1 /*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2008,2010 Intel Corporation
5 */
6
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11
12 #include <drm/drm_syncobj.h>
13
14 #include "display/intel_frontbuffer.h"
15
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gpu_commands.h"
19 #include "gt/intel_gt.h"
20 #include "gt/intel_gt_buffer_pool.h"
21 #include "gt/intel_gt_pm.h"
22 #include "gt/intel_ring.h"
23
24 #include "pxp/intel_pxp.h"
25
26 #include "i915_drv.h"
27 #include "i915_gem_clflush.h"
28 #include "i915_gem_context.h"
29 #include "i915_gem_ioctls.h"
30 #include "i915_trace.h"
31 #include "i915_user_extensions.h"
32
33 struct eb_vma {
34 struct i915_vma *vma;
35 unsigned int flags;
36
37 /** This vma's place in the execbuf reservation list */
38 struct drm_i915_gem_exec_object2 *exec;
39 struct list_head bind_link;
40 struct list_head reloc_link;
41
42 struct hlist_node node;
43 u32 handle;
44 };
45
46 enum {
47 FORCE_CPU_RELOC = 1,
48 FORCE_GTT_RELOC,
49 FORCE_GPU_RELOC,
50 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
51 };
52
53 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */
54 #define __EXEC_OBJECT_HAS_PIN BIT(30)
55 #define __EXEC_OBJECT_HAS_FENCE BIT(29)
56 #define __EXEC_OBJECT_USERPTR_INIT BIT(28)
57 #define __EXEC_OBJECT_NEEDS_MAP BIT(27)
58 #define __EXEC_OBJECT_NEEDS_BIAS BIT(26)
59 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 26) /* all of the above + */
60 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
61
62 #define __EXEC_HAS_RELOC BIT(31)
63 #define __EXEC_ENGINE_PINNED BIT(30)
64 #define __EXEC_USERPTR_USED BIT(29)
65 #define __EXEC_INTERNAL_FLAGS (~0u << 29)
66 #define UPDATE PIN_OFFSET_FIXED
67
68 #define BATCH_OFFSET_BIAS (256*1024)
69
70 #define __I915_EXEC_ILLEGAL_FLAGS \
71 (__I915_EXEC_UNKNOWN_FLAGS | \
72 I915_EXEC_CONSTANTS_MASK | \
73 I915_EXEC_RESOURCE_STREAMER)
74
75 /* Catch emission of unexpected errors for CI! */
76 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
77 #undef EINVAL
78 #define EINVAL ({ \
79 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
80 22; \
81 })
82 #endif
83
84 /**
85 * DOC: User command execution
86 *
87 * Userspace submits commands to be executed on the GPU as an instruction
88 * stream within a GEM object we call a batchbuffer. This instructions may
89 * refer to other GEM objects containing auxiliary state such as kernels,
90 * samplers, render targets and even secondary batchbuffers. Userspace does
91 * not know where in the GPU memory these objects reside and so before the
92 * batchbuffer is passed to the GPU for execution, those addresses in the
93 * batchbuffer and auxiliary objects are updated. This is known as relocation,
94 * or patching. To try and avoid having to relocate each object on the next
95 * execution, userspace is told the location of those objects in this pass,
96 * but this remains just a hint as the kernel may choose a new location for
97 * any object in the future.
98 *
99 * At the level of talking to the hardware, submitting a batchbuffer for the
100 * GPU to execute is to add content to a buffer from which the HW
101 * command streamer is reading.
102 *
103 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
104 * Execlists, this command is not placed on the same buffer as the
105 * remaining items.
106 *
107 * 2. Add a command to invalidate caches to the buffer.
108 *
109 * 3. Add a batchbuffer start command to the buffer; the start command is
110 * essentially a token together with the GPU address of the batchbuffer
111 * to be executed.
112 *
113 * 4. Add a pipeline flush to the buffer.
114 *
115 * 5. Add a memory write command to the buffer to record when the GPU
116 * is done executing the batchbuffer. The memory write writes the
117 * global sequence number of the request, ``i915_request::global_seqno``;
118 * the i915 driver uses the current value in the register to determine
119 * if the GPU has completed the batchbuffer.
120 *
121 * 6. Add a user interrupt command to the buffer. This command instructs
122 * the GPU to issue an interrupt when the command, pipeline flush and
123 * memory write are completed.
124 *
125 * 7. Inform the hardware of the additional commands added to the buffer
126 * (by updating the tail pointer).
127 *
128 * Processing an execbuf ioctl is conceptually split up into a few phases.
129 *
130 * 1. Validation - Ensure all the pointers, handles and flags are valid.
131 * 2. Reservation - Assign GPU address space for every object
132 * 3. Relocation - Update any addresses to point to the final locations
133 * 4. Serialisation - Order the request with respect to its dependencies
134 * 5. Construction - Construct a request to execute the batchbuffer
135 * 6. Submission (at some point in the future execution)
136 *
137 * Reserving resources for the execbuf is the most complicated phase. We
138 * neither want to have to migrate the object in the address space, nor do
139 * we want to have to update any relocations pointing to this object. Ideally,
140 * we want to leave the object where it is and for all the existing relocations
141 * to match. If the object is given a new address, or if userspace thinks the
142 * object is elsewhere, we have to parse all the relocation entries and update
143 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
144 * all the target addresses in all of its objects match the value in the
145 * relocation entries and that they all match the presumed offsets given by the
146 * list of execbuffer objects. Using this knowledge, we know that if we haven't
147 * moved any buffers, all the relocation entries are valid and we can skip
148 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
149 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
150 *
151 * The addresses written in the objects must match the corresponding
152 * reloc.presumed_offset which in turn must match the corresponding
153 * execobject.offset.
154 *
155 * Any render targets written to in the batch must be flagged with
156 * EXEC_OBJECT_WRITE.
157 *
158 * To avoid stalling, execobject.offset should match the current
159 * address of that object within the active context.
160 *
161 * The reservation is done is multiple phases. First we try and keep any
162 * object already bound in its current location - so as long as meets the
163 * constraints imposed by the new execbuffer. Any object left unbound after the
164 * first pass is then fitted into any available idle space. If an object does
165 * not fit, all objects are removed from the reservation and the process rerun
166 * after sorting the objects into a priority order (more difficult to fit
167 * objects are tried first). Failing that, the entire VM is cleared and we try
168 * to fit the execbuf once last time before concluding that it simply will not
169 * fit.
170 *
171 * A small complication to all of this is that we allow userspace not only to
172 * specify an alignment and a size for the object in the address space, but
173 * we also allow userspace to specify the exact offset. This objects are
174 * simpler to place (the location is known a priori) all we have to do is make
175 * sure the space is available.
176 *
177 * Once all the objects are in place, patching up the buried pointers to point
178 * to the final locations is a fairly simple job of walking over the relocation
179 * entry arrays, looking up the right address and rewriting the value into
180 * the object. Simple! ... The relocation entries are stored in user memory
181 * and so to access them we have to copy them into a local buffer. That copy
182 * has to avoid taking any pagefaults as they may lead back to a GEM object
183 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
184 * the relocation into multiple passes. First we try to do everything within an
185 * atomic context (avoid the pagefaults) which requires that we never wait. If
186 * we detect that we may wait, or if we need to fault, then we have to fallback
187 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
188 * bells yet?) Dropping the mutex means that we lose all the state we have
189 * built up so far for the execbuf and we must reset any global data. However,
190 * we do leave the objects pinned in their final locations - which is a
191 * potential issue for concurrent execbufs. Once we have left the mutex, we can
192 * allocate and copy all the relocation entries into a large array at our
193 * leisure, reacquire the mutex, reclaim all the objects and other state and
194 * then proceed to update any incorrect addresses with the objects.
195 *
196 * As we process the relocation entries, we maintain a record of whether the
197 * object is being written to. Using NORELOC, we expect userspace to provide
198 * this information instead. We also check whether we can skip the relocation
199 * by comparing the expected value inside the relocation entry with the target's
200 * final address. If they differ, we have to map the current object and rewrite
201 * the 4 or 8 byte pointer within.
202 *
203 * Serialising an execbuf is quite simple according to the rules of the GEM
204 * ABI. Execution within each context is ordered by the order of submission.
205 * Writes to any GEM object are in order of submission and are exclusive. Reads
206 * from a GEM object are unordered with respect to other reads, but ordered by
207 * writes. A write submitted after a read cannot occur before the read, and
208 * similarly any read submitted after a write cannot occur before the write.
209 * Writes are ordered between engines such that only one write occurs at any
210 * time (completing any reads beforehand) - using semaphores where available
211 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
212 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
213 * reads before starting, and any read (either using set-domain or pread) must
214 * flush all GPU writes before starting. (Note we only employ a barrier before,
215 * we currently rely on userspace not concurrently starting a new execution
216 * whilst reading or writing to an object. This may be an advantage or not
217 * depending on how much you trust userspace not to shoot themselves in the
218 * foot.) Serialisation may just result in the request being inserted into
219 * a DAG awaiting its turn, but most simple is to wait on the CPU until
220 * all dependencies are resolved.
221 *
222 * After all of that, is just a matter of closing the request and handing it to
223 * the hardware (well, leaving it in a queue to be executed). However, we also
224 * offer the ability for batchbuffers to be run with elevated privileges so
225 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
226 * Before any batch is given extra privileges we first must check that it
227 * contains no nefarious instructions, we check that each instruction is from
228 * our whitelist and all registers are also from an allowed list. We first
229 * copy the user's batchbuffer to a shadow (so that the user doesn't have
230 * access to it, either by the CPU or GPU as we scan it) and then parse each
231 * instruction. If everything is ok, we set a flag telling the hardware to run
232 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
233 */
234
235 struct eb_fence {
236 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
237 struct dma_fence *dma_fence;
238 u64 value;
239 struct dma_fence_chain *chain_fence;
240 };
241
242 struct i915_execbuffer {
243 struct drm_i915_private *i915; /** i915 backpointer */
244 struct drm_file *file; /** per-file lookup tables and limits */
245 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
246 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
247 struct eb_vma *vma;
248
249 struct intel_gt *gt; /* gt for the execbuf */
250 struct intel_context *context; /* logical state for the request */
251 struct i915_gem_context *gem_context; /** caller's context */
252
253 /** our requests to build */
254 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
255 /** identity of the batch obj/vma */
256 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
257 struct i915_vma *trampoline; /** trampoline used for chaining */
258
259 /** used for excl fence in dma_resv objects when > 1 BB submitted */
260 struct dma_fence *composite_fence;
261
262 /** actual size of execobj[] as we may extend it for the cmdparser */
263 unsigned int buffer_count;
264
265 /* number of batches in execbuf IOCTL */
266 unsigned int num_batches;
267
268 /** list of vma not yet bound during reservation phase */
269 struct list_head unbound;
270
271 /** list of vma that have execobj.relocation_count */
272 struct list_head relocs;
273
274 struct i915_gem_ww_ctx ww;
275
276 /**
277 * Track the most recently used object for relocations, as we
278 * frequently have to perform multiple relocations within the same
279 * obj/page
280 */
281 struct reloc_cache {
282 struct drm_mm_node node; /** temporary GTT binding */
283 unsigned long vaddr; /** Current kmap address */
284 unsigned long page; /** Currently mapped page index */
285 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
286 bool use_64bit_reloc : 1;
287 bool has_llc : 1;
288 bool has_fence : 1;
289 bool needs_unfenced : 1;
290 } reloc_cache;
291
292 u64 invalid_flags; /** Set of execobj.flags that are invalid */
293
294 /** Length of batch within object */
295 u64 batch_len[MAX_ENGINE_INSTANCE + 1];
296 u32 batch_start_offset; /** Location within object of batch */
297 u32 batch_flags; /** Flags composed for emit_bb_start() */
298 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
299
300 /**
301 * Indicate either the size of the hastable used to resolve
302 * relocation handles, or if negative that we are using a direct
303 * index into the execobj[].
304 */
305 int lut_size;
306 struct hlist_head *buckets; /** ht for relocation handles */
307
308 struct eb_fence *fences;
309 unsigned long num_fences;
310 };
311
312 static int eb_parse(struct i915_execbuffer *eb);
313 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
314 static void eb_unpin_engine(struct i915_execbuffer *eb);
315
eb_use_cmdparser(const struct i915_execbuffer * eb)316 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
317 {
318 return intel_engine_requires_cmd_parser(eb->context->engine) ||
319 (intel_engine_using_cmd_parser(eb->context->engine) &&
320 eb->args->batch_len);
321 }
322
eb_create(struct i915_execbuffer * eb)323 static int eb_create(struct i915_execbuffer *eb)
324 {
325 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
326 unsigned int size = 1 + ilog2(eb->buffer_count);
327
328 /*
329 * Without a 1:1 association between relocation handles and
330 * the execobject[] index, we instead create a hashtable.
331 * We size it dynamically based on available memory, starting
332 * first with 1:1 assocative hash and scaling back until
333 * the allocation succeeds.
334 *
335 * Later on we use a positive lut_size to indicate we are
336 * using this hashtable, and a negative value to indicate a
337 * direct lookup.
338 */
339 do {
340 gfp_t flags;
341
342 /* While we can still reduce the allocation size, don't
343 * raise a warning and allow the allocation to fail.
344 * On the last pass though, we want to try as hard
345 * as possible to perform the allocation and warn
346 * if it fails.
347 */
348 flags = GFP_KERNEL;
349 if (size > 1)
350 flags |= __GFP_NORETRY | __GFP_NOWARN;
351
352 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
353 flags);
354 if (eb->buckets)
355 break;
356 } while (--size);
357
358 if (unlikely(!size))
359 return -ENOMEM;
360
361 eb->lut_size = size;
362 } else {
363 eb->lut_size = -eb->buffer_count;
364 }
365
366 return 0;
367 }
368
369 static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 * entry,const struct i915_vma * vma,unsigned int flags)370 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
371 const struct i915_vma *vma,
372 unsigned int flags)
373 {
374 if (vma->node.size < entry->pad_to_size)
375 return true;
376
377 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
378 return true;
379
380 if (flags & EXEC_OBJECT_PINNED &&
381 vma->node.start != entry->offset)
382 return true;
383
384 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
385 vma->node.start < BATCH_OFFSET_BIAS)
386 return true;
387
388 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
389 (vma->node.start + vma->node.size + 4095) >> 32)
390 return true;
391
392 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
393 !i915_vma_is_map_and_fenceable(vma))
394 return true;
395
396 return false;
397 }
398
eb_pin_flags(const struct drm_i915_gem_exec_object2 * entry,unsigned int exec_flags)399 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
400 unsigned int exec_flags)
401 {
402 u64 pin_flags = 0;
403
404 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
405 pin_flags |= PIN_GLOBAL;
406
407 /*
408 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
409 * limit address to the first 4GBs for unflagged objects.
410 */
411 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
412 pin_flags |= PIN_ZONE_4G;
413
414 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
415 pin_flags |= PIN_MAPPABLE;
416
417 if (exec_flags & EXEC_OBJECT_PINNED)
418 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
419 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
420 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
421
422 return pin_flags;
423 }
424
425 static inline int
eb_pin_vma(struct i915_execbuffer * eb,const struct drm_i915_gem_exec_object2 * entry,struct eb_vma * ev)426 eb_pin_vma(struct i915_execbuffer *eb,
427 const struct drm_i915_gem_exec_object2 *entry,
428 struct eb_vma *ev)
429 {
430 struct i915_vma *vma = ev->vma;
431 u64 pin_flags;
432 int err;
433
434 if (vma->node.size)
435 pin_flags = vma->node.start;
436 else
437 pin_flags = entry->offset & PIN_OFFSET_MASK;
438
439 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
440 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
441 pin_flags |= PIN_GLOBAL;
442
443 /* Attempt to reuse the current location if available */
444 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
445 if (err == -EDEADLK)
446 return err;
447
448 if (unlikely(err)) {
449 if (entry->flags & EXEC_OBJECT_PINNED)
450 return err;
451
452 /* Failing that pick any _free_ space if suitable */
453 err = i915_vma_pin_ww(vma, &eb->ww,
454 entry->pad_to_size,
455 entry->alignment,
456 eb_pin_flags(entry, ev->flags) |
457 PIN_USER | PIN_NOEVICT);
458 if (unlikely(err))
459 return err;
460 }
461
462 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
463 err = i915_vma_pin_fence(vma);
464 if (unlikely(err)) {
465 i915_vma_unpin(vma);
466 return err;
467 }
468
469 if (vma->fence)
470 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
471 }
472
473 ev->flags |= __EXEC_OBJECT_HAS_PIN;
474 if (eb_vma_misplaced(entry, vma, ev->flags))
475 return -EBADSLT;
476
477 return 0;
478 }
479
480 static inline void
eb_unreserve_vma(struct eb_vma * ev)481 eb_unreserve_vma(struct eb_vma *ev)
482 {
483 if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
484 return;
485
486 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
487 __i915_vma_unpin_fence(ev->vma);
488
489 __i915_vma_unpin(ev->vma);
490 ev->flags &= ~__EXEC_OBJECT_RESERVED;
491 }
492
493 static int
eb_validate_vma(struct i915_execbuffer * eb,struct drm_i915_gem_exec_object2 * entry,struct i915_vma * vma)494 eb_validate_vma(struct i915_execbuffer *eb,
495 struct drm_i915_gem_exec_object2 *entry,
496 struct i915_vma *vma)
497 {
498 /* Relocations are disallowed for all platforms after TGL-LP. This
499 * also covers all platforms with local memory.
500 */
501 if (entry->relocation_count &&
502 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
503 return -EINVAL;
504
505 if (unlikely(entry->flags & eb->invalid_flags))
506 return -EINVAL;
507
508 if (unlikely(entry->alignment &&
509 !is_power_of_2_u64(entry->alignment)))
510 return -EINVAL;
511
512 /*
513 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
514 * any non-page-aligned or non-canonical addresses.
515 */
516 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
517 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
518 return -EINVAL;
519
520 /* pad_to_size was once a reserved field, so sanitize it */
521 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
522 if (unlikely(offset_in_page(entry->pad_to_size)))
523 return -EINVAL;
524 } else {
525 entry->pad_to_size = 0;
526 }
527 /*
528 * From drm_mm perspective address space is continuous,
529 * so from this point we're always using non-canonical
530 * form internally.
531 */
532 entry->offset = gen8_noncanonical_addr(entry->offset);
533
534 if (!eb->reloc_cache.has_fence) {
535 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
536 } else {
537 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
538 eb->reloc_cache.needs_unfenced) &&
539 i915_gem_object_is_tiled(vma->obj))
540 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
541 }
542
543 return 0;
544 }
545
546 static inline bool
is_batch_buffer(struct i915_execbuffer * eb,unsigned int buffer_idx)547 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
548 {
549 return eb->args->flags & I915_EXEC_BATCH_FIRST ?
550 buffer_idx < eb->num_batches :
551 buffer_idx >= eb->args->buffer_count - eb->num_batches;
552 }
553
554 static int
eb_add_vma(struct i915_execbuffer * eb,unsigned int * current_batch,unsigned int i,struct i915_vma * vma)555 eb_add_vma(struct i915_execbuffer *eb,
556 unsigned int *current_batch,
557 unsigned int i,
558 struct i915_vma *vma)
559 {
560 struct drm_i915_private *i915 = eb->i915;
561 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
562 struct eb_vma *ev = &eb->vma[i];
563
564 ev->vma = vma;
565 ev->exec = entry;
566 ev->flags = entry->flags;
567
568 if (eb->lut_size > 0) {
569 ev->handle = entry->handle;
570 hlist_add_head(&ev->node,
571 &eb->buckets[hash_32(entry->handle,
572 eb->lut_size)]);
573 }
574
575 if (entry->relocation_count)
576 list_add_tail(&ev->reloc_link, &eb->relocs);
577
578 /*
579 * SNA is doing fancy tricks with compressing batch buffers, which leads
580 * to negative relocation deltas. Usually that works out ok since the
581 * relocate address is still positive, except when the batch is placed
582 * very low in the GTT. Ensure this doesn't happen.
583 *
584 * Note that actual hangs have only been observed on gen7, but for
585 * paranoia do it everywhere.
586 */
587 if (is_batch_buffer(eb, i)) {
588 if (entry->relocation_count &&
589 !(ev->flags & EXEC_OBJECT_PINNED))
590 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
591 if (eb->reloc_cache.has_fence)
592 ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
593
594 eb->batches[*current_batch] = ev;
595
596 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
597 drm_dbg(&i915->drm,
598 "Attempting to use self-modifying batch buffer\n");
599 return -EINVAL;
600 }
601
602 if (range_overflows_t(u64,
603 eb->batch_start_offset,
604 eb->args->batch_len,
605 ev->vma->size)) {
606 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
607 return -EINVAL;
608 }
609
610 if (eb->args->batch_len == 0)
611 eb->batch_len[*current_batch] = ev->vma->size -
612 eb->batch_start_offset;
613 else
614 eb->batch_len[*current_batch] = eb->args->batch_len;
615 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
616 drm_dbg(&i915->drm, "Invalid batch length\n");
617 return -EINVAL;
618 }
619
620 ++*current_batch;
621 }
622
623 return 0;
624 }
625
use_cpu_reloc(const struct reloc_cache * cache,const struct drm_i915_gem_object * obj)626 static inline int use_cpu_reloc(const struct reloc_cache *cache,
627 const struct drm_i915_gem_object *obj)
628 {
629 if (!i915_gem_object_has_struct_page(obj))
630 return false;
631
632 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
633 return true;
634
635 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
636 return false;
637
638 return (cache->has_llc ||
639 obj->cache_dirty ||
640 obj->cache_level != I915_CACHE_NONE);
641 }
642
eb_reserve_vma(struct i915_execbuffer * eb,struct eb_vma * ev,u64 pin_flags)643 static int eb_reserve_vma(struct i915_execbuffer *eb,
644 struct eb_vma *ev,
645 u64 pin_flags)
646 {
647 struct drm_i915_gem_exec_object2 *entry = ev->exec;
648 struct i915_vma *vma = ev->vma;
649 int err;
650
651 if (drm_mm_node_allocated(&vma->node) &&
652 eb_vma_misplaced(entry, vma, ev->flags)) {
653 err = i915_vma_unbind(vma);
654 if (err)
655 return err;
656 }
657
658 err = i915_vma_pin_ww(vma, &eb->ww,
659 entry->pad_to_size, entry->alignment,
660 eb_pin_flags(entry, ev->flags) | pin_flags);
661 if (err)
662 return err;
663
664 if (entry->offset != vma->node.start) {
665 entry->offset = vma->node.start | UPDATE;
666 eb->args->flags |= __EXEC_HAS_RELOC;
667 }
668
669 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
670 err = i915_vma_pin_fence(vma);
671 if (unlikely(err)) {
672 i915_vma_unpin(vma);
673 return err;
674 }
675
676 if (vma->fence)
677 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
678 }
679
680 ev->flags |= __EXEC_OBJECT_HAS_PIN;
681 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
682
683 return 0;
684 }
685
eb_reserve(struct i915_execbuffer * eb)686 static int eb_reserve(struct i915_execbuffer *eb)
687 {
688 const unsigned int count = eb->buffer_count;
689 unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
690 struct list_head last;
691 struct eb_vma *ev;
692 unsigned int i, pass;
693 int err = 0;
694
695 /*
696 * Attempt to pin all of the buffers into the GTT.
697 * This is done in 3 phases:
698 *
699 * 1a. Unbind all objects that do not match the GTT constraints for
700 * the execbuffer (fenceable, mappable, alignment etc).
701 * 1b. Increment pin count for already bound objects.
702 * 2. Bind new objects.
703 * 3. Decrement pin count.
704 *
705 * This avoid unnecessary unbinding of later objects in order to make
706 * room for the earlier objects *unless* we need to defragment.
707 */
708 pass = 0;
709 do {
710 list_for_each_entry(ev, &eb->unbound, bind_link) {
711 err = eb_reserve_vma(eb, ev, pin_flags);
712 if (err)
713 break;
714 }
715 if (err != -ENOSPC)
716 return err;
717
718 /* Resort *all* the objects into priority order */
719 INIT_LIST_HEAD(&eb->unbound);
720 INIT_LIST_HEAD(&last);
721 for (i = 0; i < count; i++) {
722 unsigned int flags;
723
724 ev = &eb->vma[i];
725 flags = ev->flags;
726 if (flags & EXEC_OBJECT_PINNED &&
727 flags & __EXEC_OBJECT_HAS_PIN)
728 continue;
729
730 eb_unreserve_vma(ev);
731
732 if (flags & EXEC_OBJECT_PINNED)
733 /* Pinned must have their slot */
734 list_add(&ev->bind_link, &eb->unbound);
735 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
736 /* Map require the lowest 256MiB (aperture) */
737 list_add_tail(&ev->bind_link, &eb->unbound);
738 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
739 /* Prioritise 4GiB region for restricted bo */
740 list_add(&ev->bind_link, &last);
741 else
742 list_add_tail(&ev->bind_link, &last);
743 }
744 list_splice_tail(&last, &eb->unbound);
745
746 switch (pass++) {
747 case 0:
748 break;
749
750 case 1:
751 /* Too fragmented, unbind everything and retry */
752 mutex_lock(&eb->context->vm->mutex);
753 err = i915_gem_evict_vm(eb->context->vm);
754 mutex_unlock(&eb->context->vm->mutex);
755 if (err)
756 return err;
757 break;
758
759 default:
760 return -ENOSPC;
761 }
762
763 pin_flags = PIN_USER;
764 } while (1);
765 }
766
eb_select_context(struct i915_execbuffer * eb)767 static int eb_select_context(struct i915_execbuffer *eb)
768 {
769 struct i915_gem_context *ctx;
770
771 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
772 if (unlikely(IS_ERR(ctx)))
773 return PTR_ERR(ctx);
774
775 eb->gem_context = ctx;
776 if (i915_gem_context_has_full_ppgtt(ctx))
777 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
778
779 return 0;
780 }
781
__eb_add_lut(struct i915_execbuffer * eb,u32 handle,struct i915_vma * vma)782 static int __eb_add_lut(struct i915_execbuffer *eb,
783 u32 handle, struct i915_vma *vma)
784 {
785 struct i915_gem_context *ctx = eb->gem_context;
786 struct i915_lut_handle *lut;
787 int err;
788
789 lut = i915_lut_handle_alloc();
790 if (unlikely(!lut))
791 return -ENOMEM;
792
793 i915_vma_get(vma);
794 if (!atomic_fetch_inc(&vma->open_count))
795 i915_vma_reopen(vma);
796 lut->handle = handle;
797 lut->ctx = ctx;
798
799 /* Check that the context hasn't been closed in the meantime */
800 err = -EINTR;
801 if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
802 if (likely(!i915_gem_context_is_closed(ctx)))
803 err = radix_tree_insert(&ctx->handles_vma, handle, vma);
804 else
805 err = -ENOENT;
806 if (err == 0) { /* And nor has this handle */
807 struct drm_i915_gem_object *obj = vma->obj;
808
809 spin_lock(&obj->lut_lock);
810 if (idr_find(&eb->file->object_idr, handle) == obj) {
811 list_add(&lut->obj_link, &obj->lut_list);
812 } else {
813 radix_tree_delete(&ctx->handles_vma, handle);
814 err = -ENOENT;
815 }
816 spin_unlock(&obj->lut_lock);
817 }
818 mutex_unlock(&ctx->lut_mutex);
819 }
820 if (unlikely(err))
821 goto err;
822
823 return 0;
824
825 err:
826 i915_vma_close(vma);
827 i915_vma_put(vma);
828 i915_lut_handle_free(lut);
829 return err;
830 }
831
eb_lookup_vma(struct i915_execbuffer * eb,u32 handle)832 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
833 {
834 struct i915_address_space *vm = eb->context->vm;
835
836 do {
837 struct drm_i915_gem_object *obj;
838 struct i915_vma *vma;
839 int err;
840
841 rcu_read_lock();
842 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
843 if (likely(vma && vma->vm == vm))
844 vma = i915_vma_tryget(vma);
845 rcu_read_unlock();
846 if (likely(vma))
847 return vma;
848
849 obj = i915_gem_object_lookup(eb->file, handle);
850 if (unlikely(!obj))
851 return ERR_PTR(-ENOENT);
852
853 /*
854 * If the user has opted-in for protected-object tracking, make
855 * sure the object encryption can be used.
856 * We only need to do this when the object is first used with
857 * this context, because the context itself will be banned when
858 * the protected objects become invalid.
859 */
860 if (i915_gem_context_uses_protected_content(eb->gem_context) &&
861 i915_gem_object_is_protected(obj)) {
862 err = intel_pxp_key_check(&vm->gt->pxp, obj, true);
863 if (err) {
864 i915_gem_object_put(obj);
865 return ERR_PTR(err);
866 }
867 }
868
869 vma = i915_vma_instance(obj, vm, NULL);
870 if (IS_ERR(vma)) {
871 i915_gem_object_put(obj);
872 return vma;
873 }
874
875 err = __eb_add_lut(eb, handle, vma);
876 if (likely(!err))
877 return vma;
878
879 i915_gem_object_put(obj);
880 if (err != -EEXIST)
881 return ERR_PTR(err);
882 } while (1);
883 }
884
eb_lookup_vmas(struct i915_execbuffer * eb)885 static int eb_lookup_vmas(struct i915_execbuffer *eb)
886 {
887 unsigned int i, current_batch = 0;
888 int err = 0;
889
890 INIT_LIST_HEAD(&eb->relocs);
891
892 for (i = 0; i < eb->buffer_count; i++) {
893 struct i915_vma *vma;
894
895 vma = eb_lookup_vma(eb, eb->exec[i].handle);
896 if (IS_ERR(vma)) {
897 err = PTR_ERR(vma);
898 goto err;
899 }
900
901 err = eb_validate_vma(eb, &eb->exec[i], vma);
902 if (unlikely(err)) {
903 i915_vma_put(vma);
904 goto err;
905 }
906
907 err = eb_add_vma(eb, ¤t_batch, i, vma);
908 if (err)
909 return err;
910
911 if (i915_gem_object_is_userptr(vma->obj)) {
912 err = i915_gem_object_userptr_submit_init(vma->obj);
913 if (err) {
914 if (i + 1 < eb->buffer_count) {
915 /*
916 * Execbuffer code expects last vma entry to be NULL,
917 * since we already initialized this entry,
918 * set the next value to NULL or we mess up
919 * cleanup handling.
920 */
921 eb->vma[i + 1].vma = NULL;
922 }
923
924 return err;
925 }
926
927 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
928 eb->args->flags |= __EXEC_USERPTR_USED;
929 }
930 }
931
932 return 0;
933
934 err:
935 eb->vma[i].vma = NULL;
936 return err;
937 }
938
eb_lock_vmas(struct i915_execbuffer * eb)939 static int eb_lock_vmas(struct i915_execbuffer *eb)
940 {
941 unsigned int i;
942 int err;
943
944 for (i = 0; i < eb->buffer_count; i++) {
945 struct eb_vma *ev = &eb->vma[i];
946 struct i915_vma *vma = ev->vma;
947
948 err = i915_gem_object_lock(vma->obj, &eb->ww);
949 if (err)
950 return err;
951 }
952
953 return 0;
954 }
955
eb_validate_vmas(struct i915_execbuffer * eb)956 static int eb_validate_vmas(struct i915_execbuffer *eb)
957 {
958 unsigned int i;
959 int err;
960
961 INIT_LIST_HEAD(&eb->unbound);
962
963 err = eb_lock_vmas(eb);
964 if (err)
965 return err;
966
967 for (i = 0; i < eb->buffer_count; i++) {
968 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
969 struct eb_vma *ev = &eb->vma[i];
970 struct i915_vma *vma = ev->vma;
971
972 err = eb_pin_vma(eb, entry, ev);
973 if (err == -EDEADLK)
974 return err;
975
976 if (!err) {
977 if (entry->offset != vma->node.start) {
978 entry->offset = vma->node.start | UPDATE;
979 eb->args->flags |= __EXEC_HAS_RELOC;
980 }
981 } else {
982 eb_unreserve_vma(ev);
983
984 list_add_tail(&ev->bind_link, &eb->unbound);
985 if (drm_mm_node_allocated(&vma->node)) {
986 err = i915_vma_unbind(vma);
987 if (err)
988 return err;
989 }
990 }
991
992 if (!(ev->flags & EXEC_OBJECT_WRITE)) {
993 err = dma_resv_reserve_shared(vma->resv, 1);
994 if (err)
995 return err;
996 }
997
998 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
999 eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1000 }
1001
1002 if (!list_empty(&eb->unbound))
1003 return eb_reserve(eb);
1004
1005 return 0;
1006 }
1007
1008 static struct eb_vma *
eb_get_vma(const struct i915_execbuffer * eb,unsigned long handle)1009 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1010 {
1011 if (eb->lut_size < 0) {
1012 if (handle >= -eb->lut_size)
1013 return NULL;
1014 return &eb->vma[handle];
1015 } else {
1016 struct hlist_head *head;
1017 struct eb_vma *ev;
1018
1019 head = &eb->buckets[hash_32(handle, eb->lut_size)];
1020 hlist_for_each_entry(ev, head, node) {
1021 if (ev->handle == handle)
1022 return ev;
1023 }
1024 return NULL;
1025 }
1026 }
1027
eb_release_vmas(struct i915_execbuffer * eb,bool final)1028 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1029 {
1030 const unsigned int count = eb->buffer_count;
1031 unsigned int i;
1032
1033 for (i = 0; i < count; i++) {
1034 struct eb_vma *ev = &eb->vma[i];
1035 struct i915_vma *vma = ev->vma;
1036
1037 if (!vma)
1038 break;
1039
1040 eb_unreserve_vma(ev);
1041
1042 if (final)
1043 i915_vma_put(vma);
1044 }
1045
1046 eb_unpin_engine(eb);
1047 }
1048
eb_destroy(const struct i915_execbuffer * eb)1049 static void eb_destroy(const struct i915_execbuffer *eb)
1050 {
1051 if (eb->lut_size > 0)
1052 kfree(eb->buckets);
1053 }
1054
1055 static inline u64
relocation_target(const struct drm_i915_gem_relocation_entry * reloc,const struct i915_vma * target)1056 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1057 const struct i915_vma *target)
1058 {
1059 return gen8_canonical_addr((int)reloc->delta + target->node.start);
1060 }
1061
reloc_cache_init(struct reloc_cache * cache,struct drm_i915_private * i915)1062 static void reloc_cache_init(struct reloc_cache *cache,
1063 struct drm_i915_private *i915)
1064 {
1065 cache->page = -1;
1066 cache->vaddr = 0;
1067 /* Must be a variable in the struct to allow GCC to unroll. */
1068 cache->graphics_ver = GRAPHICS_VER(i915);
1069 cache->has_llc = HAS_LLC(i915);
1070 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1071 cache->has_fence = cache->graphics_ver < 4;
1072 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1073 cache->node.flags = 0;
1074 }
1075
unmask_page(unsigned long p)1076 static inline void *unmask_page(unsigned long p)
1077 {
1078 return (void *)(uintptr_t)(p & PAGE_MASK);
1079 }
1080
unmask_flags(unsigned long p)1081 static inline unsigned int unmask_flags(unsigned long p)
1082 {
1083 return p & ~PAGE_MASK;
1084 }
1085
1086 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1087
cache_to_ggtt(struct reloc_cache * cache)1088 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1089 {
1090 struct drm_i915_private *i915 =
1091 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1092 return &i915->ggtt;
1093 }
1094
reloc_cache_reset(struct reloc_cache * cache,struct i915_execbuffer * eb)1095 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1096 {
1097 void *vaddr;
1098
1099 if (!cache->vaddr)
1100 return;
1101
1102 vaddr = unmask_page(cache->vaddr);
1103 if (cache->vaddr & KMAP) {
1104 struct drm_i915_gem_object *obj =
1105 (struct drm_i915_gem_object *)cache->node.mm;
1106 if (cache->vaddr & CLFLUSH_AFTER)
1107 mb();
1108
1109 kunmap_atomic(vaddr);
1110 i915_gem_object_finish_access(obj);
1111 } else {
1112 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1113
1114 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1115 io_mapping_unmap_atomic((void __iomem *)vaddr);
1116
1117 if (drm_mm_node_allocated(&cache->node)) {
1118 ggtt->vm.clear_range(&ggtt->vm,
1119 cache->node.start,
1120 cache->node.size);
1121 mutex_lock(&ggtt->vm.mutex);
1122 drm_mm_remove_node(&cache->node);
1123 mutex_unlock(&ggtt->vm.mutex);
1124 } else {
1125 i915_vma_unpin((struct i915_vma *)cache->node.mm);
1126 }
1127 }
1128
1129 cache->vaddr = 0;
1130 cache->page = -1;
1131 }
1132
reloc_kmap(struct drm_i915_gem_object * obj,struct reloc_cache * cache,unsigned long pageno)1133 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1134 struct reloc_cache *cache,
1135 unsigned long pageno)
1136 {
1137 void *vaddr;
1138 struct page *page;
1139
1140 if (cache->vaddr) {
1141 kunmap_atomic(unmask_page(cache->vaddr));
1142 } else {
1143 unsigned int flushes;
1144 int err;
1145
1146 err = i915_gem_object_prepare_write(obj, &flushes);
1147 if (err)
1148 return ERR_PTR(err);
1149
1150 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1151 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1152
1153 cache->vaddr = flushes | KMAP;
1154 cache->node.mm = (void *)obj;
1155 if (flushes)
1156 mb();
1157 }
1158
1159 page = i915_gem_object_get_page(obj, pageno);
1160 if (!obj->mm.dirty)
1161 set_page_dirty(page);
1162
1163 vaddr = kmap_atomic(page);
1164 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1165 cache->page = pageno;
1166
1167 return vaddr;
1168 }
1169
reloc_iomap(struct drm_i915_gem_object * obj,struct i915_execbuffer * eb,unsigned long page)1170 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1171 struct i915_execbuffer *eb,
1172 unsigned long page)
1173 {
1174 struct reloc_cache *cache = &eb->reloc_cache;
1175 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1176 unsigned long offset;
1177 void *vaddr;
1178
1179 if (cache->vaddr) {
1180 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1181 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1182 } else {
1183 struct i915_vma *vma;
1184 int err;
1185
1186 if (i915_gem_object_is_tiled(obj))
1187 return ERR_PTR(-EINVAL);
1188
1189 if (use_cpu_reloc(cache, obj))
1190 return NULL;
1191
1192 err = i915_gem_object_set_to_gtt_domain(obj, true);
1193 if (err)
1194 return ERR_PTR(err);
1195
1196 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1197 PIN_MAPPABLE |
1198 PIN_NONBLOCK /* NOWARN */ |
1199 PIN_NOEVICT);
1200 if (vma == ERR_PTR(-EDEADLK))
1201 return vma;
1202
1203 if (IS_ERR(vma)) {
1204 memset(&cache->node, 0, sizeof(cache->node));
1205 mutex_lock(&ggtt->vm.mutex);
1206 err = drm_mm_insert_node_in_range
1207 (&ggtt->vm.mm, &cache->node,
1208 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1209 0, ggtt->mappable_end,
1210 DRM_MM_INSERT_LOW);
1211 mutex_unlock(&ggtt->vm.mutex);
1212 if (err) /* no inactive aperture space, use cpu reloc */
1213 return NULL;
1214 } else {
1215 cache->node.start = vma->node.start;
1216 cache->node.mm = (void *)vma;
1217 }
1218 }
1219
1220 offset = cache->node.start;
1221 if (drm_mm_node_allocated(&cache->node)) {
1222 ggtt->vm.insert_page(&ggtt->vm,
1223 i915_gem_object_get_dma_address(obj, page),
1224 offset, I915_CACHE_NONE, 0);
1225 } else {
1226 offset += page << PAGE_SHIFT;
1227 }
1228
1229 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1230 offset);
1231 cache->page = page;
1232 cache->vaddr = (unsigned long)vaddr;
1233
1234 return vaddr;
1235 }
1236
reloc_vaddr(struct drm_i915_gem_object * obj,struct i915_execbuffer * eb,unsigned long page)1237 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1238 struct i915_execbuffer *eb,
1239 unsigned long page)
1240 {
1241 struct reloc_cache *cache = &eb->reloc_cache;
1242 void *vaddr;
1243
1244 if (cache->page == page) {
1245 vaddr = unmask_page(cache->vaddr);
1246 } else {
1247 vaddr = NULL;
1248 if ((cache->vaddr & KMAP) == 0)
1249 vaddr = reloc_iomap(obj, eb, page);
1250 if (!vaddr)
1251 vaddr = reloc_kmap(obj, cache, page);
1252 }
1253
1254 return vaddr;
1255 }
1256
clflush_write32(u32 * addr,u32 value,unsigned int flushes)1257 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1258 {
1259 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1260 if (flushes & CLFLUSH_BEFORE) {
1261 clflushopt(addr);
1262 mb();
1263 }
1264
1265 *addr = value;
1266
1267 /*
1268 * Writes to the same cacheline are serialised by the CPU
1269 * (including clflush). On the write path, we only require
1270 * that it hits memory in an orderly fashion and place
1271 * mb barriers at the start and end of the relocation phase
1272 * to ensure ordering of clflush wrt to the system.
1273 */
1274 if (flushes & CLFLUSH_AFTER)
1275 clflushopt(addr);
1276 } else
1277 *addr = value;
1278 }
1279
1280 static u64
relocate_entry(struct i915_vma * vma,const struct drm_i915_gem_relocation_entry * reloc,struct i915_execbuffer * eb,const struct i915_vma * target)1281 relocate_entry(struct i915_vma *vma,
1282 const struct drm_i915_gem_relocation_entry *reloc,
1283 struct i915_execbuffer *eb,
1284 const struct i915_vma *target)
1285 {
1286 u64 target_addr = relocation_target(reloc, target);
1287 u64 offset = reloc->offset;
1288 bool wide = eb->reloc_cache.use_64bit_reloc;
1289 void *vaddr;
1290
1291 repeat:
1292 vaddr = reloc_vaddr(vma->obj, eb,
1293 offset >> PAGE_SHIFT);
1294 if (IS_ERR(vaddr))
1295 return PTR_ERR(vaddr);
1296
1297 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1298 clflush_write32(vaddr + offset_in_page(offset),
1299 lower_32_bits(target_addr),
1300 eb->reloc_cache.vaddr);
1301
1302 if (wide) {
1303 offset += sizeof(u32);
1304 target_addr >>= 32;
1305 wide = false;
1306 goto repeat;
1307 }
1308
1309 return target->node.start | UPDATE;
1310 }
1311
1312 static u64
eb_relocate_entry(struct i915_execbuffer * eb,struct eb_vma * ev,const struct drm_i915_gem_relocation_entry * reloc)1313 eb_relocate_entry(struct i915_execbuffer *eb,
1314 struct eb_vma *ev,
1315 const struct drm_i915_gem_relocation_entry *reloc)
1316 {
1317 struct drm_i915_private *i915 = eb->i915;
1318 struct eb_vma *target;
1319 int err;
1320
1321 /* we've already hold a reference to all valid objects */
1322 target = eb_get_vma(eb, reloc->target_handle);
1323 if (unlikely(!target))
1324 return -ENOENT;
1325
1326 /* Validate that the target is in a valid r/w GPU domain */
1327 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1328 drm_dbg(&i915->drm, "reloc with multiple write domains: "
1329 "target %d offset %d "
1330 "read %08x write %08x",
1331 reloc->target_handle,
1332 (int) reloc->offset,
1333 reloc->read_domains,
1334 reloc->write_domain);
1335 return -EINVAL;
1336 }
1337 if (unlikely((reloc->write_domain | reloc->read_domains)
1338 & ~I915_GEM_GPU_DOMAINS)) {
1339 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1340 "target %d offset %d "
1341 "read %08x write %08x",
1342 reloc->target_handle,
1343 (int) reloc->offset,
1344 reloc->read_domains,
1345 reloc->write_domain);
1346 return -EINVAL;
1347 }
1348
1349 if (reloc->write_domain) {
1350 target->flags |= EXEC_OBJECT_WRITE;
1351
1352 /*
1353 * Sandybridge PPGTT errata: We need a global gtt mapping
1354 * for MI and pipe_control writes because the gpu doesn't
1355 * properly redirect them through the ppgtt for non_secure
1356 * batchbuffers.
1357 */
1358 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1359 GRAPHICS_VER(eb->i915) == 6) {
1360 err = i915_vma_bind(target->vma,
1361 target->vma->obj->cache_level,
1362 PIN_GLOBAL, NULL);
1363 if (err)
1364 return err;
1365 }
1366 }
1367
1368 /*
1369 * If the relocation already has the right value in it, no
1370 * more work needs to be done.
1371 */
1372 if (!DBG_FORCE_RELOC &&
1373 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1374 return 0;
1375
1376 /* Check that the relocation address is valid... */
1377 if (unlikely(reloc->offset >
1378 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1379 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1380 "target %d offset %d size %d.\n",
1381 reloc->target_handle,
1382 (int)reloc->offset,
1383 (int)ev->vma->size);
1384 return -EINVAL;
1385 }
1386 if (unlikely(reloc->offset & 3)) {
1387 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1388 "target %d offset %d.\n",
1389 reloc->target_handle,
1390 (int)reloc->offset);
1391 return -EINVAL;
1392 }
1393
1394 /*
1395 * If we write into the object, we need to force the synchronisation
1396 * barrier, either with an asynchronous clflush or if we executed the
1397 * patching using the GPU (though that should be serialised by the
1398 * timeline). To be completely sure, and since we are required to
1399 * do relocations we are already stalling, disable the user's opt
1400 * out of our synchronisation.
1401 */
1402 ev->flags &= ~EXEC_OBJECT_ASYNC;
1403
1404 /* and update the user's relocation entry */
1405 return relocate_entry(ev->vma, reloc, eb, target->vma);
1406 }
1407
eb_relocate_vma(struct i915_execbuffer * eb,struct eb_vma * ev)1408 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1409 {
1410 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1411 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1412 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1413 struct drm_i915_gem_relocation_entry __user *urelocs =
1414 u64_to_user_ptr(entry->relocs_ptr);
1415 unsigned long remain = entry->relocation_count;
1416
1417 if (unlikely(remain > N_RELOC(ULONG_MAX)))
1418 return -EINVAL;
1419
1420 /*
1421 * We must check that the entire relocation array is safe
1422 * to read. However, if the array is not writable the user loses
1423 * the updated relocation values.
1424 */
1425 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1426 return -EFAULT;
1427
1428 do {
1429 struct drm_i915_gem_relocation_entry *r = stack;
1430 unsigned int count =
1431 min_t(unsigned long, remain, ARRAY_SIZE(stack));
1432 unsigned int copied;
1433
1434 /*
1435 * This is the fast path and we cannot handle a pagefault
1436 * whilst holding the struct mutex lest the user pass in the
1437 * relocations contained within a mmaped bo. For in such a case
1438 * we, the page fault handler would call i915_gem_fault() and
1439 * we would try to acquire the struct mutex again. Obviously
1440 * this is bad and so lockdep complains vehemently.
1441 */
1442 pagefault_disable();
1443 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1444 pagefault_enable();
1445 if (unlikely(copied)) {
1446 remain = -EFAULT;
1447 goto out;
1448 }
1449
1450 remain -= count;
1451 do {
1452 u64 offset = eb_relocate_entry(eb, ev, r);
1453
1454 if (likely(offset == 0)) {
1455 } else if ((s64)offset < 0) {
1456 remain = (int)offset;
1457 goto out;
1458 } else {
1459 /*
1460 * Note that reporting an error now
1461 * leaves everything in an inconsistent
1462 * state as we have *already* changed
1463 * the relocation value inside the
1464 * object. As we have not changed the
1465 * reloc.presumed_offset or will not
1466 * change the execobject.offset, on the
1467 * call we may not rewrite the value
1468 * inside the object, leaving it
1469 * dangling and causing a GPU hang. Unless
1470 * userspace dynamically rebuilds the
1471 * relocations on each execbuf rather than
1472 * presume a static tree.
1473 *
1474 * We did previously check if the relocations
1475 * were writable (access_ok), an error now
1476 * would be a strange race with mprotect,
1477 * having already demonstrated that we
1478 * can read from this userspace address.
1479 */
1480 offset = gen8_canonical_addr(offset & ~UPDATE);
1481 __put_user(offset,
1482 &urelocs[r - stack].presumed_offset);
1483 }
1484 } while (r++, --count);
1485 urelocs += ARRAY_SIZE(stack);
1486 } while (remain);
1487 out:
1488 reloc_cache_reset(&eb->reloc_cache, eb);
1489 return remain;
1490 }
1491
1492 static int
eb_relocate_vma_slow(struct i915_execbuffer * eb,struct eb_vma * ev)1493 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1494 {
1495 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1496 struct drm_i915_gem_relocation_entry *relocs =
1497 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1498 unsigned int i;
1499 int err;
1500
1501 for (i = 0; i < entry->relocation_count; i++) {
1502 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1503
1504 if ((s64)offset < 0) {
1505 err = (int)offset;
1506 goto err;
1507 }
1508 }
1509 err = 0;
1510 err:
1511 reloc_cache_reset(&eb->reloc_cache, eb);
1512 return err;
1513 }
1514
check_relocations(const struct drm_i915_gem_exec_object2 * entry)1515 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1516 {
1517 const char __user *addr, *end;
1518 unsigned long size;
1519 char __maybe_unused c;
1520
1521 size = entry->relocation_count;
1522 if (size == 0)
1523 return 0;
1524
1525 if (size > N_RELOC(ULONG_MAX))
1526 return -EINVAL;
1527
1528 addr = u64_to_user_ptr(entry->relocs_ptr);
1529 size *= sizeof(struct drm_i915_gem_relocation_entry);
1530 if (!access_ok(addr, size))
1531 return -EFAULT;
1532
1533 end = addr + size;
1534 for (; addr < end; addr += PAGE_SIZE) {
1535 int err = __get_user(c, addr);
1536 if (err)
1537 return err;
1538 }
1539 return __get_user(c, end - 1);
1540 }
1541
eb_copy_relocations(const struct i915_execbuffer * eb)1542 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1543 {
1544 struct drm_i915_gem_relocation_entry *relocs;
1545 const unsigned int count = eb->buffer_count;
1546 unsigned int i;
1547 int err;
1548
1549 for (i = 0; i < count; i++) {
1550 const unsigned int nreloc = eb->exec[i].relocation_count;
1551 struct drm_i915_gem_relocation_entry __user *urelocs;
1552 unsigned long size;
1553 unsigned long copied;
1554
1555 if (nreloc == 0)
1556 continue;
1557
1558 err = check_relocations(&eb->exec[i]);
1559 if (err)
1560 goto err;
1561
1562 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1563 size = nreloc * sizeof(*relocs);
1564
1565 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1566 if (!relocs) {
1567 err = -ENOMEM;
1568 goto err;
1569 }
1570
1571 /* copy_from_user is limited to < 4GiB */
1572 copied = 0;
1573 do {
1574 unsigned int len =
1575 min_t(u64, BIT_ULL(31), size - copied);
1576
1577 if (__copy_from_user((char *)relocs + copied,
1578 (char __user *)urelocs + copied,
1579 len))
1580 goto end;
1581
1582 copied += len;
1583 } while (copied < size);
1584
1585 /*
1586 * As we do not update the known relocation offsets after
1587 * relocating (due to the complexities in lock handling),
1588 * we need to mark them as invalid now so that we force the
1589 * relocation processing next time. Just in case the target
1590 * object is evicted and then rebound into its old
1591 * presumed_offset before the next execbuffer - if that
1592 * happened we would make the mistake of assuming that the
1593 * relocations were valid.
1594 */
1595 if (!user_access_begin(urelocs, size))
1596 goto end;
1597
1598 for (copied = 0; copied < nreloc; copied++)
1599 unsafe_put_user(-1,
1600 &urelocs[copied].presumed_offset,
1601 end_user);
1602 user_access_end();
1603
1604 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1605 }
1606
1607 return 0;
1608
1609 end_user:
1610 user_access_end();
1611 end:
1612 kvfree(relocs);
1613 err = -EFAULT;
1614 err:
1615 while (i--) {
1616 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1617 if (eb->exec[i].relocation_count)
1618 kvfree(relocs);
1619 }
1620 return err;
1621 }
1622
eb_prefault_relocations(const struct i915_execbuffer * eb)1623 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1624 {
1625 const unsigned int count = eb->buffer_count;
1626 unsigned int i;
1627
1628 for (i = 0; i < count; i++) {
1629 int err;
1630
1631 err = check_relocations(&eb->exec[i]);
1632 if (err)
1633 return err;
1634 }
1635
1636 return 0;
1637 }
1638
eb_reinit_userptr(struct i915_execbuffer * eb)1639 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1640 {
1641 const unsigned int count = eb->buffer_count;
1642 unsigned int i;
1643 int ret;
1644
1645 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1646 return 0;
1647
1648 for (i = 0; i < count; i++) {
1649 struct eb_vma *ev = &eb->vma[i];
1650
1651 if (!i915_gem_object_is_userptr(ev->vma->obj))
1652 continue;
1653
1654 ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1655 if (ret)
1656 return ret;
1657
1658 ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1659 }
1660
1661 return 0;
1662 }
1663
eb_relocate_parse_slow(struct i915_execbuffer * eb)1664 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1665 {
1666 bool have_copy = false;
1667 struct eb_vma *ev;
1668 int err = 0;
1669
1670 repeat:
1671 if (signal_pending(current)) {
1672 err = -ERESTARTSYS;
1673 goto out;
1674 }
1675
1676 /* We may process another execbuffer during the unlock... */
1677 eb_release_vmas(eb, false);
1678 i915_gem_ww_ctx_fini(&eb->ww);
1679
1680 /*
1681 * We take 3 passes through the slowpatch.
1682 *
1683 * 1 - we try to just prefault all the user relocation entries and
1684 * then attempt to reuse the atomic pagefault disabled fast path again.
1685 *
1686 * 2 - we copy the user entries to a local buffer here outside of the
1687 * local and allow ourselves to wait upon any rendering before
1688 * relocations
1689 *
1690 * 3 - we already have a local copy of the relocation entries, but
1691 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1692 */
1693 if (!err) {
1694 err = eb_prefault_relocations(eb);
1695 } else if (!have_copy) {
1696 err = eb_copy_relocations(eb);
1697 have_copy = err == 0;
1698 } else {
1699 cond_resched();
1700 err = 0;
1701 }
1702
1703 if (!err)
1704 err = eb_reinit_userptr(eb);
1705
1706 i915_gem_ww_ctx_init(&eb->ww, true);
1707 if (err)
1708 goto out;
1709
1710 /* reacquire the objects */
1711 repeat_validate:
1712 err = eb_pin_engine(eb, false);
1713 if (err)
1714 goto err;
1715
1716 err = eb_validate_vmas(eb);
1717 if (err)
1718 goto err;
1719
1720 GEM_BUG_ON(!eb->batches[0]);
1721
1722 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1723 if (!have_copy) {
1724 err = eb_relocate_vma(eb, ev);
1725 if (err)
1726 break;
1727 } else {
1728 err = eb_relocate_vma_slow(eb, ev);
1729 if (err)
1730 break;
1731 }
1732 }
1733
1734 if (err == -EDEADLK)
1735 goto err;
1736
1737 if (err && !have_copy)
1738 goto repeat;
1739
1740 if (err)
1741 goto err;
1742
1743 /* as last step, parse the command buffer */
1744 err = eb_parse(eb);
1745 if (err)
1746 goto err;
1747
1748 /*
1749 * Leave the user relocations as are, this is the painfully slow path,
1750 * and we want to avoid the complication of dropping the lock whilst
1751 * having buffers reserved in the aperture and so causing spurious
1752 * ENOSPC for random operations.
1753 */
1754
1755 err:
1756 if (err == -EDEADLK) {
1757 eb_release_vmas(eb, false);
1758 err = i915_gem_ww_ctx_backoff(&eb->ww);
1759 if (!err)
1760 goto repeat_validate;
1761 }
1762
1763 if (err == -EAGAIN)
1764 goto repeat;
1765
1766 out:
1767 if (have_copy) {
1768 const unsigned int count = eb->buffer_count;
1769 unsigned int i;
1770
1771 for (i = 0; i < count; i++) {
1772 const struct drm_i915_gem_exec_object2 *entry =
1773 &eb->exec[i];
1774 struct drm_i915_gem_relocation_entry *relocs;
1775
1776 if (!entry->relocation_count)
1777 continue;
1778
1779 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1780 kvfree(relocs);
1781 }
1782 }
1783
1784 return err;
1785 }
1786
eb_relocate_parse(struct i915_execbuffer * eb)1787 static int eb_relocate_parse(struct i915_execbuffer *eb)
1788 {
1789 int err;
1790 bool throttle = true;
1791
1792 retry:
1793 err = eb_pin_engine(eb, throttle);
1794 if (err) {
1795 if (err != -EDEADLK)
1796 return err;
1797
1798 goto err;
1799 }
1800
1801 /* only throttle once, even if we didn't need to throttle */
1802 throttle = false;
1803
1804 err = eb_validate_vmas(eb);
1805 if (err == -EAGAIN)
1806 goto slow;
1807 else if (err)
1808 goto err;
1809
1810 /* The objects are in their final locations, apply the relocations. */
1811 if (eb->args->flags & __EXEC_HAS_RELOC) {
1812 struct eb_vma *ev;
1813
1814 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1815 err = eb_relocate_vma(eb, ev);
1816 if (err)
1817 break;
1818 }
1819
1820 if (err == -EDEADLK)
1821 goto err;
1822 else if (err)
1823 goto slow;
1824 }
1825
1826 if (!err)
1827 err = eb_parse(eb);
1828
1829 err:
1830 if (err == -EDEADLK) {
1831 eb_release_vmas(eb, false);
1832 err = i915_gem_ww_ctx_backoff(&eb->ww);
1833 if (!err)
1834 goto retry;
1835 }
1836
1837 return err;
1838
1839 slow:
1840 err = eb_relocate_parse_slow(eb);
1841 if (err)
1842 /*
1843 * If the user expects the execobject.offset and
1844 * reloc.presumed_offset to be an exact match,
1845 * as for using NO_RELOC, then we cannot update
1846 * the execobject.offset until we have completed
1847 * relocation.
1848 */
1849 eb->args->flags &= ~__EXEC_HAS_RELOC;
1850
1851 return err;
1852 }
1853
1854 /*
1855 * Using two helper loops for the order of which requests / batches are created
1856 * and added the to backend. Requests are created in order from the parent to
1857 * the last child. Requests are added in the reverse order, from the last child
1858 * to parent. This is done for locking reasons as the timeline lock is acquired
1859 * during request creation and released when the request is added to the
1860 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1861 * the ordering.
1862 */
1863 #define for_each_batch_create_order(_eb, _i) \
1864 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1865 #define for_each_batch_add_order(_eb, _i) \
1866 BUILD_BUG_ON(!typecheck(int, _i)); \
1867 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1868
1869 static struct i915_request *
eb_find_first_request_added(struct i915_execbuffer * eb)1870 eb_find_first_request_added(struct i915_execbuffer *eb)
1871 {
1872 int i;
1873
1874 for_each_batch_add_order(eb, i)
1875 if (eb->requests[i])
1876 return eb->requests[i];
1877
1878 GEM_BUG_ON("Request not found");
1879
1880 return NULL;
1881 }
1882
eb_move_to_gpu(struct i915_execbuffer * eb)1883 static int eb_move_to_gpu(struct i915_execbuffer *eb)
1884 {
1885 const unsigned int count = eb->buffer_count;
1886 unsigned int i = count;
1887 int err = 0, j;
1888
1889 while (i--) {
1890 struct eb_vma *ev = &eb->vma[i];
1891 struct i915_vma *vma = ev->vma;
1892 unsigned int flags = ev->flags;
1893 struct drm_i915_gem_object *obj = vma->obj;
1894
1895 assert_vma_held(vma);
1896
1897 if (flags & EXEC_OBJECT_CAPTURE) {
1898 struct i915_capture_list *capture;
1899
1900 for_each_batch_create_order(eb, j) {
1901 if (!eb->requests[j])
1902 break;
1903
1904 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1905 if (capture) {
1906 capture->next =
1907 eb->requests[j]->capture_list;
1908 capture->vma = vma;
1909 eb->requests[j]->capture_list = capture;
1910 }
1911 }
1912 }
1913
1914 /*
1915 * If the GPU is not _reading_ through the CPU cache, we need
1916 * to make sure that any writes (both previous GPU writes from
1917 * before a change in snooping levels and normal CPU writes)
1918 * caught in that cache are flushed to main memory.
1919 *
1920 * We want to say
1921 * obj->cache_dirty &&
1922 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1923 * but gcc's optimiser doesn't handle that as well and emits
1924 * two jumps instead of one. Maybe one day...
1925 *
1926 * FIXME: There is also sync flushing in set_pages(), which
1927 * serves a different purpose(some of the time at least).
1928 *
1929 * We should consider:
1930 *
1931 * 1. Rip out the async flush code.
1932 *
1933 * 2. Or make the sync flushing use the async clflush path
1934 * using mandatory fences underneath. Currently the below
1935 * async flush happens after we bind the object.
1936 */
1937 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1938 if (i915_gem_clflush_object(obj, 0))
1939 flags &= ~EXEC_OBJECT_ASYNC;
1940 }
1941
1942 /* We only need to await on the first request */
1943 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
1944 err = i915_request_await_object
1945 (eb_find_first_request_added(eb), obj,
1946 flags & EXEC_OBJECT_WRITE);
1947 }
1948
1949 for_each_batch_add_order(eb, j) {
1950 if (err)
1951 break;
1952 if (!eb->requests[j])
1953 continue;
1954
1955 err = _i915_vma_move_to_active(vma, eb->requests[j],
1956 j ? NULL :
1957 eb->composite_fence ?
1958 eb->composite_fence :
1959 &eb->requests[j]->fence,
1960 flags | __EXEC_OBJECT_NO_RESERVE);
1961 }
1962 }
1963
1964 #ifdef CONFIG_MMU_NOTIFIER
1965 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
1966 read_lock(&eb->i915->mm.notifier_lock);
1967
1968 /*
1969 * count is always at least 1, otherwise __EXEC_USERPTR_USED
1970 * could not have been set
1971 */
1972 for (i = 0; i < count; i++) {
1973 struct eb_vma *ev = &eb->vma[i];
1974 struct drm_i915_gem_object *obj = ev->vma->obj;
1975
1976 if (!i915_gem_object_is_userptr(obj))
1977 continue;
1978
1979 err = i915_gem_object_userptr_submit_done(obj);
1980 if (err)
1981 break;
1982 }
1983
1984 read_unlock(&eb->i915->mm.notifier_lock);
1985 }
1986 #endif
1987
1988 if (unlikely(err))
1989 goto err_skip;
1990
1991 /* Unconditionally flush any chipset caches (for streaming writes). */
1992 intel_gt_chipset_flush(eb->gt);
1993 return 0;
1994
1995 err_skip:
1996 for_each_batch_create_order(eb, j) {
1997 if (!eb->requests[j])
1998 break;
1999
2000 i915_request_set_error_once(eb->requests[j], err);
2001 }
2002 return err;
2003 }
2004
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 * exec)2005 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2006 {
2007 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2008 return -EINVAL;
2009
2010 /* Kernel clipping was a DRI1 misfeature */
2011 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2012 I915_EXEC_USE_EXTENSIONS))) {
2013 if (exec->num_cliprects || exec->cliprects_ptr)
2014 return -EINVAL;
2015 }
2016
2017 if (exec->DR4 == 0xffffffff) {
2018 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2019 exec->DR4 = 0;
2020 }
2021 if (exec->DR1 || exec->DR4)
2022 return -EINVAL;
2023
2024 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2025 return -EINVAL;
2026
2027 return 0;
2028 }
2029
i915_reset_gen7_sol_offsets(struct i915_request * rq)2030 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2031 {
2032 u32 *cs;
2033 int i;
2034
2035 if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
2036 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2037 return -EINVAL;
2038 }
2039
2040 cs = intel_ring_begin(rq, 4 * 2 + 2);
2041 if (IS_ERR(cs))
2042 return PTR_ERR(cs);
2043
2044 *cs++ = MI_LOAD_REGISTER_IMM(4);
2045 for (i = 0; i < 4; i++) {
2046 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2047 *cs++ = 0;
2048 }
2049 *cs++ = MI_NOOP;
2050 intel_ring_advance(rq, cs);
2051
2052 return 0;
2053 }
2054
2055 static struct i915_vma *
shadow_batch_pin(struct i915_execbuffer * eb,struct drm_i915_gem_object * obj,struct i915_address_space * vm,unsigned int flags)2056 shadow_batch_pin(struct i915_execbuffer *eb,
2057 struct drm_i915_gem_object *obj,
2058 struct i915_address_space *vm,
2059 unsigned int flags)
2060 {
2061 struct i915_vma *vma;
2062 int err;
2063
2064 vma = i915_vma_instance(obj, vm, NULL);
2065 if (IS_ERR(vma))
2066 return vma;
2067
2068 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags);
2069 if (err)
2070 return ERR_PTR(err);
2071
2072 return vma;
2073 }
2074
eb_dispatch_secure(struct i915_execbuffer * eb,struct i915_vma * vma)2075 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2076 {
2077 /*
2078 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2079 * batch" bit. Hence we need to pin secure batches into the global gtt.
2080 * hsw should have this fixed, but bdw mucks it up again. */
2081 if (eb->batch_flags & I915_DISPATCH_SECURE)
2082 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0);
2083
2084 return NULL;
2085 }
2086
eb_parse(struct i915_execbuffer * eb)2087 static int eb_parse(struct i915_execbuffer *eb)
2088 {
2089 struct drm_i915_private *i915 = eb->i915;
2090 struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2091 struct i915_vma *shadow, *trampoline, *batch;
2092 unsigned long len;
2093 int err;
2094
2095 if (!eb_use_cmdparser(eb)) {
2096 batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2097 if (IS_ERR(batch))
2098 return PTR_ERR(batch);
2099
2100 goto secure_batch;
2101 }
2102
2103 if (intel_context_is_parallel(eb->context))
2104 return -EINVAL;
2105
2106 len = eb->batch_len[0];
2107 if (!CMDPARSER_USES_GGTT(eb->i915)) {
2108 /*
2109 * ppGTT backed shadow buffers must be mapped RO, to prevent
2110 * post-scan tampering
2111 */
2112 if (!eb->context->vm->has_read_only) {
2113 drm_dbg(&i915->drm,
2114 "Cannot prevent post-scan tampering without RO capable vm\n");
2115 return -EINVAL;
2116 }
2117 } else {
2118 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2119 }
2120 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2121 return -EINVAL;
2122
2123 if (!pool) {
2124 pool = intel_gt_get_buffer_pool(eb->gt, len,
2125 I915_MAP_WB);
2126 if (IS_ERR(pool))
2127 return PTR_ERR(pool);
2128 eb->batch_pool = pool;
2129 }
2130
2131 err = i915_gem_object_lock(pool->obj, &eb->ww);
2132 if (err)
2133 goto err;
2134
2135 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2136 if (IS_ERR(shadow)) {
2137 err = PTR_ERR(shadow);
2138 goto err;
2139 }
2140 intel_gt_buffer_pool_mark_used(pool);
2141 i915_gem_object_set_readonly(shadow->obj);
2142 shadow->private = pool;
2143
2144 trampoline = NULL;
2145 if (CMDPARSER_USES_GGTT(eb->i915)) {
2146 trampoline = shadow;
2147
2148 shadow = shadow_batch_pin(eb, pool->obj,
2149 &eb->gt->ggtt->vm,
2150 PIN_GLOBAL);
2151 if (IS_ERR(shadow)) {
2152 err = PTR_ERR(shadow);
2153 shadow = trampoline;
2154 goto err_shadow;
2155 }
2156 shadow->private = pool;
2157
2158 eb->batch_flags |= I915_DISPATCH_SECURE;
2159 }
2160
2161 batch = eb_dispatch_secure(eb, shadow);
2162 if (IS_ERR(batch)) {
2163 err = PTR_ERR(batch);
2164 goto err_trampoline;
2165 }
2166
2167 err = dma_resv_reserve_shared(shadow->resv, 1);
2168 if (err)
2169 goto err_trampoline;
2170
2171 err = intel_engine_cmd_parser(eb->context->engine,
2172 eb->batches[0]->vma,
2173 eb->batch_start_offset,
2174 eb->batch_len[0],
2175 shadow, trampoline);
2176 if (err)
2177 goto err_unpin_batch;
2178
2179 eb->batches[0] = &eb->vma[eb->buffer_count++];
2180 eb->batches[0]->vma = i915_vma_get(shadow);
2181 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2182
2183 eb->trampoline = trampoline;
2184 eb->batch_start_offset = 0;
2185
2186 secure_batch:
2187 if (batch) {
2188 if (intel_context_is_parallel(eb->context))
2189 return -EINVAL;
2190
2191 eb->batches[0] = &eb->vma[eb->buffer_count++];
2192 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2193 eb->batches[0]->vma = i915_vma_get(batch);
2194 }
2195 return 0;
2196
2197 err_unpin_batch:
2198 if (batch)
2199 i915_vma_unpin(batch);
2200 err_trampoline:
2201 if (trampoline)
2202 i915_vma_unpin(trampoline);
2203 err_shadow:
2204 i915_vma_unpin(shadow);
2205 err:
2206 return err;
2207 }
2208
eb_request_submit(struct i915_execbuffer * eb,struct i915_request * rq,struct i915_vma * batch,u64 batch_len)2209 static int eb_request_submit(struct i915_execbuffer *eb,
2210 struct i915_request *rq,
2211 struct i915_vma *batch,
2212 u64 batch_len)
2213 {
2214 int err;
2215
2216 if (intel_context_nopreempt(rq->context))
2217 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2218
2219 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2220 err = i915_reset_gen7_sol_offsets(rq);
2221 if (err)
2222 return err;
2223 }
2224
2225 /*
2226 * After we completed waiting for other engines (using HW semaphores)
2227 * then we can signal that this request/batch is ready to run. This
2228 * allows us to determine if the batch is still waiting on the GPU
2229 * or actually running by checking the breadcrumb.
2230 */
2231 if (rq->context->engine->emit_init_breadcrumb) {
2232 err = rq->context->engine->emit_init_breadcrumb(rq);
2233 if (err)
2234 return err;
2235 }
2236
2237 err = rq->context->engine->emit_bb_start(rq,
2238 batch->node.start +
2239 eb->batch_start_offset,
2240 batch_len,
2241 eb->batch_flags);
2242 if (err)
2243 return err;
2244
2245 if (eb->trampoline) {
2246 GEM_BUG_ON(intel_context_is_parallel(rq->context));
2247 GEM_BUG_ON(eb->batch_start_offset);
2248 err = rq->context->engine->emit_bb_start(rq,
2249 eb->trampoline->node.start +
2250 batch_len, 0, 0);
2251 if (err)
2252 return err;
2253 }
2254
2255 return 0;
2256 }
2257
eb_submit(struct i915_execbuffer * eb)2258 static int eb_submit(struct i915_execbuffer *eb)
2259 {
2260 unsigned int i;
2261 int err;
2262
2263 err = eb_move_to_gpu(eb);
2264
2265 for_each_batch_create_order(eb, i) {
2266 if (!eb->requests[i])
2267 break;
2268
2269 trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2270 if (!err)
2271 err = eb_request_submit(eb, eb->requests[i],
2272 eb->batches[i]->vma,
2273 eb->batch_len[i]);
2274 }
2275
2276 return err;
2277 }
2278
num_vcs_engines(const struct drm_i915_private * i915)2279 static int num_vcs_engines(const struct drm_i915_private *i915)
2280 {
2281 return hweight_long(VDBOX_MASK(&i915->gt));
2282 }
2283
2284 /*
2285 * Find one BSD ring to dispatch the corresponding BSD command.
2286 * The engine index is returned.
2287 */
2288 static unsigned int
gen8_dispatch_bsd_engine(struct drm_i915_private * dev_priv,struct drm_file * file)2289 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2290 struct drm_file *file)
2291 {
2292 struct drm_i915_file_private *file_priv = file->driver_priv;
2293
2294 /* Check whether the file_priv has already selected one ring. */
2295 if ((int)file_priv->bsd_engine < 0)
2296 file_priv->bsd_engine =
2297 get_random_int() % num_vcs_engines(dev_priv);
2298
2299 return file_priv->bsd_engine;
2300 }
2301
2302 static const enum intel_engine_id user_ring_map[] = {
2303 [I915_EXEC_DEFAULT] = RCS0,
2304 [I915_EXEC_RENDER] = RCS0,
2305 [I915_EXEC_BLT] = BCS0,
2306 [I915_EXEC_BSD] = VCS0,
2307 [I915_EXEC_VEBOX] = VECS0
2308 };
2309
eb_throttle(struct i915_execbuffer * eb,struct intel_context * ce)2310 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2311 {
2312 struct intel_ring *ring = ce->ring;
2313 struct intel_timeline *tl = ce->timeline;
2314 struct i915_request *rq;
2315
2316 /*
2317 * Completely unscientific finger-in-the-air estimates for suitable
2318 * maximum user request size (to avoid blocking) and then backoff.
2319 */
2320 if (intel_ring_update_space(ring) >= PAGE_SIZE)
2321 return NULL;
2322
2323 /*
2324 * Find a request that after waiting upon, there will be at least half
2325 * the ring available. The hysteresis allows us to compete for the
2326 * shared ring and should mean that we sleep less often prior to
2327 * claiming our resources, but not so long that the ring completely
2328 * drains before we can submit our next request.
2329 */
2330 list_for_each_entry(rq, &tl->requests, link) {
2331 if (rq->ring != ring)
2332 continue;
2333
2334 if (__intel_ring_space(rq->postfix,
2335 ring->emit, ring->size) > ring->size / 2)
2336 break;
2337 }
2338 if (&rq->link == &tl->requests)
2339 return NULL; /* weird, we will check again later for real */
2340
2341 return i915_request_get(rq);
2342 }
2343
eb_pin_timeline(struct i915_execbuffer * eb,struct intel_context * ce,bool throttle)2344 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2345 bool throttle)
2346 {
2347 struct intel_timeline *tl;
2348 struct i915_request *rq = NULL;
2349
2350 /*
2351 * Take a local wakeref for preparing to dispatch the execbuf as
2352 * we expect to access the hardware fairly frequently in the
2353 * process, and require the engine to be kept awake between accesses.
2354 * Upon dispatch, we acquire another prolonged wakeref that we hold
2355 * until the timeline is idle, which in turn releases the wakeref
2356 * taken on the engine, and the parent device.
2357 */
2358 tl = intel_context_timeline_lock(ce);
2359 if (IS_ERR(tl))
2360 return PTR_ERR(tl);
2361
2362 intel_context_enter(ce);
2363 if (throttle)
2364 rq = eb_throttle(eb, ce);
2365 intel_context_timeline_unlock(tl);
2366
2367 if (rq) {
2368 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2369 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2370
2371 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2372 timeout) < 0) {
2373 i915_request_put(rq);
2374
2375 tl = intel_context_timeline_lock(ce);
2376 intel_context_exit(ce);
2377 intel_context_timeline_unlock(tl);
2378
2379 if (nonblock)
2380 return -EWOULDBLOCK;
2381 else
2382 return -EINTR;
2383 }
2384 i915_request_put(rq);
2385 }
2386
2387 return 0;
2388 }
2389
eb_pin_engine(struct i915_execbuffer * eb,bool throttle)2390 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2391 {
2392 struct intel_context *ce = eb->context, *child;
2393 int err;
2394 int i = 0, j = 0;
2395
2396 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2397
2398 if (unlikely(intel_context_is_banned(ce)))
2399 return -EIO;
2400
2401 /*
2402 * Pinning the contexts may generate requests in order to acquire
2403 * GGTT space, so do this first before we reserve a seqno for
2404 * ourselves.
2405 */
2406 err = intel_context_pin_ww(ce, &eb->ww);
2407 if (err)
2408 return err;
2409 for_each_child(ce, child) {
2410 err = intel_context_pin_ww(child, &eb->ww);
2411 GEM_BUG_ON(err); /* perma-pinned should incr a counter */
2412 }
2413
2414 for_each_child(ce, child) {
2415 err = eb_pin_timeline(eb, child, throttle);
2416 if (err)
2417 goto unwind;
2418 ++i;
2419 }
2420 err = eb_pin_timeline(eb, ce, throttle);
2421 if (err)
2422 goto unwind;
2423
2424 eb->args->flags |= __EXEC_ENGINE_PINNED;
2425 return 0;
2426
2427 unwind:
2428 for_each_child(ce, child) {
2429 if (j++ < i) {
2430 mutex_lock(&child->timeline->mutex);
2431 intel_context_exit(child);
2432 mutex_unlock(&child->timeline->mutex);
2433 }
2434 }
2435 for_each_child(ce, child)
2436 intel_context_unpin(child);
2437 intel_context_unpin(ce);
2438 return err;
2439 }
2440
eb_unpin_engine(struct i915_execbuffer * eb)2441 static void eb_unpin_engine(struct i915_execbuffer *eb)
2442 {
2443 struct intel_context *ce = eb->context, *child;
2444
2445 if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2446 return;
2447
2448 eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2449
2450 for_each_child(ce, child) {
2451 mutex_lock(&child->timeline->mutex);
2452 intel_context_exit(child);
2453 mutex_unlock(&child->timeline->mutex);
2454
2455 intel_context_unpin(child);
2456 }
2457
2458 mutex_lock(&ce->timeline->mutex);
2459 intel_context_exit(ce);
2460 mutex_unlock(&ce->timeline->mutex);
2461
2462 intel_context_unpin(ce);
2463 }
2464
2465 static unsigned int
eb_select_legacy_ring(struct i915_execbuffer * eb)2466 eb_select_legacy_ring(struct i915_execbuffer *eb)
2467 {
2468 struct drm_i915_private *i915 = eb->i915;
2469 struct drm_i915_gem_execbuffer2 *args = eb->args;
2470 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2471
2472 if (user_ring_id != I915_EXEC_BSD &&
2473 (args->flags & I915_EXEC_BSD_MASK)) {
2474 drm_dbg(&i915->drm,
2475 "execbuf with non bsd ring but with invalid "
2476 "bsd dispatch flags: %d\n", (int)(args->flags));
2477 return -1;
2478 }
2479
2480 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2481 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2482
2483 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2484 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2485 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2486 bsd_idx <= I915_EXEC_BSD_RING2) {
2487 bsd_idx >>= I915_EXEC_BSD_SHIFT;
2488 bsd_idx--;
2489 } else {
2490 drm_dbg(&i915->drm,
2491 "execbuf with unknown bsd ring: %u\n",
2492 bsd_idx);
2493 return -1;
2494 }
2495
2496 return _VCS(bsd_idx);
2497 }
2498
2499 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2500 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2501 user_ring_id);
2502 return -1;
2503 }
2504
2505 return user_ring_map[user_ring_id];
2506 }
2507
2508 static int
eb_select_engine(struct i915_execbuffer * eb)2509 eb_select_engine(struct i915_execbuffer *eb)
2510 {
2511 struct intel_context *ce, *child;
2512 unsigned int idx;
2513 int err;
2514
2515 if (i915_gem_context_user_engines(eb->gem_context))
2516 idx = eb->args->flags & I915_EXEC_RING_MASK;
2517 else
2518 idx = eb_select_legacy_ring(eb);
2519
2520 ce = i915_gem_context_get_engine(eb->gem_context, idx);
2521 if (IS_ERR(ce))
2522 return PTR_ERR(ce);
2523
2524 if (intel_context_is_parallel(ce)) {
2525 if (eb->buffer_count < ce->parallel.number_children + 1) {
2526 intel_context_put(ce);
2527 return -EINVAL;
2528 }
2529 if (eb->batch_start_offset || eb->args->batch_len) {
2530 intel_context_put(ce);
2531 return -EINVAL;
2532 }
2533 }
2534 eb->num_batches = ce->parallel.number_children + 1;
2535
2536 for_each_child(ce, child)
2537 intel_context_get(child);
2538 intel_gt_pm_get(ce->engine->gt);
2539
2540 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2541 err = intel_context_alloc_state(ce);
2542 if (err)
2543 goto err;
2544 }
2545 for_each_child(ce, child) {
2546 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2547 err = intel_context_alloc_state(child);
2548 if (err)
2549 goto err;
2550 }
2551 }
2552
2553 /*
2554 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2555 * EIO if the GPU is already wedged.
2556 */
2557 err = intel_gt_terminally_wedged(ce->engine->gt);
2558 if (err)
2559 goto err;
2560
2561 eb->context = ce;
2562 eb->gt = ce->engine->gt;
2563
2564 /*
2565 * Make sure engine pool stays alive even if we call intel_context_put
2566 * during ww handling. The pool is destroyed when last pm reference
2567 * is dropped, which breaks our -EDEADLK handling.
2568 */
2569 return err;
2570
2571 err:
2572 intel_gt_pm_put(ce->engine->gt);
2573 for_each_child(ce, child)
2574 intel_context_put(child);
2575 intel_context_put(ce);
2576 return err;
2577 }
2578
2579 static void
eb_put_engine(struct i915_execbuffer * eb)2580 eb_put_engine(struct i915_execbuffer *eb)
2581 {
2582 struct intel_context *child;
2583
2584 intel_gt_pm_put(eb->gt);
2585 for_each_child(eb->context, child)
2586 intel_context_put(child);
2587 intel_context_put(eb->context);
2588 }
2589
2590 static void
__free_fence_array(struct eb_fence * fences,unsigned int n)2591 __free_fence_array(struct eb_fence *fences, unsigned int n)
2592 {
2593 while (n--) {
2594 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2595 dma_fence_put(fences[n].dma_fence);
2596 dma_fence_chain_free(fences[n].chain_fence);
2597 }
2598 kvfree(fences);
2599 }
2600
2601 static int
add_timeline_fence_array(struct i915_execbuffer * eb,const struct drm_i915_gem_execbuffer_ext_timeline_fences * timeline_fences)2602 add_timeline_fence_array(struct i915_execbuffer *eb,
2603 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2604 {
2605 struct drm_i915_gem_exec_fence __user *user_fences;
2606 u64 __user *user_values;
2607 struct eb_fence *f;
2608 u64 nfences;
2609 int err = 0;
2610
2611 nfences = timeline_fences->fence_count;
2612 if (!nfences)
2613 return 0;
2614
2615 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2616 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2617 if (nfences > min_t(unsigned long,
2618 ULONG_MAX / sizeof(*user_fences),
2619 SIZE_MAX / sizeof(*f)) - eb->num_fences)
2620 return -EINVAL;
2621
2622 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2623 if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2624 return -EFAULT;
2625
2626 user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2627 if (!access_ok(user_values, nfences * sizeof(*user_values)))
2628 return -EFAULT;
2629
2630 f = krealloc(eb->fences,
2631 (eb->num_fences + nfences) * sizeof(*f),
2632 __GFP_NOWARN | GFP_KERNEL);
2633 if (!f)
2634 return -ENOMEM;
2635
2636 eb->fences = f;
2637 f += eb->num_fences;
2638
2639 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2640 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2641
2642 while (nfences--) {
2643 struct drm_i915_gem_exec_fence user_fence;
2644 struct drm_syncobj *syncobj;
2645 struct dma_fence *fence = NULL;
2646 u64 point;
2647
2648 if (__copy_from_user(&user_fence,
2649 user_fences++,
2650 sizeof(user_fence)))
2651 return -EFAULT;
2652
2653 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2654 return -EINVAL;
2655
2656 if (__get_user(point, user_values++))
2657 return -EFAULT;
2658
2659 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2660 if (!syncobj) {
2661 DRM_DEBUG("Invalid syncobj handle provided\n");
2662 return -ENOENT;
2663 }
2664
2665 fence = drm_syncobj_fence_get(syncobj);
2666
2667 if (!fence && user_fence.flags &&
2668 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2669 DRM_DEBUG("Syncobj handle has no fence\n");
2670 drm_syncobj_put(syncobj);
2671 return -EINVAL;
2672 }
2673
2674 if (fence)
2675 err = dma_fence_chain_find_seqno(&fence, point);
2676
2677 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2678 DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2679 dma_fence_put(fence);
2680 drm_syncobj_put(syncobj);
2681 return err;
2682 }
2683
2684 /*
2685 * A point might have been signaled already and
2686 * garbage collected from the timeline. In this case
2687 * just ignore the point and carry on.
2688 */
2689 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2690 drm_syncobj_put(syncobj);
2691 continue;
2692 }
2693
2694 /*
2695 * For timeline syncobjs we need to preallocate chains for
2696 * later signaling.
2697 */
2698 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2699 /*
2700 * Waiting and signaling the same point (when point !=
2701 * 0) would break the timeline.
2702 */
2703 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2704 DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
2705 dma_fence_put(fence);
2706 drm_syncobj_put(syncobj);
2707 return -EINVAL;
2708 }
2709
2710 f->chain_fence = dma_fence_chain_alloc();
2711 if (!f->chain_fence) {
2712 drm_syncobj_put(syncobj);
2713 dma_fence_put(fence);
2714 return -ENOMEM;
2715 }
2716 } else {
2717 f->chain_fence = NULL;
2718 }
2719
2720 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2721 f->dma_fence = fence;
2722 f->value = point;
2723 f++;
2724 eb->num_fences++;
2725 }
2726
2727 return 0;
2728 }
2729
add_fence_array(struct i915_execbuffer * eb)2730 static int add_fence_array(struct i915_execbuffer *eb)
2731 {
2732 struct drm_i915_gem_execbuffer2 *args = eb->args;
2733 struct drm_i915_gem_exec_fence __user *user;
2734 unsigned long num_fences = args->num_cliprects;
2735 struct eb_fence *f;
2736
2737 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2738 return 0;
2739
2740 if (!num_fences)
2741 return 0;
2742
2743 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2744 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2745 if (num_fences > min_t(unsigned long,
2746 ULONG_MAX / sizeof(*user),
2747 SIZE_MAX / sizeof(*f) - eb->num_fences))
2748 return -EINVAL;
2749
2750 user = u64_to_user_ptr(args->cliprects_ptr);
2751 if (!access_ok(user, num_fences * sizeof(*user)))
2752 return -EFAULT;
2753
2754 f = krealloc(eb->fences,
2755 (eb->num_fences + num_fences) * sizeof(*f),
2756 __GFP_NOWARN | GFP_KERNEL);
2757 if (!f)
2758 return -ENOMEM;
2759
2760 eb->fences = f;
2761 f += eb->num_fences;
2762 while (num_fences--) {
2763 struct drm_i915_gem_exec_fence user_fence;
2764 struct drm_syncobj *syncobj;
2765 struct dma_fence *fence = NULL;
2766
2767 if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2768 return -EFAULT;
2769
2770 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2771 return -EINVAL;
2772
2773 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2774 if (!syncobj) {
2775 DRM_DEBUG("Invalid syncobj handle provided\n");
2776 return -ENOENT;
2777 }
2778
2779 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2780 fence = drm_syncobj_fence_get(syncobj);
2781 if (!fence) {
2782 DRM_DEBUG("Syncobj handle has no fence\n");
2783 drm_syncobj_put(syncobj);
2784 return -EINVAL;
2785 }
2786 }
2787
2788 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2789 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2790
2791 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2792 f->dma_fence = fence;
2793 f->value = 0;
2794 f->chain_fence = NULL;
2795 f++;
2796 eb->num_fences++;
2797 }
2798
2799 return 0;
2800 }
2801
put_fence_array(struct eb_fence * fences,int num_fences)2802 static void put_fence_array(struct eb_fence *fences, int num_fences)
2803 {
2804 if (fences)
2805 __free_fence_array(fences, num_fences);
2806 }
2807
2808 static int
await_fence_array(struct i915_execbuffer * eb,struct i915_request * rq)2809 await_fence_array(struct i915_execbuffer *eb,
2810 struct i915_request *rq)
2811 {
2812 unsigned int n;
2813 int err;
2814
2815 for (n = 0; n < eb->num_fences; n++) {
2816 struct drm_syncobj *syncobj;
2817 unsigned int flags;
2818
2819 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2820
2821 if (!eb->fences[n].dma_fence)
2822 continue;
2823
2824 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
2825 if (err < 0)
2826 return err;
2827 }
2828
2829 return 0;
2830 }
2831
signal_fence_array(const struct i915_execbuffer * eb,struct dma_fence * const fence)2832 static void signal_fence_array(const struct i915_execbuffer *eb,
2833 struct dma_fence * const fence)
2834 {
2835 unsigned int n;
2836
2837 for (n = 0; n < eb->num_fences; n++) {
2838 struct drm_syncobj *syncobj;
2839 unsigned int flags;
2840
2841 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2842 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2843 continue;
2844
2845 if (eb->fences[n].chain_fence) {
2846 drm_syncobj_add_point(syncobj,
2847 eb->fences[n].chain_fence,
2848 fence,
2849 eb->fences[n].value);
2850 /*
2851 * The chain's ownership is transferred to the
2852 * timeline.
2853 */
2854 eb->fences[n].chain_fence = NULL;
2855 } else {
2856 drm_syncobj_replace_fence(syncobj, fence);
2857 }
2858 }
2859 }
2860
2861 static int
parse_timeline_fences(struct i915_user_extension __user * ext,void * data)2862 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
2863 {
2864 struct i915_execbuffer *eb = data;
2865 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
2866
2867 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
2868 return -EFAULT;
2869
2870 return add_timeline_fence_array(eb, &timeline_fences);
2871 }
2872
retire_requests(struct intel_timeline * tl,struct i915_request * end)2873 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
2874 {
2875 struct i915_request *rq, *rn;
2876
2877 list_for_each_entry_safe(rq, rn, &tl->requests, link)
2878 if (rq == end || !i915_request_retire(rq))
2879 break;
2880 }
2881
eb_request_add(struct i915_execbuffer * eb,struct i915_request * rq,int err,bool last_parallel)2882 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
2883 int err, bool last_parallel)
2884 {
2885 struct intel_timeline * const tl = i915_request_timeline(rq);
2886 struct i915_sched_attr attr = {};
2887 struct i915_request *prev;
2888
2889 lockdep_assert_held(&tl->mutex);
2890 lockdep_unpin_lock(&tl->mutex, rq->cookie);
2891
2892 trace_i915_request_add(rq);
2893
2894 prev = __i915_request_commit(rq);
2895
2896 /* Check that the context wasn't destroyed before submission */
2897 if (likely(!intel_context_is_closed(eb->context))) {
2898 attr = eb->gem_context->sched;
2899 } else {
2900 /* Serialise with context_close via the add_to_timeline */
2901 i915_request_set_error_once(rq, -ENOENT);
2902 __i915_request_skip(rq);
2903 err = -ENOENT; /* override any transient errors */
2904 }
2905
2906 if (intel_context_is_parallel(eb->context)) {
2907 if (err) {
2908 __i915_request_skip(rq);
2909 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
2910 &rq->fence.flags);
2911 }
2912 if (last_parallel)
2913 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
2914 &rq->fence.flags);
2915 }
2916
2917 __i915_request_queue(rq, &attr);
2918
2919 /* Try to clean up the client's timeline after submitting the request */
2920 if (prev)
2921 retire_requests(tl, prev);
2922
2923 mutex_unlock(&tl->mutex);
2924
2925 return err;
2926 }
2927
eb_requests_add(struct i915_execbuffer * eb,int err)2928 static int eb_requests_add(struct i915_execbuffer *eb, int err)
2929 {
2930 int i;
2931
2932 /*
2933 * We iterate in reverse order of creation to release timeline mutexes in
2934 * same order.
2935 */
2936 for_each_batch_add_order(eb, i) {
2937 struct i915_request *rq = eb->requests[i];
2938
2939 if (!rq)
2940 continue;
2941 err |= eb_request_add(eb, rq, err, i == 0);
2942 }
2943
2944 return err;
2945 }
2946
2947 static const i915_user_extension_fn execbuf_extensions[] = {
2948 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
2949 };
2950
2951 static int
parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 * args,struct i915_execbuffer * eb)2952 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
2953 struct i915_execbuffer *eb)
2954 {
2955 if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
2956 return 0;
2957
2958 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
2959 * have another flag also using it at the same time.
2960 */
2961 if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
2962 return -EINVAL;
2963
2964 if (args->num_cliprects != 0)
2965 return -EINVAL;
2966
2967 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
2968 execbuf_extensions,
2969 ARRAY_SIZE(execbuf_extensions),
2970 eb);
2971 }
2972
eb_requests_get(struct i915_execbuffer * eb)2973 static void eb_requests_get(struct i915_execbuffer *eb)
2974 {
2975 unsigned int i;
2976
2977 for_each_batch_create_order(eb, i) {
2978 if (!eb->requests[i])
2979 break;
2980
2981 i915_request_get(eb->requests[i]);
2982 }
2983 }
2984
eb_requests_put(struct i915_execbuffer * eb)2985 static void eb_requests_put(struct i915_execbuffer *eb)
2986 {
2987 unsigned int i;
2988
2989 for_each_batch_create_order(eb, i) {
2990 if (!eb->requests[i])
2991 break;
2992
2993 i915_request_put(eb->requests[i]);
2994 }
2995 }
2996
2997 static struct sync_file *
eb_composite_fence_create(struct i915_execbuffer * eb,int out_fence_fd)2998 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
2999 {
3000 struct sync_file *out_fence = NULL;
3001 struct dma_fence_array *fence_array;
3002 struct dma_fence **fences;
3003 unsigned int i;
3004
3005 GEM_BUG_ON(!intel_context_is_parent(eb->context));
3006
3007 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3008 if (!fences)
3009 return ERR_PTR(-ENOMEM);
3010
3011 for_each_batch_create_order(eb, i) {
3012 fences[i] = &eb->requests[i]->fence;
3013 __set_bit(I915_FENCE_FLAG_COMPOSITE,
3014 &eb->requests[i]->fence.flags);
3015 }
3016
3017 fence_array = dma_fence_array_create(eb->num_batches,
3018 fences,
3019 eb->context->parallel.fence_context,
3020 eb->context->parallel.seqno++,
3021 false);
3022 if (!fence_array) {
3023 kfree(fences);
3024 return ERR_PTR(-ENOMEM);
3025 }
3026
3027 /* Move ownership to the dma_fence_array created above */
3028 for_each_batch_create_order(eb, i)
3029 dma_fence_get(fences[i]);
3030
3031 if (out_fence_fd != -1) {
3032 out_fence = sync_file_create(&fence_array->base);
3033 /* sync_file now owns fence_arry, drop creation ref */
3034 dma_fence_put(&fence_array->base);
3035 if (!out_fence)
3036 return ERR_PTR(-ENOMEM);
3037 }
3038
3039 eb->composite_fence = &fence_array->base;
3040
3041 return out_fence;
3042 }
3043
3044 static struct sync_file *
eb_fences_add(struct i915_execbuffer * eb,struct i915_request * rq,struct dma_fence * in_fence,int out_fence_fd)3045 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3046 struct dma_fence *in_fence, int out_fence_fd)
3047 {
3048 struct sync_file *out_fence = NULL;
3049 int err;
3050
3051 if (unlikely(eb->gem_context->syncobj)) {
3052 struct dma_fence *fence;
3053
3054 fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3055 err = i915_request_await_dma_fence(rq, fence);
3056 dma_fence_put(fence);
3057 if (err)
3058 return ERR_PTR(err);
3059 }
3060
3061 if (in_fence) {
3062 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3063 err = i915_request_await_execution(rq, in_fence);
3064 else
3065 err = i915_request_await_dma_fence(rq, in_fence);
3066 if (err < 0)
3067 return ERR_PTR(err);
3068 }
3069
3070 if (eb->fences) {
3071 err = await_fence_array(eb, rq);
3072 if (err)
3073 return ERR_PTR(err);
3074 }
3075
3076 if (intel_context_is_parallel(eb->context)) {
3077 out_fence = eb_composite_fence_create(eb, out_fence_fd);
3078 if (IS_ERR(out_fence))
3079 return ERR_PTR(-ENOMEM);
3080 } else if (out_fence_fd != -1) {
3081 out_fence = sync_file_create(&rq->fence);
3082 if (!out_fence)
3083 return ERR_PTR(-ENOMEM);
3084 }
3085
3086 return out_fence;
3087 }
3088
3089 static struct intel_context *
eb_find_context(struct i915_execbuffer * eb,unsigned int context_number)3090 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3091 {
3092 struct intel_context *child;
3093
3094 if (likely(context_number == 0))
3095 return eb->context;
3096
3097 for_each_child(eb->context, child)
3098 if (!--context_number)
3099 return child;
3100
3101 GEM_BUG_ON("Context not found");
3102
3103 return NULL;
3104 }
3105
3106 static struct sync_file *
eb_requests_create(struct i915_execbuffer * eb,struct dma_fence * in_fence,int out_fence_fd)3107 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3108 int out_fence_fd)
3109 {
3110 struct sync_file *out_fence = NULL;
3111 unsigned int i;
3112
3113 for_each_batch_create_order(eb, i) {
3114 /* Allocate a request for this batch buffer nice and early. */
3115 eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3116 if (IS_ERR(eb->requests[i])) {
3117 out_fence = ERR_PTR(PTR_ERR(eb->requests[i]));
3118 eb->requests[i] = NULL;
3119 return out_fence;
3120 }
3121
3122 /*
3123 * Only the first request added (committed to backend) has to
3124 * take the in fences into account as all subsequent requests
3125 * will have fences inserted inbetween them.
3126 */
3127 if (i + 1 == eb->num_batches) {
3128 out_fence = eb_fences_add(eb, eb->requests[i],
3129 in_fence, out_fence_fd);
3130 if (IS_ERR(out_fence))
3131 return out_fence;
3132 }
3133
3134 /*
3135 * Whilst this request exists, batch_obj will be on the
3136 * active_list, and so will hold the active reference. Only when
3137 * this request is retired will the batch_obj be moved onto
3138 * the inactive_list and lose its active reference. Hence we do
3139 * not need to explicitly hold another reference here.
3140 */
3141 eb->requests[i]->batch = eb->batches[i]->vma;
3142 if (eb->batch_pool) {
3143 GEM_BUG_ON(intel_context_is_parallel(eb->context));
3144 intel_gt_buffer_pool_mark_active(eb->batch_pool,
3145 eb->requests[i]);
3146 }
3147 }
3148
3149 return out_fence;
3150 }
3151
3152 static int
i915_gem_do_execbuffer(struct drm_device * dev,struct drm_file * file,struct drm_i915_gem_execbuffer2 * args,struct drm_i915_gem_exec_object2 * exec)3153 i915_gem_do_execbuffer(struct drm_device *dev,
3154 struct drm_file *file,
3155 struct drm_i915_gem_execbuffer2 *args,
3156 struct drm_i915_gem_exec_object2 *exec)
3157 {
3158 struct drm_i915_private *i915 = to_i915(dev);
3159 struct i915_execbuffer eb;
3160 struct dma_fence *in_fence = NULL;
3161 struct sync_file *out_fence = NULL;
3162 int out_fence_fd = -1;
3163 int err;
3164
3165 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3166 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3167 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3168
3169 eb.i915 = i915;
3170 eb.file = file;
3171 eb.args = args;
3172 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3173 args->flags |= __EXEC_HAS_RELOC;
3174
3175 eb.exec = exec;
3176 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3177 eb.vma[0].vma = NULL;
3178 eb.batch_pool = NULL;
3179
3180 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3181 reloc_cache_init(&eb.reloc_cache, eb.i915);
3182
3183 eb.buffer_count = args->buffer_count;
3184 eb.batch_start_offset = args->batch_start_offset;
3185 eb.trampoline = NULL;
3186
3187 eb.fences = NULL;
3188 eb.num_fences = 0;
3189
3190 memset(eb.requests, 0, sizeof(struct i915_request *) *
3191 ARRAY_SIZE(eb.requests));
3192 eb.composite_fence = NULL;
3193
3194 eb.batch_flags = 0;
3195 if (args->flags & I915_EXEC_SECURE) {
3196 if (GRAPHICS_VER(i915) >= 11)
3197 return -ENODEV;
3198
3199 /* Return -EPERM to trigger fallback code on old binaries. */
3200 if (!HAS_SECURE_BATCHES(i915))
3201 return -EPERM;
3202
3203 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3204 return -EPERM;
3205
3206 eb.batch_flags |= I915_DISPATCH_SECURE;
3207 }
3208 if (args->flags & I915_EXEC_IS_PINNED)
3209 eb.batch_flags |= I915_DISPATCH_PINNED;
3210
3211 err = parse_execbuf2_extensions(args, &eb);
3212 if (err)
3213 goto err_ext;
3214
3215 err = add_fence_array(&eb);
3216 if (err)
3217 goto err_ext;
3218
3219 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3220 if (args->flags & IN_FENCES) {
3221 if ((args->flags & IN_FENCES) == IN_FENCES)
3222 return -EINVAL;
3223
3224 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3225 if (!in_fence) {
3226 err = -EINVAL;
3227 goto err_ext;
3228 }
3229 }
3230 #undef IN_FENCES
3231
3232 if (args->flags & I915_EXEC_FENCE_OUT) {
3233 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3234 if (out_fence_fd < 0) {
3235 err = out_fence_fd;
3236 goto err_in_fence;
3237 }
3238 }
3239
3240 err = eb_create(&eb);
3241 if (err)
3242 goto err_out_fence;
3243
3244 GEM_BUG_ON(!eb.lut_size);
3245
3246 err = eb_select_context(&eb);
3247 if (unlikely(err))
3248 goto err_destroy;
3249
3250 err = eb_select_engine(&eb);
3251 if (unlikely(err))
3252 goto err_context;
3253
3254 err = eb_lookup_vmas(&eb);
3255 if (err) {
3256 eb_release_vmas(&eb, true);
3257 goto err_engine;
3258 }
3259
3260 i915_gem_ww_ctx_init(&eb.ww, true);
3261
3262 err = eb_relocate_parse(&eb);
3263 if (err) {
3264 /*
3265 * If the user expects the execobject.offset and
3266 * reloc.presumed_offset to be an exact match,
3267 * as for using NO_RELOC, then we cannot update
3268 * the execobject.offset until we have completed
3269 * relocation.
3270 */
3271 args->flags &= ~__EXEC_HAS_RELOC;
3272 goto err_vma;
3273 }
3274
3275 ww_acquire_done(&eb.ww.ctx);
3276
3277 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3278 if (IS_ERR(out_fence)) {
3279 err = PTR_ERR(out_fence);
3280 out_fence = NULL;
3281 if (eb.requests[0])
3282 goto err_request;
3283 else
3284 goto err_vma;
3285 }
3286
3287 err = eb_submit(&eb);
3288
3289 err_request:
3290 eb_requests_get(&eb);
3291 err = eb_requests_add(&eb, err);
3292
3293 if (eb.fences)
3294 signal_fence_array(&eb, eb.composite_fence ?
3295 eb.composite_fence :
3296 &eb.requests[0]->fence);
3297
3298 if (out_fence) {
3299 if (err == 0) {
3300 fd_install(out_fence_fd, out_fence->file);
3301 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3302 args->rsvd2 |= (u64)out_fence_fd << 32;
3303 out_fence_fd = -1;
3304 } else {
3305 fput(out_fence->file);
3306 }
3307 }
3308
3309 if (unlikely(eb.gem_context->syncobj)) {
3310 drm_syncobj_replace_fence(eb.gem_context->syncobj,
3311 eb.composite_fence ?
3312 eb.composite_fence :
3313 &eb.requests[0]->fence);
3314 }
3315
3316 if (!out_fence && eb.composite_fence)
3317 dma_fence_put(eb.composite_fence);
3318
3319 eb_requests_put(&eb);
3320
3321 err_vma:
3322 eb_release_vmas(&eb, true);
3323 if (eb.trampoline)
3324 i915_vma_unpin(eb.trampoline);
3325 WARN_ON(err == -EDEADLK);
3326 i915_gem_ww_ctx_fini(&eb.ww);
3327
3328 if (eb.batch_pool)
3329 intel_gt_buffer_pool_put(eb.batch_pool);
3330 err_engine:
3331 eb_put_engine(&eb);
3332 err_context:
3333 i915_gem_context_put(eb.gem_context);
3334 err_destroy:
3335 eb_destroy(&eb);
3336 err_out_fence:
3337 if (out_fence_fd != -1)
3338 put_unused_fd(out_fence_fd);
3339 err_in_fence:
3340 dma_fence_put(in_fence);
3341 err_ext:
3342 put_fence_array(eb.fences, eb.num_fences);
3343 return err;
3344 }
3345
eb_element_size(void)3346 static size_t eb_element_size(void)
3347 {
3348 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3349 }
3350
check_buffer_count(size_t count)3351 static bool check_buffer_count(size_t count)
3352 {
3353 const size_t sz = eb_element_size();
3354
3355 /*
3356 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3357 * array size (see eb_create()). Otherwise, we can accept an array as
3358 * large as can be addressed (though use large arrays at your peril)!
3359 */
3360
3361 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3362 }
3363
3364 int
i915_gem_execbuffer2_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3365 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3366 struct drm_file *file)
3367 {
3368 struct drm_i915_private *i915 = to_i915(dev);
3369 struct drm_i915_gem_execbuffer2 *args = data;
3370 struct drm_i915_gem_exec_object2 *exec2_list;
3371 const size_t count = args->buffer_count;
3372 int err;
3373
3374 if (!check_buffer_count(count)) {
3375 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3376 return -EINVAL;
3377 }
3378
3379 err = i915_gem_check_execbuffer(args);
3380 if (err)
3381 return err;
3382
3383 /* Allocate extra slots for use by the command parser */
3384 exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3385 __GFP_NOWARN | GFP_KERNEL);
3386 if (exec2_list == NULL) {
3387 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3388 count);
3389 return -ENOMEM;
3390 }
3391 if (copy_from_user(exec2_list,
3392 u64_to_user_ptr(args->buffers_ptr),
3393 sizeof(*exec2_list) * count)) {
3394 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3395 kvfree(exec2_list);
3396 return -EFAULT;
3397 }
3398
3399 err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3400
3401 /*
3402 * Now that we have begun execution of the batchbuffer, we ignore
3403 * any new error after this point. Also given that we have already
3404 * updated the associated relocations, we try to write out the current
3405 * object locations irrespective of any error.
3406 */
3407 if (args->flags & __EXEC_HAS_RELOC) {
3408 struct drm_i915_gem_exec_object2 __user *user_exec_list =
3409 u64_to_user_ptr(args->buffers_ptr);
3410 unsigned int i;
3411
3412 /* Copy the new buffer offsets back to the user's exec list. */
3413 /*
3414 * Note: count * sizeof(*user_exec_list) does not overflow,
3415 * because we checked 'count' in check_buffer_count().
3416 *
3417 * And this range already got effectively checked earlier
3418 * when we did the "copy_from_user()" above.
3419 */
3420 if (!user_write_access_begin(user_exec_list,
3421 count * sizeof(*user_exec_list)))
3422 goto end;
3423
3424 for (i = 0; i < args->buffer_count; i++) {
3425 if (!(exec2_list[i].offset & UPDATE))
3426 continue;
3427
3428 exec2_list[i].offset =
3429 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3430 unsafe_put_user(exec2_list[i].offset,
3431 &user_exec_list[i].offset,
3432 end_user);
3433 }
3434 end_user:
3435 user_write_access_end();
3436 end:;
3437 }
3438
3439 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3440 kvfree(exec2_list);
3441 return err;
3442 }
3443