYMBOL_GPL(arch_haltpoll_enable);
1118
arch_haltpoll_disable(unsigned int cpu)1119 void arch_haltpoll_disable(unsigned int cpu)
1120 {
1121 if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL))
1122 return;
1123
1124 /* Disable guest halt poll enables host halt poll */
1125 smp_call_function_single(cpu, kvm_enable_host_haltpoll, NULL, 1);
1126 }
1127 EXPORT_SYMBOL_GPL(arch_haltpoll_disable);
1128 #endif
1129