1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2016-2019 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7 
8 #include <uapi/misc/habanalabs.h>
9 #include "habanalabs.h"
10 
11 #include <linux/uaccess.h>
12 #include <linux/slab.h>
13 
14 #define HL_CS_FLAGS_TYPE_MASK	(HL_CS_FLAGS_SIGNAL | HL_CS_FLAGS_WAIT | \
15 				HL_CS_FLAGS_COLLECTIVE_WAIT)
16 
17 /**
18  * enum hl_cs_wait_status - cs wait status
19  * @CS_WAIT_STATUS_BUSY: cs was not completed yet
20  * @CS_WAIT_STATUS_COMPLETED: cs completed
21  * @CS_WAIT_STATUS_GONE: cs completed but fence is already gone
22  */
23 enum hl_cs_wait_status {
24 	CS_WAIT_STATUS_BUSY,
25 	CS_WAIT_STATUS_COMPLETED,
26 	CS_WAIT_STATUS_GONE
27 };
28 
29 static void job_wq_completion(struct work_struct *work);
30 static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx,
31 				u64 timeout_us, u64 seq,
32 				enum hl_cs_wait_status *status, s64 *timestamp);
33 static void cs_do_release(struct kref *ref);
34 
hl_sob_reset(struct kref * ref)35 static void hl_sob_reset(struct kref *ref)
36 {
37 	struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
38 							kref);
39 	struct hl_device *hdev = hw_sob->hdev;
40 
41 	dev_dbg(hdev->dev, "reset sob id %u\n", hw_sob->sob_id);
42 
43 	hdev->asic_funcs->reset_sob(hdev, hw_sob);
44 
45 	hw_sob->need_reset = false;
46 }
47 
hl_sob_reset_error(struct kref * ref)48 void hl_sob_reset_error(struct kref *ref)
49 {
50 	struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
51 							kref);
52 	struct hl_device *hdev = hw_sob->hdev;
53 
54 	dev_crit(hdev->dev,
55 		"SOB release shouldn't be called here, q_idx: %d, sob_id: %d\n",
56 		hw_sob->q_idx, hw_sob->sob_id);
57 }
58 
hw_sob_put(struct hl_hw_sob * hw_sob)59 void hw_sob_put(struct hl_hw_sob *hw_sob)
60 {
61 	if (hw_sob)
62 		kref_put(&hw_sob->kref, hl_sob_reset);
63 }
64 
hw_sob_put_err(struct hl_hw_sob * hw_sob)65 static void hw_sob_put_err(struct hl_hw_sob *hw_sob)
66 {
67 	if (hw_sob)
68 		kref_put(&hw_sob->kref, hl_sob_reset_error);
69 }
70 
hw_sob_get(struct hl_hw_sob * hw_sob)71 void hw_sob_get(struct hl_hw_sob *hw_sob)
72 {
73 	if (hw_sob)
74 		kref_get(&hw_sob->kref);
75 }
76 
77 /**
78  * hl_gen_sob_mask() - Generates a sob mask to be used in a monitor arm packet
79  * @sob_base: sob base id
80  * @sob_mask: sob user mask, each bit represents a sob offset from sob base
81  * @mask: generated mask
82  *
83  * Return: 0 if given parameters are valid
84  */
hl_gen_sob_mask(u16 sob_base,u8 sob_mask,u8 * mask)85 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask)
86 {
87 	int i;
88 
89 	if (sob_mask == 0)
90 		return -EINVAL;
91 
92 	if (sob_mask == 0x1) {
93 		*mask = ~(1 << (sob_base & 0x7));
94 	} else {
95 		/* find msb in order to verify sob range is valid */
96 		for (i = BITS_PER_BYTE - 1 ; i >= 0 ; i--)
97 			if (BIT(i) & sob_mask)
98 				break;
99 
100 		if (i > (HL_MAX_SOBS_PER_MONITOR - (sob_base & 0x7) - 1))
101 			return -EINVAL;
102 
103 		*mask = ~sob_mask;
104 	}
105 
106 	return 0;
107 }
108 
hl_fence_release(struct kref * kref)109 static void hl_fence_release(struct kref *kref)
110 {
111 	struct hl_fence *fence =
112 		container_of(kref, struct hl_fence, refcount);
113 	struct hl_cs_compl *hl_cs_cmpl =
114 		container_of(fence, struct hl_cs_compl, base_fence);
115 
116 	kfree(hl_cs_cmpl);
117 }
118 
hl_fence_put(struct hl_fence * fence)119 void hl_fence_put(struct hl_fence *fence)
120 {
121 	if (IS_ERR_OR_NULL(fence))
122 		return;
123 	kref_put(&fence->refcount, hl_fence_release);
124 }
125 
hl_fences_put(struct hl_fence ** fence,int len)126 void hl_fences_put(struct hl_fence **fence, int len)
127 {
128 	int i;
129 
130 	for (i = 0; i < len; i++, fence++)
131 		hl_fence_put(*fence);
132 }
133 
hl_fence_get(struct hl_fence * fence)134 void hl_fence_get(struct hl_fence *fence)
135 {
136 	if (fence)
137 		kref_get(&fence->refcount);
138 }
139 
hl_fence_init(struct hl_fence * fence,u64 sequence)140 static void hl_fence_init(struct hl_fence *fence, u64 sequence)
141 {
142 	kref_init(&fence->refcount);
143 	fence->cs_sequence = sequence;
144 	fence->error = 0;
145 	fence->timestamp = ktime_set(0, 0);
146 	fence->mcs_handling_done = false;
147 	init_completion(&fence->completion);
148 }
149 
cs_get(struct hl_cs * cs)150 void cs_get(struct hl_cs *cs)
151 {
152 	kref_get(&cs->refcount);
153 }
154 
cs_get_unless_zero(struct hl_cs * cs)155 static int cs_get_unless_zero(struct hl_cs *cs)
156 {
157 	return kref_get_unless_zero(&cs->refcount);
158 }
159 
cs_put(struct hl_cs * cs)160 static void cs_put(struct hl_cs *cs)
161 {
162 	kref_put(&cs->refcount, cs_do_release);
163 }
164 
cs_job_do_release(struct kref * ref)165 static void cs_job_do_release(struct kref *ref)
166 {
167 	struct hl_cs_job *job = container_of(ref, struct hl_cs_job, refcount);
168 
169 	kfree(job);
170 }
171 
cs_job_put(struct hl_cs_job * job)172 static void cs_job_put(struct hl_cs_job *job)
173 {
174 	kref_put(&job->refcount, cs_job_do_release);
175 }
176 
cs_needs_completion(struct hl_cs * cs)177 bool cs_needs_completion(struct hl_cs *cs)
178 {
179 	/* In case this is a staged CS, only the last CS in sequence should
180 	 * get a completion, any non staged CS will always get a completion
181 	 */
182 	if (cs->staged_cs && !cs->staged_last)
183 		return false;
184 
185 	return true;
186 }
187 
cs_needs_timeout(struct hl_cs * cs)188 bool cs_needs_timeout(struct hl_cs *cs)
189 {
190 	/* In case this is a staged CS, only the first CS in sequence should
191 	 * get a timeout, any non staged CS will always get a timeout
192 	 */
193 	if (cs->staged_cs && !cs->staged_first)
194 		return false;
195 
196 	return true;
197 }
198 
is_cb_patched(struct hl_device * hdev,struct hl_cs_job * job)199 static bool is_cb_patched(struct hl_device *hdev, struct hl_cs_job *job)
200 {
201 	/*
202 	 * Patched CB is created for external queues jobs, and for H/W queues
203 	 * jobs if the user CB was allocated by driver and MMU is disabled.
204 	 */
205 	return (job->queue_type == QUEUE_TYPE_EXT ||
206 			(job->queue_type == QUEUE_TYPE_HW &&
207 					job->is_kernel_allocated_cb &&
208 					!hdev->mmu_enable));
209 }
210 
211 /*
212  * cs_parser - parse the user command submission
213  *
214  * @hpriv	: pointer to the private data of the fd
215  * @job        : pointer to the job that holds the command submission info
216  *
217  * The function parses the command submission of the user. It calls the
218  * ASIC specific parser, which returns a list of memory blocks to send
219  * to the device as different command buffers
220  *
221  */
cs_parser(struct hl_fpriv * hpriv,struct hl_cs_job * job)222 static int cs_parser(struct hl_fpriv *hpriv, struct hl_cs_job *job)
223 {
224 	struct hl_device *hdev = hpriv->hdev;
225 	struct hl_cs_parser parser;
226 	int rc;
227 
228 	parser.ctx_id = job->cs->ctx->asid;
229 	parser.cs_sequence = job->cs->sequence;
230 	parser.job_id = job->id;
231 
232 	parser.hw_queue_id = job->hw_queue_id;
233 	parser.job_userptr_list = &job->userptr_list;
234 	parser.patched_cb = NULL;
235 	parser.user_cb = job->user_cb;
236 	parser.user_cb_size = job->user_cb_size;
237 	parser.queue_type = job->queue_type;
238 	parser.is_kernel_allocated_cb = job->is_kernel_allocated_cb;
239 	job->patched_cb = NULL;
240 	parser.completion = cs_needs_completion(job->cs);
241 
242 	rc = hdev->asic_funcs->cs_parser(hdev, &parser);
243 
244 	if (is_cb_patched(hdev, job)) {
245 		if (!rc) {
246 			job->patched_cb = parser.patched_cb;
247 			job->job_cb_size = parser.patched_cb_size;
248 			job->contains_dma_pkt = parser.contains_dma_pkt;
249 			atomic_inc(&job->patched_cb->cs_cnt);
250 		}
251 
252 		/*
253 		 * Whether the parsing worked or not, we don't need the
254 		 * original CB anymore because it was already parsed and
255 		 * won't be accessed again for this CS
256 		 */
257 		atomic_dec(&job->user_cb->cs_cnt);
258 		hl_cb_put(job->user_cb);
259 		job->user_cb = NULL;
260 	} else if (!rc) {
261 		job->job_cb_size = job->user_cb_size;
262 	}
263 
264 	return rc;
265 }
266 
complete_job(struct hl_device * hdev,struct hl_cs_job * job)267 static void complete_job(struct hl_device *hdev, struct hl_cs_job *job)
268 {
269 	struct hl_cs *cs = job->cs;
270 
271 	if (is_cb_patched(hdev, job)) {
272 		hl_userptr_delete_list(hdev, &job->userptr_list);
273 
274 		/*
275 		 * We might arrive here from rollback and patched CB wasn't
276 		 * created, so we need to check it's not NULL
277 		 */
278 		if (job->patched_cb) {
279 			atomic_dec(&job->patched_cb->cs_cnt);
280 			hl_cb_put(job->patched_cb);
281 		}
282 	}
283 
284 	/* For H/W queue jobs, if a user CB was allocated by driver and MMU is
285 	 * enabled, the user CB isn't released in cs_parser() and thus should be
286 	 * released here.
287 	 * This is also true for INT queues jobs which were allocated by driver
288 	 */
289 	if (job->is_kernel_allocated_cb &&
290 		((job->queue_type == QUEUE_TYPE_HW && hdev->mmu_enable) ||
291 				job->queue_type == QUEUE_TYPE_INT)) {
292 		atomic_dec(&job->user_cb->cs_cnt);
293 		hl_cb_put(job->user_cb);
294 	}
295 
296 	/*
297 	 * This is the only place where there can be multiple threads
298 	 * modifying the list at the same time
299 	 */
300 	spin_lock(&cs->job_lock);
301 	list_del(&job->cs_node);
302 	spin_unlock(&cs->job_lock);
303 
304 	hl_debugfs_remove_job(hdev, job);
305 
306 	/* We decrement reference only for a CS that gets completion
307 	 * because the reference was incremented only for this kind of CS
308 	 * right before it was scheduled.
309 	 *
310 	 * In staged submission, only the last CS marked as 'staged_last'
311 	 * gets completion, hence its release function will be called from here.
312 	 * As for all the rest CS's in the staged submission which do not get
313 	 * completion, their CS reference will be decremented by the
314 	 * 'staged_last' CS during the CS release flow.
315 	 * All relevant PQ CI counters will be incremented during the CS release
316 	 * flow by calling 'hl_hw_queue_update_ci'.
317 	 */
318 	if (cs_needs_completion(cs) &&
319 		(job->queue_type == QUEUE_TYPE_EXT ||
320 			job->queue_type == QUEUE_TYPE_HW))
321 		cs_put(cs);
322 
323 	cs_job_put(job);
324 }
325 
326 /*
327  * hl_staged_cs_find_first - locate the first CS in this staged submission
328  *
329  * @hdev: pointer to device structure
330  * @cs_seq: staged submission sequence number
331  *
332  * @note: This function must be called under 'hdev->cs_mirror_lock'
333  *
334  * Find and return a CS pointer with the given sequence
335  */
hl_staged_cs_find_first(struct hl_device * hdev,u64 cs_seq)336 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq)
337 {
338 	struct hl_cs *cs;
339 
340 	list_for_each_entry_reverse(cs, &hdev->cs_mirror_list, mirror_node)
341 		if (cs->staged_cs && cs->staged_first &&
342 				cs->sequence == cs_seq)
343 			return cs;
344 
345 	return NULL;
346 }
347 
348 /*
349  * is_staged_cs_last_exists - returns true if the last CS in sequence exists
350  *
351  * @hdev: pointer to device structure
352  * @cs: staged submission member
353  *
354  */
is_staged_cs_last_exists(struct hl_device * hdev,struct hl_cs * cs)355 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs)
356 {
357 	struct hl_cs *last_entry;
358 
359 	last_entry = list_last_entry(&cs->staged_cs_node, struct hl_cs,
360 								staged_cs_node);
361 
362 	if (last_entry->staged_last)
363 		return true;
364 
365 	return false;
366 }
367 
368 /*
369  * staged_cs_get - get CS reference if this CS is a part of a staged CS
370  *
371  * @hdev: pointer to device structure
372  * @cs: current CS
373  * @cs_seq: staged submission sequence number
374  *
375  * Increment CS reference for every CS in this staged submission except for
376  * the CS which get completion.
377  */
staged_cs_get(struct hl_device * hdev,struct hl_cs * cs)378 static void staged_cs_get(struct hl_device *hdev, struct hl_cs *cs)
379 {
380 	/* Only the last CS in this staged submission will get a completion.
381 	 * We must increment the reference for all other CS's in this
382 	 * staged submission.
383 	 * Once we get a completion we will release the whole staged submission.
384 	 */
385 	if (!cs->staged_last)
386 		cs_get(cs);
387 }
388 
389 /*
390  * staged_cs_put - put a CS in case it is part of staged submission
391  *
392  * @hdev: pointer to device structure
393  * @cs: CS to put
394  *
395  * This function decrements a CS reference (for a non completion CS)
396  */
staged_cs_put(struct hl_device * hdev,struct hl_cs * cs)397 static void staged_cs_put(struct hl_device *hdev, struct hl_cs *cs)
398 {
399 	/* We release all CS's in a staged submission except the last
400 	 * CS which we have never incremented its reference.
401 	 */
402 	if (!cs_needs_completion(cs))
403 		cs_put(cs);
404 }
405 
cs_handle_tdr(struct hl_device * hdev,struct hl_cs * cs)406 static void cs_handle_tdr(struct hl_device *hdev, struct hl_cs *cs)
407 {
408 	bool next_entry_found = false;
409 	struct hl_cs *next, *first_cs;
410 
411 	if (!cs_needs_timeout(cs))
412 		return;
413 
414 	spin_lock(&hdev->cs_mirror_lock);
415 
416 	/* We need to handle tdr only once for the complete staged submission.
417 	 * Hence, we choose the CS that reaches this function first which is
418 	 * the CS marked as 'staged_last'.
419 	 * In case single staged cs was submitted which has both first and last
420 	 * indications, then "cs_find_first" below will return NULL, since we
421 	 * removed the cs node from the list before getting here,
422 	 * in such cases just continue with the cs to cancel it's TDR work.
423 	 */
424 	if (cs->staged_cs && cs->staged_last) {
425 		first_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence);
426 		if (first_cs)
427 			cs = first_cs;
428 	}
429 
430 	spin_unlock(&hdev->cs_mirror_lock);
431 
432 	/* Don't cancel TDR in case this CS was timedout because we might be
433 	 * running from the TDR context
434 	 */
435 	if (cs->timedout || hdev->timeout_jiffies == MAX_SCHEDULE_TIMEOUT)
436 		return;
437 
438 	if (cs->tdr_active)
439 		cancel_delayed_work_sync(&cs->work_tdr);
440 
441 	spin_lock(&hdev->cs_mirror_lock);
442 
443 	/* queue TDR for next CS */
444 	list_for_each_entry(next, &hdev->cs_mirror_list, mirror_node)
445 		if (cs_needs_timeout(next)) {
446 			next_entry_found = true;
447 			break;
448 		}
449 
450 	if (next_entry_found && !next->tdr_active) {
451 		next->tdr_active = true;
452 		schedule_delayed_work(&next->work_tdr, next->timeout_jiffies);
453 	}
454 
455 	spin_unlock(&hdev->cs_mirror_lock);
456 }
457 
458 /*
459  * force_complete_multi_cs - complete all contexts that wait on multi-CS
460  *
461  * @hdev: pointer to habanalabs device structure
462  */
force_complete_multi_cs(struct hl_device * hdev)463 static void force_complete_multi_cs(struct hl_device *hdev)
464 {
465 	int i;
466 
467 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
468 		struct multi_cs_completion *mcs_compl;
469 
470 		mcs_compl = &hdev->multi_cs_completion[i];
471 
472 		spin_lock(&mcs_compl->lock);
473 
474 		if (!mcs_compl->used) {
475 			spin_unlock(&mcs_compl->lock);
476 			continue;
477 		}
478 
479 		/* when calling force complete no context should be waiting on
480 		 * multi-cS.
481 		 * We are calling the function as a protection for such case
482 		 * to free any pending context and print error message
483 		 */
484 		dev_err(hdev->dev,
485 				"multi-CS completion context %d still waiting when calling force completion\n",
486 				i);
487 		complete_all(&mcs_compl->completion);
488 		spin_unlock(&mcs_compl->lock);
489 	}
490 }
491 
492 /*
493  * complete_multi_cs - complete all waiting entities on multi-CS
494  *
495  * @hdev: pointer to habanalabs device structure
496  * @cs: CS structure
497  * The function signals a waiting entity that has an overlapping stream masters
498  * with the completed CS.
499  * For example:
500  * - a completed CS worked on stream master QID 4, multi CS completion
501  *   is actively waiting on stream master QIDs 3, 5. don't send signal as no
502  *   common stream master QID
503  * - a completed CS worked on stream master QID 4, multi CS completion
504  *   is actively waiting on stream master QIDs 3, 4. send signal as stream
505  *   master QID 4 is common
506  */
complete_multi_cs(struct hl_device * hdev,struct hl_cs * cs)507 static void complete_multi_cs(struct hl_device *hdev, struct hl_cs *cs)
508 {
509 	struct hl_fence *fence = cs->fence;
510 	int i;
511 
512 	/* in case of multi CS check for completion only for the first CS */
513 	if (cs->staged_cs && !cs->staged_first)
514 		return;
515 
516 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
517 		struct multi_cs_completion *mcs_compl;
518 
519 		mcs_compl = &hdev->multi_cs_completion[i];
520 		if (!mcs_compl->used)
521 			continue;
522 
523 		spin_lock(&mcs_compl->lock);
524 
525 		/*
526 		 * complete if:
527 		 * 1. still waiting for completion
528 		 * 2. the completed CS has at least one overlapping stream
529 		 *    master with the stream masters in the completion
530 		 */
531 		if (mcs_compl->used &&
532 				(fence->stream_master_qid_map &
533 					mcs_compl->stream_master_qid_map)) {
534 			/* extract the timestamp only of first completed CS */
535 			if (!mcs_compl->timestamp)
536 				mcs_compl->timestamp =
537 						ktime_to_ns(fence->timestamp);
538 			complete_all(&mcs_compl->completion);
539 
540 			/*
541 			 * Setting mcs_handling_done inside the lock ensures
542 			 * at least one fence have mcs_handling_done set to
543 			 * true before wait for mcs finish. This ensures at
544 			 * least one CS will be set as completed when polling
545 			 * mcs fences.
546 			 */
547 			fence->mcs_handling_done = true;
548 		}
549 
550 		spin_unlock(&mcs_compl->lock);
551 	}
552 	/* In case CS completed without mcs completion initialized */
553 	fence->mcs_handling_done = true;
554 }
555 
cs_release_sob_reset_handler(struct hl_device * hdev,struct hl_cs * cs,struct hl_cs_compl * hl_cs_cmpl)556 static inline void cs_release_sob_reset_handler(struct hl_device *hdev,
557 					struct hl_cs *cs,
558 					struct hl_cs_compl *hl_cs_cmpl)
559 {
560 	/* Skip this handler if the cs wasn't submitted, to avoid putting
561 	 * the hw_sob twice, since this case already handled at this point,
562 	 * also skip if the hw_sob pointer wasn't set.
563 	 */
564 	if (!hl_cs_cmpl->hw_sob || !cs->submitted)
565 		return;
566 
567 	spin_lock(&hl_cs_cmpl->lock);
568 
569 	/*
570 	 * we get refcount upon reservation of signals or signal/wait cs for the
571 	 * hw_sob object, and need to put it when the first staged cs
572 	 * (which cotains the encaps signals) or cs signal/wait is completed.
573 	 */
574 	if ((hl_cs_cmpl->type == CS_TYPE_SIGNAL) ||
575 			(hl_cs_cmpl->type == CS_TYPE_WAIT) ||
576 			(hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) ||
577 			(!!hl_cs_cmpl->encaps_signals)) {
578 		dev_dbg(hdev->dev,
579 				"CS 0x%llx type %d finished, sob_id: %d, sob_val: %u\n",
580 				hl_cs_cmpl->cs_seq,
581 				hl_cs_cmpl->type,
582 				hl_cs_cmpl->hw_sob->sob_id,
583 				hl_cs_cmpl->sob_val);
584 
585 		hw_sob_put(hl_cs_cmpl->hw_sob);
586 
587 		if (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT)
588 			hdev->asic_funcs->reset_sob_group(hdev,
589 					hl_cs_cmpl->sob_group);
590 	}
591 
592 	spin_unlock(&hl_cs_cmpl->lock);
593 }
594 
cs_do_release(struct kref * ref)595 static void cs_do_release(struct kref *ref)
596 {
597 	struct hl_cs *cs = container_of(ref, struct hl_cs, refcount);
598 	struct hl_device *hdev = cs->ctx->hdev;
599 	struct hl_cs_job *job, *tmp;
600 	struct hl_cs_compl *hl_cs_cmpl =
601 			container_of(cs->fence, struct hl_cs_compl, base_fence);
602 
603 	cs->completed = true;
604 
605 	/*
606 	 * Although if we reached here it means that all external jobs have
607 	 * finished, because each one of them took refcnt to CS, we still
608 	 * need to go over the internal jobs and complete them. Otherwise, we
609 	 * will have leaked memory and what's worse, the CS object (and
610 	 * potentially the CTX object) could be released, while the JOB
611 	 * still holds a pointer to them (but no reference).
612 	 */
613 	list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
614 		complete_job(hdev, job);
615 
616 	if (!cs->submitted) {
617 		/*
618 		 * In case the wait for signal CS was submitted, the fence put
619 		 * occurs in init_signal_wait_cs() or collective_wait_init_cs()
620 		 * right before hanging on the PQ.
621 		 */
622 		if (cs->type == CS_TYPE_WAIT ||
623 				cs->type == CS_TYPE_COLLECTIVE_WAIT)
624 			hl_fence_put(cs->signal_fence);
625 
626 		goto out;
627 	}
628 
629 	/* Need to update CI for all queue jobs that does not get completion */
630 	hl_hw_queue_update_ci(cs);
631 
632 	/* remove CS from CS mirror list */
633 	spin_lock(&hdev->cs_mirror_lock);
634 	list_del_init(&cs->mirror_node);
635 	spin_unlock(&hdev->cs_mirror_lock);
636 
637 	cs_handle_tdr(hdev, cs);
638 
639 	if (cs->staged_cs) {
640 		/* the completion CS decrements reference for the entire
641 		 * staged submission
642 		 */
643 		if (cs->staged_last) {
644 			struct hl_cs *staged_cs, *tmp;
645 
646 			list_for_each_entry_safe(staged_cs, tmp,
647 					&cs->staged_cs_node, staged_cs_node)
648 				staged_cs_put(hdev, staged_cs);
649 		}
650 
651 		/* A staged CS will be a member in the list only after it
652 		 * was submitted. We used 'cs_mirror_lock' when inserting
653 		 * it to list so we will use it again when removing it
654 		 */
655 		if (cs->submitted) {
656 			spin_lock(&hdev->cs_mirror_lock);
657 			list_del(&cs->staged_cs_node);
658 			spin_unlock(&hdev->cs_mirror_lock);
659 		}
660 
661 		/* decrement refcount to handle when first staged cs
662 		 * with encaps signals is completed.
663 		 */
664 		if (hl_cs_cmpl->encaps_signals)
665 			kref_put(&hl_cs_cmpl->encaps_sig_hdl->refcount,
666 						hl_encaps_handle_do_release);
667 	}
668 
669 	if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT)
670 			&& cs->encaps_signals)
671 		kref_put(&cs->encaps_sig_hdl->refcount,
672 					hl_encaps_handle_do_release);
673 
674 out:
675 	/* Must be called before hl_ctx_put because inside we use ctx to get
676 	 * the device
677 	 */
678 	hl_debugfs_remove_cs(cs);
679 
680 	hl_ctx_put(cs->ctx);
681 
682 	/* We need to mark an error for not submitted because in that case
683 	 * the hl fence release flow is different. Mainly, we don't need
684 	 * to handle hw_sob for signal/wait
685 	 */
686 	if (cs->timedout)
687 		cs->fence->error = -ETIMEDOUT;
688 	else if (cs->aborted)
689 		cs->fence->error = -EIO;
690 	else if (!cs->submitted)
691 		cs->fence->error = -EBUSY;
692 
693 	if (unlikely(cs->skip_reset_on_timeout)) {
694 		dev_err(hdev->dev,
695 			"Command submission %llu completed after %llu (s)\n",
696 			cs->sequence,
697 			div_u64(jiffies - cs->submission_time_jiffies, HZ));
698 	}
699 
700 	if (cs->timestamp)
701 		cs->fence->timestamp = ktime_get();
702 	complete_all(&cs->fence->completion);
703 	complete_multi_cs(hdev, cs);
704 
705 	cs_release_sob_reset_handler(hdev, cs, hl_cs_cmpl);
706 
707 	hl_fence_put(cs->fence);
708 
709 	kfree(cs->jobs_in_queue_cnt);
710 	kfree(cs);
711 }
712 
cs_timedout(struct work_struct * work)713 static void cs_timedout(struct work_struct *work)
714 {
715 	struct hl_device *hdev;
716 	int rc;
717 	struct hl_cs *cs = container_of(work, struct hl_cs,
718 						 work_tdr.work);
719 	bool skip_reset_on_timeout = cs->skip_reset_on_timeout;
720 
721 	rc = cs_get_unless_zero(cs);
722 	if (!rc)
723 		return;
724 
725 	if ((!cs->submitted) || (cs->completed)) {
726 		cs_put(cs);
727 		return;
728 	}
729 
730 	/* Mark the CS is timed out so we won't try to cancel its TDR */
731 	if (likely(!skip_reset_on_timeout))
732 		cs->timedout = true;
733 
734 	hdev = cs->ctx->hdev;
735 
736 	switch (cs->type) {
737 	case CS_TYPE_SIGNAL:
738 		dev_err(hdev->dev,
739 			"Signal command submission %llu has not finished in time!\n",
740 			cs->sequence);
741 		break;
742 
743 	case CS_TYPE_WAIT:
744 		dev_err(hdev->dev,
745 			"Wait command submission %llu has not finished in time!\n",
746 			cs->sequence);
747 		break;
748 
749 	case CS_TYPE_COLLECTIVE_WAIT:
750 		dev_err(hdev->dev,
751 			"Collective Wait command submission %llu has not finished in time!\n",
752 			cs->sequence);
753 		break;
754 
755 	default:
756 		dev_err(hdev->dev,
757 			"Command submission %llu has not finished in time!\n",
758 			cs->sequence);
759 		break;
760 	}
761 
762 	rc = hl_state_dump(hdev);
763 	if (rc)
764 		dev_err(hdev->dev, "Error during system state dump %d\n", rc);
765 
766 	cs_put(cs);
767 
768 	if (likely(!skip_reset_on_timeout)) {
769 		if (hdev->reset_on_lockup)
770 			hl_device_reset(hdev, HL_RESET_TDR);
771 		else
772 			hdev->needs_reset = true;
773 	}
774 }
775 
allocate_cs(struct hl_device * hdev,struct hl_ctx * ctx,enum hl_cs_type cs_type,u64 user_sequence,struct hl_cs ** cs_new,u32 flags,u32 timeout)776 static int allocate_cs(struct hl_device *hdev, struct hl_ctx *ctx,
777 			enum hl_cs_type cs_type, u64 user_sequence,
778 			struct hl_cs **cs_new, u32 flags, u32 timeout)
779 {
780 	struct hl_cs_counters_atomic *cntr;
781 	struct hl_fence *other = NULL;
782 	struct hl_cs_compl *cs_cmpl;
783 	struct hl_cs *cs;
784 	int rc;
785 
786 	cntr = &hdev->aggregated_cs_counters;
787 
788 	cs = kzalloc(sizeof(*cs), GFP_ATOMIC);
789 	if (!cs)
790 		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
791 
792 	if (!cs) {
793 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
794 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
795 		return -ENOMEM;
796 	}
797 
798 	/* increment refcnt for context */
799 	hl_ctx_get(hdev, ctx);
800 
801 	cs->ctx = ctx;
802 	cs->submitted = false;
803 	cs->completed = false;
804 	cs->type = cs_type;
805 	cs->timestamp = !!(flags & HL_CS_FLAGS_TIMESTAMP);
806 	cs->encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS);
807 	cs->timeout_jiffies = timeout;
808 	cs->skip_reset_on_timeout =
809 		hdev->skip_reset_on_timeout ||
810 		!!(flags & HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT);
811 	cs->submission_time_jiffies = jiffies;
812 	INIT_LIST_HEAD(&cs->job_list);
813 	INIT_DELAYED_WORK(&cs->work_tdr, cs_timedout);
814 	kref_init(&cs->refcount);
815 	spin_lock_init(&cs->job_lock);
816 
817 	cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_ATOMIC);
818 	if (!cs_cmpl)
819 		cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_KERNEL);
820 
821 	if (!cs_cmpl) {
822 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
823 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
824 		rc = -ENOMEM;
825 		goto free_cs;
826 	}
827 
828 	cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues,
829 			sizeof(*cs->jobs_in_queue_cnt), GFP_ATOMIC);
830 	if (!cs->jobs_in_queue_cnt)
831 		cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues,
832 				sizeof(*cs->jobs_in_queue_cnt), GFP_KERNEL);
833 
834 	if (!cs->jobs_in_queue_cnt) {
835 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
836 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
837 		rc = -ENOMEM;
838 		goto free_cs_cmpl;
839 	}
840 
841 	cs_cmpl->hdev = hdev;
842 	cs_cmpl->type = cs->type;
843 	spin_lock_init(&cs_cmpl->lock);
844 	cs->fence = &cs_cmpl->base_fence;
845 
846 	spin_lock(&ctx->cs_lock);
847 
848 	cs_cmpl->cs_seq = ctx->cs_sequence;
849 	other = ctx->cs_pending[cs_cmpl->cs_seq &
850 				(hdev->asic_prop.max_pending_cs - 1)];
851 
852 	if (other && !completion_done(&other->completion)) {
853 		/* If the following statement is true, it means we have reached
854 		 * a point in which only part of the staged submission was
855 		 * submitted and we don't have enough room in the 'cs_pending'
856 		 * array for the rest of the submission.
857 		 * This causes a deadlock because this CS will never be
858 		 * completed as it depends on future CS's for completion.
859 		 */
860 		if (other->cs_sequence == user_sequence)
861 			dev_crit_ratelimited(hdev->dev,
862 				"Staged CS %llu deadlock due to lack of resources",
863 				user_sequence);
864 
865 		dev_dbg_ratelimited(hdev->dev,
866 			"Rejecting CS because of too many in-flights CS\n");
867 		atomic64_inc(&ctx->cs_counters.max_cs_in_flight_drop_cnt);
868 		atomic64_inc(&cntr->max_cs_in_flight_drop_cnt);
869 		rc = -EAGAIN;
870 		goto free_fence;
871 	}
872 
873 	/* init hl_fence */
874 	hl_fence_init(&cs_cmpl->base_fence, cs_cmpl->cs_seq);
875 
876 	cs->sequence = cs_cmpl->cs_seq;
877 
878 	ctx->cs_pending[cs_cmpl->cs_seq &
879 			(hdev->asic_prop.max_pending_cs - 1)] =
880 							&cs_cmpl->base_fence;
881 	ctx->cs_sequence++;
882 
883 	hl_fence_get(&cs_cmpl->base_fence);
884 
885 	hl_fence_put(other);
886 
887 	spin_unlock(&ctx->cs_lock);
888 
889 	*cs_new = cs;
890 
891 	return 0;
892 
893 free_fence:
894 	spin_unlock(&ctx->cs_lock);
895 	kfree(cs->jobs_in_queue_cnt);
896 free_cs_cmpl:
897 	kfree(cs_cmpl);
898 free_cs:
899 	kfree(cs);
900 	hl_ctx_put(ctx);
901 	return rc;
902 }
903 
cs_rollback(struct hl_device * hdev,struct hl_cs * cs)904 static void cs_rollback(struct hl_device *hdev, struct hl_cs *cs)
905 {
906 	struct hl_cs_job *job, *tmp;
907 
908 	staged_cs_put(hdev, cs);
909 
910 	list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
911 		complete_job(hdev, job);
912 }
913 
hl_cs_rollback_all(struct hl_device * hdev)914 void hl_cs_rollback_all(struct hl_device *hdev)
915 {
916 	int i;
917 	struct hl_cs *cs, *tmp;
918 
919 	flush_workqueue(hdev->sob_reset_wq);
920 
921 	/* flush all completions before iterating over the CS mirror list in
922 	 * order to avoid a race with the release functions
923 	 */
924 	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
925 		flush_workqueue(hdev->cq_wq[i]);
926 
927 	/* Make sure we don't have leftovers in the CS mirror list */
928 	list_for_each_entry_safe(cs, tmp, &hdev->cs_mirror_list, mirror_node) {
929 		cs_get(cs);
930 		cs->aborted = true;
931 		dev_warn_ratelimited(hdev->dev, "Killing CS %d.%llu\n",
932 				cs->ctx->asid, cs->sequence);
933 		cs_rollback(hdev, cs);
934 		cs_put(cs);
935 	}
936 
937 	force_complete_multi_cs(hdev);
938 }
939 
940 static void
wake_pending_user_interrupt_threads(struct hl_user_interrupt * interrupt)941 wake_pending_user_interrupt_threads(struct hl_user_interrupt *interrupt)
942 {
943 	struct hl_user_pending_interrupt *pend;
944 	unsigned long flags;
945 
946 	spin_lock_irqsave(&interrupt->wait_list_lock, flags);
947 	list_for_each_entry(pend, &interrupt->wait_list_head, wait_list_node) {
948 		pend->fence.error = -EIO;
949 		complete_all(&pend->fence.completion);
950 	}
951 	spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
952 }
953 
hl_release_pending_user_interrupts(struct hl_device * hdev)954 void hl_release_pending_user_interrupts(struct hl_device *hdev)
955 {
956 	struct asic_fixed_properties *prop = &hdev->asic_prop;
957 	struct hl_user_interrupt *interrupt;
958 	int i;
959 
960 	if (!prop->user_interrupt_count)
961 		return;
962 
963 	/* We iterate through the user interrupt requests and waking up all
964 	 * user threads waiting for interrupt completion. We iterate the
965 	 * list under a lock, this is why all user threads, once awake,
966 	 * will wait on the same lock and will release the waiting object upon
967 	 * unlock.
968 	 */
969 
970 	for (i = 0 ; i < prop->user_interrupt_count ; i++) {
971 		interrupt = &hdev->user_interrupt[i];
972 		wake_pending_user_interrupt_threads(interrupt);
973 	}
974 
975 	interrupt = &hdev->common_user_interrupt;
976 	wake_pending_user_interrupt_threads(interrupt);
977 }
978 
job_wq_completion(struct work_struct * work)979 static void job_wq_completion(struct work_struct *work)
980 {
981 	struct hl_cs_job *job = container_of(work, struct hl_cs_job,
982 						finish_work);
983 	struct hl_cs *cs = job->cs;
984 	struct hl_device *hdev = cs->ctx->hdev;
985 
986 	/* job is no longer needed */
987 	complete_job(hdev, job);
988 }
989 
validate_queue_index(struct hl_device * hdev,struct hl_cs_chunk * chunk,enum hl_queue_type * queue_type,bool * is_kernel_allocated_cb)990 static int validate_queue_index(struct hl_device *hdev,
991 				struct hl_cs_chunk *chunk,
992 				enum hl_queue_type *queue_type,
993 				bool *is_kernel_allocated_cb)
994 {
995 	struct asic_fixed_properties *asic = &hdev->asic_prop;
996 	struct hw_queue_properties *hw_queue_prop;
997 
998 	/* This must be checked here to prevent out-of-bounds access to
999 	 * hw_queues_props array
1000 	 */
1001 	if (chunk->queue_index >= asic->max_queues) {
1002 		dev_err(hdev->dev, "Queue index %d is invalid\n",
1003 			chunk->queue_index);
1004 		return -EINVAL;
1005 	}
1006 
1007 	hw_queue_prop = &asic->hw_queues_props[chunk->queue_index];
1008 
1009 	if (hw_queue_prop->type == QUEUE_TYPE_NA) {
1010 		dev_err(hdev->dev, "Queue index %d is invalid\n",
1011 			chunk->queue_index);
1012 		return -EINVAL;
1013 	}
1014 
1015 	if (hw_queue_prop->driver_only) {
1016 		dev_err(hdev->dev,
1017 			"Queue index %d is restricted for the kernel driver\n",
1018 			chunk->queue_index);
1019 		return -EINVAL;
1020 	}
1021 
1022 	/* When hw queue type isn't QUEUE_TYPE_HW,
1023 	 * USER_ALLOC_CB flag shall be referred as "don't care".
1024 	 */
1025 	if (hw_queue_prop->type == QUEUE_TYPE_HW) {
1026 		if (chunk->cs_chunk_flags & HL_CS_CHUNK_FLAGS_USER_ALLOC_CB) {
1027 			if (!(hw_queue_prop->cb_alloc_flags & CB_ALLOC_USER)) {
1028 				dev_err(hdev->dev,
1029 					"Queue index %d doesn't support user CB\n",
1030 					chunk->queue_index);
1031 				return -EINVAL;
1032 			}
1033 
1034 			*is_kernel_allocated_cb = false;
1035 		} else {
1036 			if (!(hw_queue_prop->cb_alloc_flags &
1037 					CB_ALLOC_KERNEL)) {
1038 				dev_err(hdev->dev,
1039 					"Queue index %d doesn't support kernel CB\n",
1040 					chunk->queue_index);
1041 				return -EINVAL;
1042 			}
1043 
1044 			*is_kernel_allocated_cb = true;
1045 		}
1046 	} else {
1047 		*is_kernel_allocated_cb = !!(hw_queue_prop->cb_alloc_flags
1048 						& CB_ALLOC_KERNEL);
1049 	}
1050 
1051 	*queue_type = hw_queue_prop->type;
1052 	return 0;
1053 }
1054 
get_cb_from_cs_chunk(struct hl_device * hdev,struct hl_cb_mgr * cb_mgr,struct hl_cs_chunk * chunk)1055 static struct hl_cb *get_cb_from_cs_chunk(struct hl_device *hdev,
1056 					struct hl_cb_mgr *cb_mgr,
1057 					struct hl_cs_chunk *chunk)
1058 {
1059 	struct hl_cb *cb;
1060 	u32 cb_handle;
1061 
1062 	cb_handle = (u32) (chunk->cb_handle >> PAGE_SHIFT);
1063 
1064 	cb = hl_cb_get(hdev, cb_mgr, cb_handle);
1065 	if (!cb) {
1066 		dev_err(hdev->dev, "CB handle 0x%x invalid\n", cb_handle);
1067 		return NULL;
1068 	}
1069 
1070 	if ((chunk->cb_size < 8) || (chunk->cb_size > cb->size)) {
1071 		dev_err(hdev->dev, "CB size %u invalid\n", chunk->cb_size);
1072 		goto release_cb;
1073 	}
1074 
1075 	atomic_inc(&cb->cs_cnt);
1076 
1077 	return cb;
1078 
1079 release_cb:
1080 	hl_cb_put(cb);
1081 	return NULL;
1082 }
1083 
hl_cs_allocate_job(struct hl_device * hdev,enum hl_queue_type queue_type,bool is_kernel_allocated_cb)1084 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
1085 		enum hl_queue_type queue_type, bool is_kernel_allocated_cb)
1086 {
1087 	struct hl_cs_job *job;
1088 
1089 	job = kzalloc(sizeof(*job), GFP_ATOMIC);
1090 	if (!job)
1091 		job = kzalloc(sizeof(*job), GFP_KERNEL);
1092 
1093 	if (!job)
1094 		return NULL;
1095 
1096 	kref_init(&job->refcount);
1097 	job->queue_type = queue_type;
1098 	job->is_kernel_allocated_cb = is_kernel_allocated_cb;
1099 
1100 	if (is_cb_patched(hdev, job))
1101 		INIT_LIST_HEAD(&job->userptr_list);
1102 
1103 	if (job->queue_type == QUEUE_TYPE_EXT)
1104 		INIT_WORK(&job->finish_work, job_wq_completion);
1105 
1106 	return job;
1107 }
1108 
hl_cs_get_cs_type(u32 cs_type_flags)1109 static enum hl_cs_type hl_cs_get_cs_type(u32 cs_type_flags)
1110 {
1111 	if (cs_type_flags & HL_CS_FLAGS_SIGNAL)
1112 		return CS_TYPE_SIGNAL;
1113 	else if (cs_type_flags & HL_CS_FLAGS_WAIT)
1114 		return CS_TYPE_WAIT;
1115 	else if (cs_type_flags & HL_CS_FLAGS_COLLECTIVE_WAIT)
1116 		return CS_TYPE_COLLECTIVE_WAIT;
1117 	else if (cs_type_flags & HL_CS_FLAGS_RESERVE_SIGNALS_ONLY)
1118 		return CS_RESERVE_SIGNALS;
1119 	else if (cs_type_flags & HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY)
1120 		return CS_UNRESERVE_SIGNALS;
1121 	else
1122 		return CS_TYPE_DEFAULT;
1123 }
1124 
hl_cs_sanity_checks(struct hl_fpriv * hpriv,union hl_cs_args * args)1125 static int hl_cs_sanity_checks(struct hl_fpriv *hpriv, union hl_cs_args *args)
1126 {
1127 	struct hl_device *hdev = hpriv->hdev;
1128 	struct hl_ctx *ctx = hpriv->ctx;
1129 	u32 cs_type_flags, num_chunks;
1130 	enum hl_device_status status;
1131 	enum hl_cs_type cs_type;
1132 
1133 	if (!hl_device_operational(hdev, &status)) {
1134 		dev_warn_ratelimited(hdev->dev,
1135 			"Device is %s. Can't submit new CS\n",
1136 			hdev->status[status]);
1137 		return -EBUSY;
1138 	}
1139 
1140 	if ((args->in.cs_flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
1141 			!hdev->supports_staged_submission) {
1142 		dev_err(hdev->dev, "staged submission not supported");
1143 		return -EPERM;
1144 	}
1145 
1146 	cs_type_flags = args->in.cs_flags & HL_CS_FLAGS_TYPE_MASK;
1147 
1148 	if (unlikely(cs_type_flags && !is_power_of_2(cs_type_flags))) {
1149 		dev_err(hdev->dev,
1150 			"CS type flags are mutually exclusive, context %d\n",
1151 			ctx->asid);
1152 		return -EINVAL;
1153 	}
1154 
1155 	cs_type = hl_cs_get_cs_type(cs_type_flags);
1156 	num_chunks = args->in.num_chunks_execute;
1157 
1158 	if (unlikely((cs_type != CS_TYPE_DEFAULT) &&
1159 					!hdev->supports_sync_stream)) {
1160 		dev_err(hdev->dev, "Sync stream CS is not supported\n");
1161 		return -EINVAL;
1162 	}
1163 
1164 	if (cs_type == CS_TYPE_DEFAULT) {
1165 		if (!num_chunks) {
1166 			dev_err(hdev->dev,
1167 				"Got execute CS with 0 chunks, context %d\n",
1168 				ctx->asid);
1169 			return -EINVAL;
1170 		}
1171 	} else if (num_chunks != 1) {
1172 		dev_err(hdev->dev,
1173 			"Sync stream CS mandates one chunk only, context %d\n",
1174 			ctx->asid);
1175 		return -EINVAL;
1176 	}
1177 
1178 	return 0;
1179 }
1180 
hl_cs_copy_chunk_array(struct hl_device * hdev,struct hl_cs_chunk ** cs_chunk_array,void __user * chunks,u32 num_chunks,struct hl_ctx * ctx)1181 static int hl_cs_copy_chunk_array(struct hl_device *hdev,
1182 					struct hl_cs_chunk **cs_chunk_array,
1183 					void __user *chunks, u32 num_chunks,
1184 					struct hl_ctx *ctx)
1185 {
1186 	u32 size_to_copy;
1187 
1188 	if (num_chunks > HL_MAX_JOBS_PER_CS) {
1189 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1190 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1191 		dev_err(hdev->dev,
1192 			"Number of chunks can NOT be larger than %d\n",
1193 			HL_MAX_JOBS_PER_CS);
1194 		return -EINVAL;
1195 	}
1196 
1197 	*cs_chunk_array = kmalloc_array(num_chunks, sizeof(**cs_chunk_array),
1198 					GFP_ATOMIC);
1199 	if (!*cs_chunk_array)
1200 		*cs_chunk_array = kmalloc_array(num_chunks,
1201 					sizeof(**cs_chunk_array), GFP_KERNEL);
1202 	if (!*cs_chunk_array) {
1203 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1204 		atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt);
1205 		return -ENOMEM;
1206 	}
1207 
1208 	size_to_copy = num_chunks * sizeof(struct hl_cs_chunk);
1209 	if (copy_from_user(*cs_chunk_array, chunks, size_to_copy)) {
1210 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1211 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1212 		dev_err(hdev->dev, "Failed to copy cs chunk array from user\n");
1213 		kfree(*cs_chunk_array);
1214 		return -EFAULT;
1215 	}
1216 
1217 	return 0;
1218 }
1219 
cs_staged_submission(struct hl_device * hdev,struct hl_cs * cs,u64 sequence,u32 flags,u32 encaps_signal_handle)1220 static int cs_staged_submission(struct hl_device *hdev, struct hl_cs *cs,
1221 				u64 sequence, u32 flags,
1222 				u32 encaps_signal_handle)
1223 {
1224 	if (!(flags & HL_CS_FLAGS_STAGED_SUBMISSION))
1225 		return 0;
1226 
1227 	cs->staged_last = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_LAST);
1228 	cs->staged_first = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST);
1229 
1230 	if (cs->staged_first) {
1231 		/* Staged CS sequence is the first CS sequence */
1232 		INIT_LIST_HEAD(&cs->staged_cs_node);
1233 		cs->staged_sequence = cs->sequence;
1234 
1235 		if (cs->encaps_signals)
1236 			cs->encaps_sig_hdl_id = encaps_signal_handle;
1237 	} else {
1238 		/* User sequence will be validated in 'hl_hw_queue_schedule_cs'
1239 		 * under the cs_mirror_lock
1240 		 */
1241 		cs->staged_sequence = sequence;
1242 	}
1243 
1244 	/* Increment CS reference if needed */
1245 	staged_cs_get(hdev, cs);
1246 
1247 	cs->staged_cs = true;
1248 
1249 	return 0;
1250 }
1251 
get_stream_master_qid_mask(struct hl_device * hdev,u32 qid)1252 static u32 get_stream_master_qid_mask(struct hl_device *hdev, u32 qid)
1253 {
1254 	int i;
1255 
1256 	for (i = 0; i < hdev->stream_master_qid_arr_size; i++)
1257 		if (qid == hdev->stream_master_qid_arr[i])
1258 			return BIT(i);
1259 
1260 	return 0;
1261 }
1262 
cs_ioctl_default(struct hl_fpriv * hpriv,void __user * chunks,u32 num_chunks,u64 * cs_seq,u32 flags,u32 encaps_signals_handle,u32 timeout)1263 static int cs_ioctl_default(struct hl_fpriv *hpriv, void __user *chunks,
1264 				u32 num_chunks, u64 *cs_seq, u32 flags,
1265 				u32 encaps_signals_handle, u32 timeout)
1266 {
1267 	bool staged_mid, int_queues_only = true;
1268 	struct hl_device *hdev = hpriv->hdev;
1269 	struct hl_cs_chunk *cs_chunk_array;
1270 	struct hl_cs_counters_atomic *cntr;
1271 	struct hl_ctx *ctx = hpriv->ctx;
1272 	struct hl_cs_job *job;
1273 	struct hl_cs *cs;
1274 	struct hl_cb *cb;
1275 	u64 user_sequence;
1276 	u8 stream_master_qid_map = 0;
1277 	int rc, i;
1278 
1279 	cntr = &hdev->aggregated_cs_counters;
1280 	user_sequence = *cs_seq;
1281 	*cs_seq = ULLONG_MAX;
1282 
1283 	rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks,
1284 			hpriv->ctx);
1285 	if (rc)
1286 		goto out;
1287 
1288 	if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
1289 			!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST))
1290 		staged_mid = true;
1291 	else
1292 		staged_mid = false;
1293 
1294 	rc = allocate_cs(hdev, hpriv->ctx, CS_TYPE_DEFAULT,
1295 			staged_mid ? user_sequence : ULLONG_MAX, &cs, flags,
1296 			timeout);
1297 	if (rc)
1298 		goto free_cs_chunk_array;
1299 
1300 	*cs_seq = cs->sequence;
1301 
1302 	hl_debugfs_add_cs(cs);
1303 
1304 	rc = cs_staged_submission(hdev, cs, user_sequence, flags,
1305 						encaps_signals_handle);
1306 	if (rc)
1307 		goto free_cs_object;
1308 
1309 	/* If this is a staged submission we must return the staged sequence
1310 	 * rather than the internal CS sequence
1311 	 */
1312 	if (cs->staged_cs)
1313 		*cs_seq = cs->staged_sequence;
1314 
1315 	/* Validate ALL the CS chunks before submitting the CS */
1316 	for (i = 0 ; i < num_chunks ; i++) {
1317 		struct hl_cs_chunk *chunk = &cs_chunk_array[i];
1318 		enum hl_queue_type queue_type;
1319 		bool is_kernel_allocated_cb;
1320 
1321 		rc = validate_queue_index(hdev, chunk, &queue_type,
1322 						&is_kernel_allocated_cb);
1323 		if (rc) {
1324 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1325 			atomic64_inc(&cntr->validation_drop_cnt);
1326 			goto free_cs_object;
1327 		}
1328 
1329 		if (is_kernel_allocated_cb) {
1330 			cb = get_cb_from_cs_chunk(hdev, &hpriv->cb_mgr, chunk);
1331 			if (!cb) {
1332 				atomic64_inc(
1333 					&ctx->cs_counters.validation_drop_cnt);
1334 				atomic64_inc(&cntr->validation_drop_cnt);
1335 				rc = -EINVAL;
1336 				goto free_cs_object;
1337 			}
1338 		} else {
1339 			cb = (struct hl_cb *) (uintptr_t) chunk->cb_handle;
1340 		}
1341 
1342 		if (queue_type == QUEUE_TYPE_EXT ||
1343 						queue_type == QUEUE_TYPE_HW) {
1344 			int_queues_only = false;
1345 
1346 			/*
1347 			 * store which stream are being used for external/HW
1348 			 * queues of this CS
1349 			 */
1350 			if (hdev->supports_wait_for_multi_cs)
1351 				stream_master_qid_map |=
1352 					get_stream_master_qid_mask(hdev,
1353 							chunk->queue_index);
1354 		}
1355 
1356 		job = hl_cs_allocate_job(hdev, queue_type,
1357 						is_kernel_allocated_cb);
1358 		if (!job) {
1359 			atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1360 			atomic64_inc(&cntr->out_of_mem_drop_cnt);
1361 			dev_err(hdev->dev, "Failed to allocate a new job\n");
1362 			rc = -ENOMEM;
1363 			if (is_kernel_allocated_cb)
1364 				goto release_cb;
1365 
1366 			goto free_cs_object;
1367 		}
1368 
1369 		job->id = i + 1;
1370 		job->cs = cs;
1371 		job->user_cb = cb;
1372 		job->user_cb_size = chunk->cb_size;
1373 		job->hw_queue_id = chunk->queue_index;
1374 
1375 		cs->jobs_in_queue_cnt[job->hw_queue_id]++;
1376 
1377 		list_add_tail(&job->cs_node, &cs->job_list);
1378 
1379 		/*
1380 		 * Increment CS reference. When CS reference is 0, CS is
1381 		 * done and can be signaled to user and free all its resources
1382 		 * Only increment for JOB on external or H/W queues, because
1383 		 * only for those JOBs we get completion
1384 		 */
1385 		if (cs_needs_completion(cs) &&
1386 			(job->queue_type == QUEUE_TYPE_EXT ||
1387 				job->queue_type == QUEUE_TYPE_HW))
1388 			cs_get(cs);
1389 
1390 		hl_debugfs_add_job(hdev, job);
1391 
1392 		rc = cs_parser(hpriv, job);
1393 		if (rc) {
1394 			atomic64_inc(&ctx->cs_counters.parsing_drop_cnt);
1395 			atomic64_inc(&cntr->parsing_drop_cnt);
1396 			dev_err(hdev->dev,
1397 				"Failed to parse JOB %d.%llu.%d, err %d, rejecting the CS\n",
1398 				cs->ctx->asid, cs->sequence, job->id, rc);
1399 			goto free_cs_object;
1400 		}
1401 	}
1402 
1403 	/* We allow a CS with any queue type combination as long as it does
1404 	 * not get a completion
1405 	 */
1406 	if (int_queues_only && cs_needs_completion(cs)) {
1407 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1408 		atomic64_inc(&cntr->validation_drop_cnt);
1409 		dev_err(hdev->dev,
1410 			"Reject CS %d.%llu since it contains only internal queues jobs and needs completion\n",
1411 			cs->ctx->asid, cs->sequence);
1412 		rc = -EINVAL;
1413 		goto free_cs_object;
1414 	}
1415 
1416 	/*
1417 	 * store the (external/HW queues) streams used by the CS in the
1418 	 * fence object for multi-CS completion
1419 	 */
1420 	if (hdev->supports_wait_for_multi_cs)
1421 		cs->fence->stream_master_qid_map = stream_master_qid_map;
1422 
1423 	rc = hl_hw_queue_schedule_cs(cs);
1424 	if (rc) {
1425 		if (rc != -EAGAIN)
1426 			dev_err(hdev->dev,
1427 				"Failed to submit CS %d.%llu to H/W queues, error %d\n",
1428 				cs->ctx->asid, cs->sequence, rc);
1429 		goto free_cs_object;
1430 	}
1431 
1432 	rc = HL_CS_STATUS_SUCCESS;
1433 	goto put_cs;
1434 
1435 release_cb:
1436 	atomic_dec(&cb->cs_cnt);
1437 	hl_cb_put(cb);
1438 free_cs_object:
1439 	cs_rollback(hdev, cs);
1440 	*cs_seq = ULLONG_MAX;
1441 	/* The path below is both for good and erroneous exits */
1442 put_cs:
1443 	/* We finished with the CS in this function, so put the ref */
1444 	cs_put(cs);
1445 free_cs_chunk_array:
1446 	kfree(cs_chunk_array);
1447 out:
1448 	return rc;
1449 }
1450 
hl_cs_ctx_switch(struct hl_fpriv * hpriv,union hl_cs_args * args,u64 * cs_seq)1451 static int hl_cs_ctx_switch(struct hl_fpriv *hpriv, union hl_cs_args *args,
1452 				u64 *cs_seq)
1453 {
1454 	struct hl_device *hdev = hpriv->hdev;
1455 	struct hl_ctx *ctx = hpriv->ctx;
1456 	bool need_soft_reset = false;
1457 	int rc = 0, do_ctx_switch;
1458 	void __user *chunks;
1459 	u32 num_chunks, tmp;
1460 	int ret;
1461 
1462 	do_ctx_switch = atomic_cmpxchg(&ctx->thread_ctx_switch_token, 1, 0);
1463 
1464 	if (do_ctx_switch || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) {
1465 		mutex_lock(&hpriv->restore_phase_mutex);
1466 
1467 		if (do_ctx_switch) {
1468 			rc = hdev->asic_funcs->context_switch(hdev, ctx->asid);
1469 			if (rc) {
1470 				dev_err_ratelimited(hdev->dev,
1471 					"Failed to switch to context %d, rejecting CS! %d\n",
1472 					ctx->asid, rc);
1473 				/*
1474 				 * If we timedout, or if the device is not IDLE
1475 				 * while we want to do context-switch (-EBUSY),
1476 				 * we need to soft-reset because QMAN is
1477 				 * probably stuck. However, we can't call to
1478 				 * reset here directly because of deadlock, so
1479 				 * need to do it at the very end of this
1480 				 * function
1481 				 */
1482 				if ((rc == -ETIMEDOUT) || (rc == -EBUSY))
1483 					need_soft_reset = true;
1484 				mutex_unlock(&hpriv->restore_phase_mutex);
1485 				goto out;
1486 			}
1487 		}
1488 
1489 		hdev->asic_funcs->restore_phase_topology(hdev);
1490 
1491 		chunks = (void __user *) (uintptr_t) args->in.chunks_restore;
1492 		num_chunks = args->in.num_chunks_restore;
1493 
1494 		if (!num_chunks) {
1495 			dev_dbg(hdev->dev,
1496 				"Need to run restore phase but restore CS is empty\n");
1497 			rc = 0;
1498 		} else {
1499 			rc = cs_ioctl_default(hpriv, chunks, num_chunks,
1500 					cs_seq, 0, 0, hdev->timeout_jiffies);
1501 		}
1502 
1503 		mutex_unlock(&hpriv->restore_phase_mutex);
1504 
1505 		if (rc) {
1506 			dev_err(hdev->dev,
1507 				"Failed to submit restore CS for context %d (%d)\n",
1508 				ctx->asid, rc);
1509 			goto out;
1510 		}
1511 
1512 		/* Need to wait for restore completion before execution phase */
1513 		if (num_chunks) {
1514 			enum hl_cs_wait_status status;
1515 wait_again:
1516 			ret = _hl_cs_wait_ioctl(hdev, ctx,
1517 					jiffies_to_usecs(hdev->timeout_jiffies),
1518 					*cs_seq, &status, NULL);
1519 			if (ret) {
1520 				if (ret == -ERESTARTSYS) {
1521 					usleep_range(100, 200);
1522 					goto wait_again;
1523 				}
1524 
1525 				dev_err(hdev->dev,
1526 					"Restore CS for context %d failed to complete %d\n",
1527 					ctx->asid, ret);
1528 				rc = -ENOEXEC;
1529 				goto out;
1530 			}
1531 		}
1532 
1533 		ctx->thread_ctx_switch_wait_token = 1;
1534 
1535 	} else if (!ctx->thread_ctx_switch_wait_token) {
1536 		rc = hl_poll_timeout_memory(hdev,
1537 			&ctx->thread_ctx_switch_wait_token, tmp, (tmp == 1),
1538 			100, jiffies_to_usecs(hdev->timeout_jiffies), false);
1539 
1540 		if (rc == -ETIMEDOUT) {
1541 			dev_err(hdev->dev,
1542 				"context switch phase timeout (%d)\n", tmp);
1543 			goto out;
1544 		}
1545 	}
1546 
1547 out:
1548 	if ((rc == -ETIMEDOUT || rc == -EBUSY) && (need_soft_reset))
1549 		hl_device_reset(hdev, 0);
1550 
1551 	return rc;
1552 }
1553 
1554 /*
1555  * hl_cs_signal_sob_wraparound_handler: handle SOB value wrapaound case.
1556  * if the SOB value reaches the max value move to the other SOB reserved
1557  * to the queue.
1558  * @hdev: pointer to device structure
1559  * @q_idx: stream queue index
1560  * @hw_sob: the H/W SOB used in this signal CS.
1561  * @count: signals count
1562  * @encaps_sig: tells whether it's reservation for encaps signals or not.
1563  *
1564  * Note that this function must be called while hw_queues_lock is taken.
1565  */
hl_cs_signal_sob_wraparound_handler(struct hl_device * hdev,u32 q_idx,struct hl_hw_sob ** hw_sob,u32 count,bool encaps_sig)1566 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
1567 			struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig)
1568 
1569 {
1570 	struct hl_sync_stream_properties *prop;
1571 	struct hl_hw_sob *sob = *hw_sob, *other_sob;
1572 	u8 other_sob_offset;
1573 
1574 	prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
1575 
1576 	hw_sob_get(sob);
1577 
1578 	/* check for wraparound */
1579 	if (prop->next_sob_val + count >= HL_MAX_SOB_VAL) {
1580 		/*
1581 		 * Decrement as we reached the max value.
1582 		 * The release function won't be called here as we've
1583 		 * just incremented the refcount right before calling this
1584 		 * function.
1585 		 */
1586 		hw_sob_put_err(sob);
1587 
1588 		/*
1589 		 * check the other sob value, if it still in use then fail
1590 		 * otherwise make the switch
1591 		 */
1592 		other_sob_offset = (prop->curr_sob_offset + 1) % HL_RSVD_SOBS;
1593 		other_sob = &prop->hw_sob[other_sob_offset];
1594 
1595 		if (kref_read(&other_sob->kref) != 1) {
1596 			dev_err(hdev->dev, "error: Cannot switch SOBs q_idx: %d\n",
1597 								q_idx);
1598 			return -EINVAL;
1599 		}
1600 
1601 		/*
1602 		 * next_sob_val always points to the next available signal
1603 		 * in the sob, so in encaps signals it will be the next one
1604 		 * after reserving the required amount.
1605 		 */
1606 		if (encaps_sig)
1607 			prop->next_sob_val = count + 1;
1608 		else
1609 			prop->next_sob_val = count;
1610 
1611 		/* only two SOBs are currently in use */
1612 		prop->curr_sob_offset = other_sob_offset;
1613 		*hw_sob = other_sob;
1614 
1615 		/*
1616 		 * check if other_sob needs reset, then do it before using it
1617 		 * for the reservation or the next signal cs.
1618 		 * we do it here, and for both encaps and regular signal cs
1619 		 * cases in order to avoid possible races of two kref_put
1620 		 * of the sob which can occur at the same time if we move the
1621 		 * sob reset(kref_put) to cs_do_release function.
1622 		 * in addition, if we have combination of cs signal and
1623 		 * encaps, and at the point we need to reset the sob there was
1624 		 * no more reservations and only signal cs keep coming,
1625 		 * in such case we need signal_cs to put the refcount and
1626 		 * reset the sob.
1627 		 */
1628 		if (other_sob->need_reset)
1629 			hw_sob_put(other_sob);
1630 
1631 		if (encaps_sig) {
1632 			/* set reset indication for the sob */
1633 			sob->need_reset = true;
1634 			hw_sob_get(other_sob);
1635 		}
1636 
1637 		dev_dbg(hdev->dev, "switched to SOB %d, q_idx: %d\n",
1638 				prop->curr_sob_offset, q_idx);
1639 	} else {
1640 		prop->next_sob_val += count;
1641 	}
1642 
1643 	return 0;
1644 }
1645 
cs_ioctl_extract_signal_seq(struct hl_device * hdev,struct hl_cs_chunk * chunk,u64 * signal_seq,struct hl_ctx * ctx,bool encaps_signals)1646 static int cs_ioctl_extract_signal_seq(struct hl_device *hdev,
1647 		struct hl_cs_chunk *chunk, u64 *signal_seq, struct hl_ctx *ctx,
1648 		bool encaps_signals)
1649 {
1650 	u64 *signal_seq_arr = NULL;
1651 	u32 size_to_copy, signal_seq_arr_len;
1652 	int rc = 0;
1653 
1654 	if (encaps_signals) {
1655 		*signal_seq = chunk->encaps_signal_seq;
1656 		return 0;
1657 	}
1658 
1659 	signal_seq_arr_len = chunk->num_signal_seq_arr;
1660 
1661 	/* currently only one signal seq is supported */
1662 	if (signal_seq_arr_len != 1) {
1663 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1664 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1665 		dev_err(hdev->dev,
1666 			"Wait for signal CS supports only one signal CS seq\n");
1667 		return -EINVAL;
1668 	}
1669 
1670 	signal_seq_arr = kmalloc_array(signal_seq_arr_len,
1671 					sizeof(*signal_seq_arr),
1672 					GFP_ATOMIC);
1673 	if (!signal_seq_arr)
1674 		signal_seq_arr = kmalloc_array(signal_seq_arr_len,
1675 					sizeof(*signal_seq_arr),
1676 					GFP_KERNEL);
1677 	if (!signal_seq_arr) {
1678 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1679 		atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt);
1680 		return -ENOMEM;
1681 	}
1682 
1683 	size_to_copy = signal_seq_arr_len * sizeof(*signal_seq_arr);
1684 	if (copy_from_user(signal_seq_arr,
1685 				u64_to_user_ptr(chunk->signal_seq_arr),
1686 				size_to_copy)) {
1687 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1688 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1689 		dev_err(hdev->dev,
1690 			"Failed to copy signal seq array from user\n");
1691 		rc = -EFAULT;
1692 		goto out;
1693 	}
1694 
1695 	/* currently it is guaranteed to have only one signal seq */
1696 	*signal_seq = signal_seq_arr[0];
1697 
1698 out:
1699 	kfree(signal_seq_arr);
1700 
1701 	return rc;
1702 }
1703 
cs_ioctl_signal_wait_create_jobs(struct hl_device * hdev,struct hl_ctx * ctx,struct hl_cs * cs,enum hl_queue_type q_type,u32 q_idx,u32 encaps_signal_offset)1704 static int cs_ioctl_signal_wait_create_jobs(struct hl_device *hdev,
1705 		struct hl_ctx *ctx, struct hl_cs *cs,
1706 		enum hl_queue_type q_type, u32 q_idx, u32 encaps_signal_offset)
1707 {
1708 	struct hl_cs_counters_atomic *cntr;
1709 	struct hl_cs_job *job;
1710 	struct hl_cb *cb;
1711 	u32 cb_size;
1712 
1713 	cntr = &hdev->aggregated_cs_counters;
1714 
1715 	job = hl_cs_allocate_job(hdev, q_type, true);
1716 	if (!job) {
1717 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1718 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
1719 		dev_err(hdev->dev, "Failed to allocate a new job\n");
1720 		return -ENOMEM;
1721 	}
1722 
1723 	if (cs->type == CS_TYPE_WAIT)
1724 		cb_size = hdev->asic_funcs->get_wait_cb_size(hdev);
1725 	else
1726 		cb_size = hdev->asic_funcs->get_signal_cb_size(hdev);
1727 
1728 	cb = hl_cb_kernel_create(hdev, cb_size,
1729 				q_type == QUEUE_TYPE_HW && hdev->mmu_enable);
1730 	if (!cb) {
1731 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1732 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
1733 		kfree(job);
1734 		return -EFAULT;
1735 	}
1736 
1737 	job->id = 0;
1738 	job->cs = cs;
1739 	job->user_cb = cb;
1740 	atomic_inc(&job->user_cb->cs_cnt);
1741 	job->user_cb_size = cb_size;
1742 	job->hw_queue_id = q_idx;
1743 
1744 	if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT)
1745 			&& cs->encaps_signals)
1746 		job->encaps_sig_wait_offset = encaps_signal_offset;
1747 	/*
1748 	 * No need in parsing, user CB is the patched CB.
1749 	 * We call hl_cb_destroy() out of two reasons - we don't need the CB in
1750 	 * the CB idr anymore and to decrement its refcount as it was
1751 	 * incremented inside hl_cb_kernel_create().
1752 	 */
1753 	job->patched_cb = job->user_cb;
1754 	job->job_cb_size = job->user_cb_size;
1755 	hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb->id << PAGE_SHIFT);
1756 
1757 	/* increment refcount as for external queues we get completion */
1758 	cs_get(cs);
1759 
1760 	cs->jobs_in_queue_cnt[job->hw_queue_id]++;
1761 
1762 	list_add_tail(&job->cs_node, &cs->job_list);
1763 
1764 	hl_debugfs_add_job(hdev, job);
1765 
1766 	return 0;
1767 }
1768 
cs_ioctl_reserve_signals(struct hl_fpriv * hpriv,u32 q_idx,u32 count,u32 * handle_id,u32 * sob_addr,u32 * signals_count)1769 static int cs_ioctl_reserve_signals(struct hl_fpriv *hpriv,
1770 				u32 q_idx, u32 count,
1771 				u32 *handle_id, u32 *sob_addr,
1772 				u32 *signals_count)
1773 {
1774 	struct hw_queue_properties *hw_queue_prop;
1775 	struct hl_sync_stream_properties *prop;
1776 	struct hl_device *hdev = hpriv->hdev;
1777 	struct hl_cs_encaps_sig_handle *handle;
1778 	struct hl_encaps_signals_mgr *mgr;
1779 	struct hl_hw_sob *hw_sob;
1780 	int hdl_id;
1781 	int rc = 0;
1782 
1783 	if (count >= HL_MAX_SOB_VAL) {
1784 		dev_err(hdev->dev, "signals count(%u) exceeds the max SOB value\n",
1785 						count);
1786 		rc = -EINVAL;
1787 		goto out;
1788 	}
1789 
1790 	if (q_idx >= hdev->asic_prop.max_queues) {
1791 		dev_err(hdev->dev, "Queue index %d is invalid\n",
1792 			q_idx);
1793 		rc = -EINVAL;
1794 		goto out;
1795 	}
1796 
1797 	hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx];
1798 
1799 	if (!hw_queue_prop->supports_sync_stream) {
1800 		dev_err(hdev->dev,
1801 			"Queue index %d does not support sync stream operations\n",
1802 									q_idx);
1803 		rc = -EINVAL;
1804 		goto out;
1805 	}
1806 
1807 	prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
1808 
1809 	handle = kzalloc(sizeof(*handle), GFP_KERNEL);
1810 	if (!handle) {
1811 		rc = -ENOMEM;
1812 		goto out;
1813 	}
1814 
1815 	handle->count = count;
1816 	mgr = &hpriv->ctx->sig_mgr;
1817 
1818 	spin_lock(&mgr->lock);
1819 	hdl_id = idr_alloc(&mgr->handles, handle, 1, 0, GFP_ATOMIC);
1820 	spin_unlock(&mgr->lock);
1821 
1822 	if (hdl_id < 0) {
1823 		dev_err(hdev->dev, "Failed to allocate IDR for a new signal reservation\n");
1824 		rc = -EINVAL;
1825 		goto out;
1826 	}
1827 
1828 	handle->id = hdl_id;
1829 	handle->q_idx = q_idx;
1830 	handle->hdev = hdev;
1831 	kref_init(&handle->refcount);
1832 
1833 	hdev->asic_funcs->hw_queues_lock(hdev);
1834 
1835 	hw_sob = &prop->hw_sob[prop->curr_sob_offset];
1836 
1837 	/*
1838 	 * Increment the SOB value by count by user request
1839 	 * to reserve those signals
1840 	 * check if the signals amount to reserve is not exceeding the max sob
1841 	 * value, if yes then switch sob.
1842 	 */
1843 	rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, count,
1844 								true);
1845 	if (rc) {
1846 		dev_err(hdev->dev, "Failed to switch SOB\n");
1847 		hdev->asic_funcs->hw_queues_unlock(hdev);
1848 		rc = -EINVAL;
1849 		goto remove_idr;
1850 	}
1851 	/* set the hw_sob to the handle after calling the sob wraparound handler
1852 	 * since sob could have changed.
1853 	 */
1854 	handle->hw_sob = hw_sob;
1855 
1856 	/* store the current sob value for unreserve validity check, and
1857 	 * signal offset support
1858 	 */
1859 	handle->pre_sob_val = prop->next_sob_val - handle->count;
1860 
1861 	*signals_count = prop->next_sob_val;
1862 	hdev->asic_funcs->hw_queues_unlock(hdev);
1863 
1864 	*sob_addr = handle->hw_sob->sob_addr;
1865 	*handle_id = hdl_id;
1866 
1867 	dev_dbg(hdev->dev,
1868 		"Signals reserved, sob_id: %d, sob addr: 0x%x, last sob_val: %u, q_idx: %d, hdl_id: %d\n",
1869 			hw_sob->sob_id, handle->hw_sob->sob_addr,
1870 			prop->next_sob_val - 1, q_idx, hdl_id);
1871 	goto out;
1872 
1873 remove_idr:
1874 	spin_lock(&mgr->lock);
1875 	idr_remove(&mgr->handles, hdl_id);
1876 	spin_unlock(&mgr->lock);
1877 
1878 	kfree(handle);
1879 out:
1880 	return rc;
1881 }
1882 
cs_ioctl_unreserve_signals(struct hl_fpriv * hpriv,u32 handle_id)1883 static int cs_ioctl_unreserve_signals(struct hl_fpriv *hpriv, u32 handle_id)
1884 {
1885 	struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
1886 	struct hl_sync_stream_properties *prop;
1887 	struct hl_device *hdev = hpriv->hdev;
1888 	struct hl_encaps_signals_mgr *mgr;
1889 	struct hl_hw_sob *hw_sob;
1890 	u32 q_idx, sob_addr;
1891 	int rc = 0;
1892 
1893 	mgr = &hpriv->ctx->sig_mgr;
1894 
1895 	spin_lock(&mgr->lock);
1896 	encaps_sig_hdl = idr_find(&mgr->handles, handle_id);
1897 	if (encaps_sig_hdl) {
1898 		dev_dbg(hdev->dev, "unreserve signals, handle: %u, SOB:0x%x, count: %u\n",
1899 				handle_id, encaps_sig_hdl->hw_sob->sob_addr,
1900 					encaps_sig_hdl->count);
1901 
1902 		hdev->asic_funcs->hw_queues_lock(hdev);
1903 
1904 		q_idx = encaps_sig_hdl->q_idx;
1905 		prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
1906 		hw_sob = &prop->hw_sob[prop->curr_sob_offset];
1907 		sob_addr = hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id);
1908 
1909 		/* Check if sob_val got out of sync due to other
1910 		 * signal submission requests which were handled
1911 		 * between the reserve-unreserve calls or SOB switch
1912 		 * upon reaching SOB max value.
1913 		 */
1914 		if (encaps_sig_hdl->pre_sob_val + encaps_sig_hdl->count
1915 				!= prop->next_sob_val ||
1916 				sob_addr != encaps_sig_hdl->hw_sob->sob_addr) {
1917 			dev_err(hdev->dev, "Cannot unreserve signals, SOB val ran out of sync, expected: %u, actual val: %u\n",
1918 				encaps_sig_hdl->pre_sob_val,
1919 				(prop->next_sob_val - encaps_sig_hdl->count));
1920 
1921 			hdev->asic_funcs->hw_queues_unlock(hdev);
1922 			rc = -EINVAL;
1923 			goto out;
1924 		}
1925 
1926 		/*
1927 		 * Decrement the SOB value by count by user request
1928 		 * to unreserve those signals
1929 		 */
1930 		prop->next_sob_val -= encaps_sig_hdl->count;
1931 
1932 		hdev->asic_funcs->hw_queues_unlock(hdev);
1933 
1934 		hw_sob_put(hw_sob);
1935 
1936 		/* Release the id and free allocated memory of the handle */
1937 		idr_remove(&mgr->handles, handle_id);
1938 		kfree(encaps_sig_hdl);
1939 	} else {
1940 		rc = -EINVAL;
1941 		dev_err(hdev->dev, "failed to unreserve signals, cannot find handler\n");
1942 	}
1943 out:
1944 	spin_unlock(&mgr->lock);
1945 
1946 	return rc;
1947 }
1948 
cs_ioctl_signal_wait(struct hl_fpriv * hpriv,enum hl_cs_type cs_type,void __user * chunks,u32 num_chunks,u64 * cs_seq,u32 flags,u32 timeout)1949 static int cs_ioctl_signal_wait(struct hl_fpriv *hpriv, enum hl_cs_type cs_type,
1950 				void __user *chunks, u32 num_chunks,
1951 				u64 *cs_seq, u32 flags, u32 timeout)
1952 {
1953 	struct hl_cs_encaps_sig_handle *encaps_sig_hdl = NULL;
1954 	bool handle_found = false, is_wait_cs = false,
1955 			wait_cs_submitted = false,
1956 			cs_encaps_signals = false;
1957 	struct hl_cs_chunk *cs_chunk_array, *chunk;
1958 	bool staged_cs_with_encaps_signals = false;
1959 	struct hw_queue_properties *hw_queue_prop;
1960 	struct hl_device *hdev = hpriv->hdev;
1961 	struct hl_cs_compl *sig_waitcs_cmpl;
1962 	u32 q_idx, collective_engine_id = 0;
1963 	struct hl_cs_counters_atomic *cntr;
1964 	struct hl_fence *sig_fence = NULL;
1965 	struct hl_ctx *ctx = hpriv->ctx;
1966 	enum hl_queue_type q_type;
1967 	struct hl_cs *cs;
1968 	u64 signal_seq;
1969 	int rc;
1970 
1971 	cntr = &hdev->aggregated_cs_counters;
1972 	*cs_seq = ULLONG_MAX;
1973 
1974 	rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks,
1975 			ctx);
1976 	if (rc)
1977 		goto out;
1978 
1979 	/* currently it is guaranteed to have only one chunk */
1980 	chunk = &cs_chunk_array[0];
1981 
1982 	if (chunk->queue_index >= hdev->asic_prop.max_queues) {
1983 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1984 		atomic64_inc(&cntr->validation_drop_cnt);
1985 		dev_err(hdev->dev, "Queue index %d is invalid\n",
1986 			chunk->queue_index);
1987 		rc = -EINVAL;
1988 		goto free_cs_chunk_array;
1989 	}
1990 
1991 	q_idx = chunk->queue_index;
1992 	hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx];
1993 	q_type = hw_queue_prop->type;
1994 
1995 	if (!hw_queue_prop->supports_sync_stream) {
1996 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1997 		atomic64_inc(&cntr->validation_drop_cnt);
1998 		dev_err(hdev->dev,
1999 			"Queue index %d does not support sync stream operations\n",
2000 			q_idx);
2001 		rc = -EINVAL;
2002 		goto free_cs_chunk_array;
2003 	}
2004 
2005 	if (cs_type == CS_TYPE_COLLECTIVE_WAIT) {
2006 		if (!(hw_queue_prop->collective_mode == HL_COLLECTIVE_MASTER)) {
2007 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2008 			atomic64_inc(&cntr->validation_drop_cnt);
2009 			dev_err(hdev->dev,
2010 				"Queue index %d is invalid\n", q_idx);
2011 			rc = -EINVAL;
2012 			goto free_cs_chunk_array;
2013 		}
2014 
2015 		if (!hdev->nic_ports_mask) {
2016 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2017 			atomic64_inc(&cntr->validation_drop_cnt);
2018 			dev_err(hdev->dev,
2019 				"Collective operations not supported when NIC ports are disabled");
2020 			rc = -EINVAL;
2021 			goto free_cs_chunk_array;
2022 		}
2023 
2024 		collective_engine_id = chunk->collective_engine_id;
2025 	}
2026 
2027 	is_wait_cs = !!(cs_type == CS_TYPE_WAIT ||
2028 			cs_type == CS_TYPE_COLLECTIVE_WAIT);
2029 
2030 	cs_encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS);
2031 
2032 	if (is_wait_cs) {
2033 		rc = cs_ioctl_extract_signal_seq(hdev, chunk, &signal_seq,
2034 				ctx, cs_encaps_signals);
2035 		if (rc)
2036 			goto free_cs_chunk_array;
2037 
2038 		if (cs_encaps_signals) {
2039 			/* check if cs sequence has encapsulated
2040 			 * signals handle
2041 			 */
2042 			struct idr *idp;
2043 			u32 id;
2044 
2045 			spin_lock(&ctx->sig_mgr.lock);
2046 			idp = &ctx->sig_mgr.handles;
2047 			idr_for_each_entry(idp, encaps_sig_hdl, id) {
2048 				if (encaps_sig_hdl->cs_seq == signal_seq) {
2049 					handle_found = true;
2050 					/* get refcount to protect removing
2051 					 * this handle from idr, needed when
2052 					 * multiple wait cs are used with offset
2053 					 * to wait on reserved encaps signals.
2054 					 */
2055 					kref_get(&encaps_sig_hdl->refcount);
2056 					break;
2057 				}
2058 			}
2059 			spin_unlock(&ctx->sig_mgr.lock);
2060 
2061 			if (!handle_found) {
2062 				/* treat as signal CS already finished */
2063 				dev_dbg(hdev->dev, "Cannot find encapsulated signals handle for seq 0x%llx\n",
2064 						signal_seq);
2065 				rc = 0;
2066 				goto free_cs_chunk_array;
2067 			}
2068 
2069 			/* validate also the signal offset value */
2070 			if (chunk->encaps_signal_offset >
2071 					encaps_sig_hdl->count) {
2072 				dev_err(hdev->dev, "offset(%u) value exceed max reserved signals count(%u)!\n",
2073 						chunk->encaps_signal_offset,
2074 						encaps_sig_hdl->count);
2075 				rc = -EINVAL;
2076 				goto free_cs_chunk_array;
2077 			}
2078 		}
2079 
2080 		sig_fence = hl_ctx_get_fence(ctx, signal_seq);
2081 		if (IS_ERR(sig_fence)) {
2082 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2083 			atomic64_inc(&cntr->validation_drop_cnt);
2084 			dev_err(hdev->dev,
2085 				"Failed to get signal CS with seq 0x%llx\n",
2086 				signal_seq);
2087 			rc = PTR_ERR(sig_fence);
2088 			goto free_cs_chunk_array;
2089 		}
2090 
2091 		if (!sig_fence) {
2092 			/* signal CS already finished */
2093 			rc = 0;
2094 			goto free_cs_chunk_array;
2095 		}
2096 
2097 		sig_waitcs_cmpl =
2098 			container_of(sig_fence, struct hl_cs_compl, base_fence);
2099 
2100 		staged_cs_with_encaps_signals = !!
2101 				(sig_waitcs_cmpl->type == CS_TYPE_DEFAULT &&
2102 				(flags & HL_CS_FLAGS_ENCAP_SIGNALS));
2103 
2104 		if (sig_waitcs_cmpl->type != CS_TYPE_SIGNAL &&
2105 				!staged_cs_with_encaps_signals) {
2106 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2107 			atomic64_inc(&cntr->validation_drop_cnt);
2108 			dev_err(hdev->dev,
2109 				"CS seq 0x%llx is not of a signal/encaps-signal CS\n",
2110 				signal_seq);
2111 			hl_fence_put(sig_fence);
2112 			rc = -EINVAL;
2113 			goto free_cs_chunk_array;
2114 		}
2115 
2116 		if (completion_done(&sig_fence->completion)) {
2117 			/* signal CS already finished */
2118 			hl_fence_put(sig_fence);
2119 			rc = 0;
2120 			goto free_cs_chunk_array;
2121 		}
2122 	}
2123 
2124 	rc = allocate_cs(hdev, ctx, cs_type, ULLONG_MAX, &cs, flags, timeout);
2125 	if (rc) {
2126 		if (is_wait_cs)
2127 			hl_fence_put(sig_fence);
2128 
2129 		goto free_cs_chunk_array;
2130 	}
2131 
2132 	/*
2133 	 * Save the signal CS fence for later initialization right before
2134 	 * hanging the wait CS on the queue.
2135 	 * for encaps signals case, we save the cs sequence and handle pointer
2136 	 * for later initialization.
2137 	 */
2138 	if (is_wait_cs) {
2139 		cs->signal_fence = sig_fence;
2140 		/* store the handle pointer, so we don't have to
2141 		 * look for it again, later on the flow
2142 		 * when we need to set SOB info in hw_queue.
2143 		 */
2144 		if (cs->encaps_signals)
2145 			cs->encaps_sig_hdl = encaps_sig_hdl;
2146 	}
2147 
2148 	hl_debugfs_add_cs(cs);
2149 
2150 	*cs_seq = cs->sequence;
2151 
2152 	if (cs_type == CS_TYPE_WAIT || cs_type == CS_TYPE_SIGNAL)
2153 		rc = cs_ioctl_signal_wait_create_jobs(hdev, ctx, cs, q_type,
2154 				q_idx, chunk->encaps_signal_offset);
2155 	else if (cs_type == CS_TYPE_COLLECTIVE_WAIT)
2156 		rc = hdev->asic_funcs->collective_wait_create_jobs(hdev, ctx,
2157 				cs, q_idx, collective_engine_id,
2158 				chunk->encaps_signal_offset);
2159 	else {
2160 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2161 		atomic64_inc(&cntr->validation_drop_cnt);
2162 		rc = -EINVAL;
2163 	}
2164 
2165 	if (rc)
2166 		goto free_cs_object;
2167 
2168 	rc = hl_hw_queue_schedule_cs(cs);
2169 	if (rc) {
2170 		/* In case wait cs failed here, it means the signal cs
2171 		 * already completed. we want to free all it's related objects
2172 		 * but we don't want to fail the ioctl.
2173 		 */
2174 		if (is_wait_cs)
2175 			rc = 0;
2176 		else if (rc != -EAGAIN)
2177 			dev_err(hdev->dev,
2178 				"Failed to submit CS %d.%llu to H/W queues, error %d\n",
2179 				ctx->asid, cs->sequence, rc);
2180 		goto free_cs_object;
2181 	}
2182 
2183 	rc = HL_CS_STATUS_SUCCESS;
2184 	if (is_wait_cs)
2185 		wait_cs_submitted = true;
2186 	goto put_cs;
2187 
2188 free_cs_object:
2189 	cs_rollback(hdev, cs);
2190 	*cs_seq = ULLONG_MAX;
2191 	/* The path below is both for good and erroneous exits */
2192 put_cs:
2193 	/* We finished with the CS in this function, so put the ref */
2194 	cs_put(cs);
2195 free_cs_chunk_array:
2196 	if (!wait_cs_submitted && cs_encaps_signals && handle_found &&
2197 							is_wait_cs)
2198 		kref_put(&encaps_sig_hdl->refcount,
2199 				hl_encaps_handle_do_release);
2200 	kfree(cs_chunk_array);
2201 out:
2202 	return rc;
2203 }
2204 
hl_cs_ioctl(struct hl_fpriv * hpriv,void * data)2205 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data)
2206 {
2207 	union hl_cs_args *args = data;
2208 	enum hl_cs_type cs_type = 0;
2209 	u64 cs_seq = ULONG_MAX;
2210 	void __user *chunks;
2211 	u32 num_chunks, flags, timeout,
2212 		signals_count = 0, sob_addr = 0, handle_id = 0;
2213 	int rc;
2214 
2215 	rc = hl_cs_sanity_checks(hpriv, args);
2216 	if (rc)
2217 		goto out;
2218 
2219 	rc = hl_cs_ctx_switch(hpriv, args, &cs_seq);
2220 	if (rc)
2221 		goto out;
2222 
2223 	cs_type = hl_cs_get_cs_type(args->in.cs_flags &
2224 					~HL_CS_FLAGS_FORCE_RESTORE);
2225 	chunks = (void __user *) (uintptr_t) args->in.chunks_execute;
2226 	num_chunks = args->in.num_chunks_execute;
2227 	flags = args->in.cs_flags;
2228 
2229 	/* In case this is a staged CS, user should supply the CS sequence */
2230 	if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
2231 			!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST))
2232 		cs_seq = args->in.seq;
2233 
2234 	timeout = flags & HL_CS_FLAGS_CUSTOM_TIMEOUT
2235 			? msecs_to_jiffies(args->in.timeout * 1000)
2236 			: hpriv->hdev->timeout_jiffies;
2237 
2238 	switch (cs_type) {
2239 	case CS_TYPE_SIGNAL:
2240 	case CS_TYPE_WAIT:
2241 	case CS_TYPE_COLLECTIVE_WAIT:
2242 		rc = cs_ioctl_signal_wait(hpriv, cs_type, chunks, num_chunks,
2243 					&cs_seq, args->in.cs_flags, timeout);
2244 		break;
2245 	case CS_RESERVE_SIGNALS:
2246 		rc = cs_ioctl_reserve_signals(hpriv,
2247 					args->in.encaps_signals_q_idx,
2248 					args->in.encaps_signals_count,
2249 					&handle_id, &sob_addr, &signals_count);
2250 		break;
2251 	case CS_UNRESERVE_SIGNALS:
2252 		rc = cs_ioctl_unreserve_signals(hpriv,
2253 					args->in.encaps_sig_handle_id);
2254 		break;
2255 	default:
2256 		rc = cs_ioctl_default(hpriv, chunks, num_chunks, &cs_seq,
2257 						args->in.cs_flags,
2258 						args->in.encaps_sig_handle_id,
2259 						timeout);
2260 		break;
2261 	}
2262 out:
2263 	if (rc != -EAGAIN) {
2264 		memset(args, 0, sizeof(*args));
2265 
2266 		if (cs_type == CS_RESERVE_SIGNALS) {
2267 			args->out.handle_id = handle_id;
2268 			args->out.sob_base_addr_offset = sob_addr;
2269 			args->out.count = signals_count;
2270 		} else {
2271 			args->out.seq = cs_seq;
2272 		}
2273 		args->out.status = rc;
2274 	}
2275 
2276 	return rc;
2277 }
2278 
hl_wait_for_fence(struct hl_ctx * ctx,u64 seq,struct hl_fence * fence,enum hl_cs_wait_status * status,u64 timeout_us,s64 * timestamp)2279 static int hl_wait_for_fence(struct hl_ctx *ctx, u64 seq, struct hl_fence *fence,
2280 				enum hl_cs_wait_status *status, u64 timeout_us,
2281 				s64 *timestamp)
2282 {
2283 	struct hl_device *hdev = ctx->hdev;
2284 	long completion_rc;
2285 	int rc = 0;
2286 
2287 	if (IS_ERR(fence)) {
2288 		rc = PTR_ERR(fence);
2289 		if (rc == -EINVAL)
2290 			dev_notice_ratelimited(hdev->dev,
2291 				"Can't wait on CS %llu because current CS is at seq %llu\n",
2292 				seq, ctx->cs_sequence);
2293 		return rc;
2294 	}
2295 
2296 	if (!fence) {
2297 		dev_dbg(hdev->dev,
2298 			"Can't wait on seq %llu because current CS is at seq %llu (Fence is gone)\n",
2299 				seq, ctx->cs_sequence);
2300 
2301 		*status = CS_WAIT_STATUS_GONE;
2302 		return 0;
2303 	}
2304 
2305 	if (!timeout_us) {
2306 		completion_rc = completion_done(&fence->completion);
2307 	} else {
2308 		unsigned long timeout;
2309 
2310 		timeout = (timeout_us == MAX_SCHEDULE_TIMEOUT) ?
2311 				timeout_us : usecs_to_jiffies(timeout_us);
2312 		completion_rc =
2313 			wait_for_completion_interruptible_timeout(
2314 				&fence->completion, timeout);
2315 	}
2316 
2317 	if (completion_rc > 0) {
2318 		*status = CS_WAIT_STATUS_COMPLETED;
2319 		if (timestamp)
2320 			*timestamp = ktime_to_ns(fence->timestamp);
2321 	} else {
2322 		*status = CS_WAIT_STATUS_BUSY;
2323 	}
2324 
2325 	if (fence->error == -ETIMEDOUT)
2326 		rc = -ETIMEDOUT;
2327 	else if (fence->error == -EIO)
2328 		rc = -EIO;
2329 
2330 	return rc;
2331 }
2332 
2333 /*
2334  * hl_cs_poll_fences - iterate CS fences to check for CS completion
2335  *
2336  * @mcs_data: multi-CS internal data
2337  *
2338  * @return 0 on success, otherwise non 0 error code
2339  *
2340  * The function iterates on all CS sequence in the list and set bit in
2341  * completion_bitmap for each completed CS.
2342  * while iterating, the function can extracts the stream map to be later
2343  * used by the waiting function.
2344  * this function shall be called after taking context ref
2345  */
hl_cs_poll_fences(struct multi_cs_data * mcs_data)2346 static int hl_cs_poll_fences(struct multi_cs_data *mcs_data)
2347 {
2348 	struct hl_fence **fence_ptr = mcs_data->fence_arr;
2349 	struct hl_device *hdev = mcs_data->ctx->hdev;
2350 	int i, rc, arr_len = mcs_data->arr_len;
2351 	u64 *seq_arr = mcs_data->seq_arr;
2352 	ktime_t max_ktime, first_cs_time;
2353 	enum hl_cs_wait_status status;
2354 
2355 	memset(fence_ptr, 0, arr_len * sizeof(*fence_ptr));
2356 
2357 	/* get all fences under the same lock */
2358 	rc = hl_ctx_get_fences(mcs_data->ctx, seq_arr, fence_ptr, arr_len);
2359 	if (rc)
2360 		return rc;
2361 
2362 	/*
2363 	 * set to maximum time to verify timestamp is valid: if at the end
2364 	 * this value is maintained- no timestamp was updated
2365 	 */
2366 	max_ktime = ktime_set(KTIME_SEC_MAX, 0);
2367 	first_cs_time = max_ktime;
2368 
2369 	for (i = 0; i < arr_len; i++, fence_ptr++) {
2370 		struct hl_fence *fence = *fence_ptr;
2371 
2372 		/*
2373 		 * function won't sleep as it is called with timeout 0 (i.e.
2374 		 * poll the fence)
2375 		 */
2376 		rc = hl_wait_for_fence(mcs_data->ctx, seq_arr[i], fence,
2377 						&status, 0, NULL);
2378 		if (rc) {
2379 			dev_err(hdev->dev,
2380 				"wait_for_fence error :%d for CS seq %llu\n",
2381 								rc, seq_arr[i]);
2382 			break;
2383 		}
2384 
2385 		switch (status) {
2386 		case CS_WAIT_STATUS_BUSY:
2387 			/* CS did not finished, keep waiting on its QID*/
2388 			mcs_data->stream_master_qid_map |=
2389 					fence->stream_master_qid_map;
2390 			break;
2391 		case CS_WAIT_STATUS_COMPLETED:
2392 			/*
2393 			 * Using mcs_handling_done to avoid possibility of mcs_data
2394 			 * returns to user indicating CS completed before it finished
2395 			 * all of its mcs handling, to avoid race the next time the
2396 			 * user waits for mcs.
2397 			 */
2398 			if (!fence->mcs_handling_done)
2399 				break;
2400 
2401 			mcs_data->completion_bitmap |= BIT(i);
2402 			/*
2403 			 * For all completed CSs we take the earliest timestamp.
2404 			 * For this we have to validate that the timestamp is
2405 			 * earliest of all timestamps so far.
2406 			 */
2407 			if (mcs_data->update_ts &&
2408 					(ktime_compare(fence->timestamp, first_cs_time) < 0))
2409 				first_cs_time = fence->timestamp;
2410 			break;
2411 		case CS_WAIT_STATUS_GONE:
2412 			mcs_data->update_ts = false;
2413 			mcs_data->gone_cs = true;
2414 			/*
2415 			 * It is possible to get an old sequence numbers from user
2416 			 * which related to already completed CSs and their fences
2417 			 * already gone. In this case, CS set as completed but
2418 			 * no need to consider its QID for mcs completion.
2419 			 */
2420 			mcs_data->completion_bitmap |= BIT(i);
2421 			break;
2422 		default:
2423 			dev_err(hdev->dev, "Invalid fence status\n");
2424 			return -EINVAL;
2425 		}
2426 
2427 	}
2428 
2429 	hl_fences_put(mcs_data->fence_arr, arr_len);
2430 
2431 	if (mcs_data->update_ts &&
2432 			(ktime_compare(first_cs_time, max_ktime) != 0))
2433 		mcs_data->timestamp = ktime_to_ns(first_cs_time);
2434 
2435 	return rc;
2436 }
2437 
_hl_cs_wait_ioctl(struct hl_device * hdev,struct hl_ctx * ctx,u64 timeout_us,u64 seq,enum hl_cs_wait_status * status,s64 * timestamp)2438 static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx,
2439 				u64 timeout_us, u64 seq,
2440 				enum hl_cs_wait_status *status, s64 *timestamp)
2441 {
2442 	struct hl_fence *fence;
2443 	int rc = 0;
2444 
2445 	if (timestamp)
2446 		*timestamp = 0;
2447 
2448 	hl_ctx_get(hdev, ctx);
2449 
2450 	fence = hl_ctx_get_fence(ctx, seq);
2451 
2452 	rc = hl_wait_for_fence(ctx, seq, fence, status, timeout_us, timestamp);
2453 	hl_fence_put(fence);
2454 	hl_ctx_put(ctx);
2455 
2456 	return rc;
2457 }
2458 
2459 /*
2460  * hl_wait_multi_cs_completion_init - init completion structure
2461  *
2462  * @hdev: pointer to habanalabs device structure
2463  * @stream_master_bitmap: stream master QIDs map, set bit indicates stream
2464  *                        master QID to wait on
2465  *
2466  * @return valid completion struct pointer on success, otherwise error pointer
2467  *
2468  * up to MULTI_CS_MAX_USER_CTX calls can be done concurrently to the driver.
2469  * the function gets the first available completion (by marking it "used")
2470  * and initialize its values.
2471  */
hl_wait_multi_cs_completion_init(struct hl_device * hdev,u8 stream_master_bitmap)2472 static struct multi_cs_completion *hl_wait_multi_cs_completion_init(
2473 							struct hl_device *hdev,
2474 							u8 stream_master_bitmap)
2475 {
2476 	struct multi_cs_completion *mcs_compl;
2477 	int i;
2478 
2479 	/* find free multi_cs completion structure */
2480 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
2481 		mcs_compl = &hdev->multi_cs_completion[i];
2482 		spin_lock(&mcs_compl->lock);
2483 		if (!mcs_compl->used) {
2484 			mcs_compl->used = 1;
2485 			mcs_compl->timestamp = 0;
2486 			mcs_compl->stream_master_qid_map = stream_master_bitmap;
2487 			reinit_completion(&mcs_compl->completion);
2488 			spin_unlock(&mcs_compl->lock);
2489 			break;
2490 		}
2491 		spin_unlock(&mcs_compl->lock);
2492 	}
2493 
2494 	if (i == MULTI_CS_MAX_USER_CTX) {
2495 		dev_err(hdev->dev,
2496 				"no available multi-CS completion structure\n");
2497 		return ERR_PTR(-ENOMEM);
2498 	}
2499 	return mcs_compl;
2500 }
2501 
2502 /*
2503  * hl_wait_multi_cs_completion_fini - return completion structure and set as
2504  *                                    unused
2505  *
2506  * @mcs_compl: pointer to the completion structure
2507  */
hl_wait_multi_cs_completion_fini(struct multi_cs_completion * mcs_compl)2508 static void hl_wait_multi_cs_completion_fini(
2509 					struct multi_cs_completion *mcs_compl)
2510 {
2511 	/*
2512 	 * free completion structure, do it under lock to be in-sync with the
2513 	 * thread that signals completion
2514 	 */
2515 	spin_lock(&mcs_compl->lock);
2516 	mcs_compl->used = 0;
2517 	spin_unlock(&mcs_compl->lock);
2518 }
2519 
2520 /*
2521  * hl_wait_multi_cs_completion - wait for first CS to complete
2522  *
2523  * @mcs_data: multi-CS internal data
2524  *
2525  * @return 0 on success, otherwise non 0 error code
2526  */
hl_wait_multi_cs_completion(struct multi_cs_data * mcs_data)2527 static int hl_wait_multi_cs_completion(struct multi_cs_data *mcs_data)
2528 {
2529 	struct hl_device *hdev = mcs_data->ctx->hdev;
2530 	struct multi_cs_completion *mcs_compl;
2531 	long completion_rc;
2532 
2533 	mcs_compl = hl_wait_multi_cs_completion_init(hdev,
2534 					mcs_data->stream_master_qid_map);
2535 	if (IS_ERR(mcs_compl))
2536 		return PTR_ERR(mcs_compl);
2537 
2538 	completion_rc = wait_for_completion_interruptible_timeout(
2539 					&mcs_compl->completion,
2540 					usecs_to_jiffies(mcs_data->timeout_us));
2541 
2542 	/* update timestamp */
2543 	if (completion_rc > 0)
2544 		mcs_data->timestamp = mcs_compl->timestamp;
2545 
2546 	hl_wait_multi_cs_completion_fini(mcs_compl);
2547 
2548 	mcs_data->wait_status = completion_rc;
2549 
2550 	return 0;
2551 }
2552 
2553 /*
2554  * hl_multi_cs_completion_init - init array of multi-CS completion structures
2555  *
2556  * @hdev: pointer to habanalabs device structure
2557  */
hl_multi_cs_completion_init(struct hl_device * hdev)2558 void hl_multi_cs_completion_init(struct hl_device *hdev)
2559 {
2560 	struct multi_cs_completion *mcs_cmpl;
2561 	int i;
2562 
2563 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
2564 		mcs_cmpl = &hdev->multi_cs_completion[i];
2565 		mcs_cmpl->used = 0;
2566 		spin_lock_init(&mcs_cmpl->lock);
2567 		init_completion(&mcs_cmpl->completion);
2568 	}
2569 }
2570 
2571 /*
2572  * hl_multi_cs_wait_ioctl - implementation of the multi-CS wait ioctl
2573  *
2574  * @hpriv: pointer to the private data of the fd
2575  * @data: pointer to multi-CS wait ioctl in/out args
2576  *
2577  */
hl_multi_cs_wait_ioctl(struct hl_fpriv * hpriv,void * data)2578 static int hl_multi_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
2579 {
2580 	struct hl_device *hdev = hpriv->hdev;
2581 	struct multi_cs_data mcs_data = {0};
2582 	union hl_wait_cs_args *args = data;
2583 	struct hl_ctx *ctx = hpriv->ctx;
2584 	struct hl_fence **fence_arr;
2585 	void __user *seq_arr;
2586 	u32 size_to_copy;
2587 	u64 *cs_seq_arr;
2588 	u8 seq_arr_len;
2589 	int rc;
2590 
2591 	if (!hdev->supports_wait_for_multi_cs) {
2592 		dev_err(hdev->dev, "Wait for multi CS is not supported\n");
2593 		return -EPERM;
2594 	}
2595 
2596 	seq_arr_len = args->in.seq_arr_len;
2597 
2598 	if (seq_arr_len > HL_WAIT_MULTI_CS_LIST_MAX_LEN) {
2599 		dev_err(hdev->dev, "Can wait only up to %d CSs, input sequence is of length %u\n",
2600 				HL_WAIT_MULTI_CS_LIST_MAX_LEN, seq_arr_len);
2601 		return -EINVAL;
2602 	}
2603 
2604 	/* allocate memory for sequence array */
2605 	cs_seq_arr =
2606 		kmalloc_array(seq_arr_len, sizeof(*cs_seq_arr), GFP_KERNEL);
2607 	if (!cs_seq_arr)
2608 		return -ENOMEM;
2609 
2610 	/* copy CS sequence array from user */
2611 	seq_arr = (void __user *) (uintptr_t) args->in.seq;
2612 	size_to_copy = seq_arr_len * sizeof(*cs_seq_arr);
2613 	if (copy_from_user(cs_seq_arr, seq_arr, size_to_copy)) {
2614 		dev_err(hdev->dev, "Failed to copy multi-cs sequence array from user\n");
2615 		rc = -EFAULT;
2616 		goto free_seq_arr;
2617 	}
2618 
2619 	/* allocate array for the fences */
2620 	fence_arr = kmalloc_array(seq_arr_len, sizeof(*fence_arr), GFP_KERNEL);
2621 	if (!fence_arr) {
2622 		rc = -ENOMEM;
2623 		goto free_seq_arr;
2624 	}
2625 
2626 	/* initialize the multi-CS internal data */
2627 	mcs_data.ctx = ctx;
2628 	mcs_data.seq_arr = cs_seq_arr;
2629 	mcs_data.fence_arr = fence_arr;
2630 	mcs_data.arr_len = seq_arr_len;
2631 
2632 	hl_ctx_get(hdev, ctx);
2633 
2634 	/* poll all CS fences, extract timestamp */
2635 	mcs_data.update_ts = true;
2636 	rc = hl_cs_poll_fences(&mcs_data);
2637 	/*
2638 	 * skip wait for CS completion when one of the below is true:
2639 	 * - an error on the poll function
2640 	 * - one or more CS in the list completed
2641 	 * - the user called ioctl with timeout 0
2642 	 */
2643 	if (rc || mcs_data.completion_bitmap || !args->in.timeout_us)
2644 		goto put_ctx;
2645 
2646 	/* wait (with timeout) for the first CS to be completed */
2647 	mcs_data.timeout_us = args->in.timeout_us;
2648 	rc = hl_wait_multi_cs_completion(&mcs_data);
2649 	if (rc)
2650 		goto put_ctx;
2651 
2652 	if (mcs_data.wait_status > 0) {
2653 		/*
2654 		 * poll fences once again to update the CS map.
2655 		 * no timestamp should be updated this time.
2656 		 */
2657 		mcs_data.update_ts = false;
2658 		rc = hl_cs_poll_fences(&mcs_data);
2659 
2660 		/*
2661 		 * if hl_wait_multi_cs_completion returned before timeout (i.e.
2662 		 * it got a completion) we expect to see at least one CS
2663 		 * completed after the poll function.
2664 		 */
2665 		if (!mcs_data.completion_bitmap) {
2666 			dev_warn_ratelimited(hdev->dev,
2667 				"Multi-CS got completion on wait but no CS completed\n");
2668 			rc = -EFAULT;
2669 		}
2670 	}
2671 
2672 put_ctx:
2673 	hl_ctx_put(ctx);
2674 	kfree(fence_arr);
2675 
2676 free_seq_arr:
2677 	kfree(cs_seq_arr);
2678 
2679 	if (rc)
2680 		return rc;
2681 
2682 	if (mcs_data.wait_status == -ERESTARTSYS) {
2683 		dev_err_ratelimited(hdev->dev,
2684 				"user process got signal while waiting for Multi-CS\n");
2685 		return -EINTR;
2686 	}
2687 
2688 	/* update output args */
2689 	memset(args, 0, sizeof(*args));
2690 
2691 	if (mcs_data.completion_bitmap) {
2692 		args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
2693 		args->out.cs_completion_map = mcs_data.completion_bitmap;
2694 
2695 		/* if timestamp not 0- it's valid */
2696 		if (mcs_data.timestamp) {
2697 			args->out.timestamp_nsec = mcs_data.timestamp;
2698 			args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
2699 		}
2700 
2701 		/* update if some CS was gone */
2702 		if (mcs_data.timestamp)
2703 			args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE;
2704 	} else {
2705 		args->out.status = HL_WAIT_CS_STATUS_BUSY;
2706 	}
2707 
2708 	return 0;
2709 }
2710 
hl_cs_wait_ioctl(struct hl_fpriv * hpriv,void * data)2711 static int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
2712 {
2713 	struct hl_device *hdev = hpriv->hdev;
2714 	union hl_wait_cs_args *args = data;
2715 	enum hl_cs_wait_status status;
2716 	u64 seq = args->in.seq;
2717 	s64 timestamp;
2718 	int rc;
2719 
2720 	rc = _hl_cs_wait_ioctl(hdev, hpriv->ctx, args->in.timeout_us, seq,
2721 				&status, &timestamp);
2722 
2723 	if (rc == -ERESTARTSYS) {
2724 		dev_err_ratelimited(hdev->dev,
2725 			"user process got signal while waiting for CS handle %llu\n",
2726 			seq);
2727 		return -EINTR;
2728 	}
2729 
2730 	memset(args, 0, sizeof(*args));
2731 
2732 	if (rc) {
2733 		if (rc == -ETIMEDOUT) {
2734 			dev_err_ratelimited(hdev->dev,
2735 				"CS %llu has timed-out while user process is waiting for it\n",
2736 				seq);
2737 			args->out.status = HL_WAIT_CS_STATUS_TIMEDOUT;
2738 		} else if (rc == -EIO) {
2739 			dev_err_ratelimited(hdev->dev,
2740 				"CS %llu has been aborted while user process is waiting for it\n",
2741 				seq);
2742 			args->out.status = HL_WAIT_CS_STATUS_ABORTED;
2743 		}
2744 		return rc;
2745 	}
2746 
2747 	if (timestamp) {
2748 		args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
2749 		args->out.timestamp_nsec = timestamp;
2750 	}
2751 
2752 	switch (status) {
2753 	case CS_WAIT_STATUS_GONE:
2754 		args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE;
2755 		fallthrough;
2756 	case CS_WAIT_STATUS_COMPLETED:
2757 		args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
2758 		break;
2759 	case CS_WAIT_STATUS_BUSY:
2760 	default:
2761 		args->out.status = HL_WAIT_CS_STATUS_BUSY;
2762 		break;
2763 	}
2764 
2765 	return 0;
2766 }
2767 
_hl_interrupt_wait_ioctl(struct hl_device * hdev,struct hl_ctx * ctx,u32 timeout_us,u64 user_address,u64 target_value,u16 interrupt_offset,enum hl_cs_wait_status * status,u64 * timestamp)2768 static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx,
2769 				u32 timeout_us, u64 user_address,
2770 				u64 target_value, u16 interrupt_offset,
2771 				enum hl_cs_wait_status *status,
2772 				u64 *timestamp)
2773 {
2774 	struct hl_user_pending_interrupt *pend;
2775 	struct hl_user_interrupt *interrupt;
2776 	unsigned long timeout, flags;
2777 	u64 completion_value;
2778 	long completion_rc;
2779 	int rc = 0;
2780 
2781 	if (timeout_us == U32_MAX)
2782 		timeout = timeout_us;
2783 	else
2784 		timeout = usecs_to_jiffies(timeout_us);
2785 
2786 	hl_ctx_get(hdev, ctx);
2787 
2788 	pend = kmalloc(sizeof(*pend), GFP_KERNEL);
2789 	if (!pend) {
2790 		hl_ctx_put(ctx);
2791 		return -ENOMEM;
2792 	}
2793 
2794 	hl_fence_init(&pend->fence, ULONG_MAX);
2795 
2796 	if (interrupt_offset == HL_COMMON_USER_INTERRUPT_ID)
2797 		interrupt = &hdev->common_user_interrupt;
2798 	else
2799 		interrupt = &hdev->user_interrupt[interrupt_offset];
2800 
2801 	/* Add pending user interrupt to relevant list for the interrupt
2802 	 * handler to monitor
2803 	 */
2804 	spin_lock_irqsave(&interrupt->wait_list_lock, flags);
2805 	list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head);
2806 	spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
2807 
2808 	/* We check for completion value as interrupt could have been received
2809 	 * before we added the node to the wait list
2810 	 */
2811 	if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) {
2812 		dev_err(hdev->dev, "Failed to copy completion value from user\n");
2813 		rc = -EFAULT;
2814 		goto remove_pending_user_interrupt;
2815 	}
2816 
2817 	if (completion_value >= target_value) {
2818 		*status = CS_WAIT_STATUS_COMPLETED;
2819 		/* There was no interrupt, we assume the completion is now. */
2820 		pend->fence.timestamp = ktime_get();
2821 	} else
2822 		*status = CS_WAIT_STATUS_BUSY;
2823 
2824 	if (!timeout_us || (*status == CS_WAIT_STATUS_COMPLETED))
2825 		goto remove_pending_user_interrupt;
2826 
2827 wait_again:
2828 	/* Wait for interrupt handler to signal completion */
2829 	completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion,
2830 										timeout);
2831 
2832 	/* If timeout did not expire we need to perform the comparison.
2833 	 * If comparison fails, keep waiting until timeout expires
2834 	 */
2835 	if (completion_rc > 0) {
2836 		spin_lock_irqsave(&interrupt->wait_list_lock, flags);
2837 		/* reinit_completion must be called before we check for user
2838 		 * completion value, otherwise, if interrupt is received after
2839 		 * the comparison and before the next wait_for_completion,
2840 		 * we will reach timeout and fail
2841 		 */
2842 		reinit_completion(&pend->fence.completion);
2843 		spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
2844 
2845 		if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) {
2846 			dev_err(hdev->dev, "Failed to copy completion value from user\n");
2847 			rc = -EFAULT;
2848 
2849 			goto remove_pending_user_interrupt;
2850 		}
2851 
2852 		if (completion_value >= target_value) {
2853 			*status = CS_WAIT_STATUS_COMPLETED;
2854 		} else {
2855 			timeout = completion_rc;
2856 			goto wait_again;
2857 		}
2858 	} else if (completion_rc == -ERESTARTSYS) {
2859 		dev_err_ratelimited(hdev->dev,
2860 			"user process got signal while waiting for interrupt ID %d\n",
2861 			interrupt->interrupt_id);
2862 		rc = -EINTR;
2863 	} else {
2864 		*status = CS_WAIT_STATUS_BUSY;
2865 	}
2866 
2867 remove_pending_user_interrupt:
2868 	spin_lock_irqsave(&interrupt->wait_list_lock, flags);
2869 	list_del(&pend->wait_list_node);
2870 	spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
2871 
2872 	*timestamp = ktime_to_ns(pend->fence.timestamp);
2873 
2874 	kfree(pend);
2875 	hl_ctx_put(ctx);
2876 
2877 	return rc;
2878 }
2879 
hl_interrupt_wait_ioctl(struct hl_fpriv * hpriv,void * data)2880 static int hl_interrupt_wait_ioctl(struct hl_fpriv *hpriv, void *data)
2881 {
2882 	u16 interrupt_id, interrupt_offset, first_interrupt, last_interrupt;
2883 	struct hl_device *hdev = hpriv->hdev;
2884 	struct asic_fixed_properties *prop;
2885 	union hl_wait_cs_args *args = data;
2886 	enum hl_cs_wait_status status;
2887 	u64 timestamp;
2888 	int rc;
2889 
2890 	prop = &hdev->asic_prop;
2891 
2892 	if (!prop->user_interrupt_count) {
2893 		dev_err(hdev->dev, "no user interrupts allowed");
2894 		return -EPERM;
2895 	}
2896 
2897 	interrupt_id =
2898 		FIELD_GET(HL_WAIT_CS_FLAGS_INTERRUPT_MASK, args->in.flags);
2899 
2900 	first_interrupt = prop->first_available_user_msix_interrupt;
2901 	last_interrupt = prop->first_available_user_msix_interrupt +
2902 						prop->user_interrupt_count - 1;
2903 
2904 	if ((interrupt_id < first_interrupt || interrupt_id > last_interrupt) &&
2905 			interrupt_id != HL_COMMON_USER_INTERRUPT_ID) {
2906 		dev_err(hdev->dev, "invalid user interrupt %u", interrupt_id);
2907 		return -EINVAL;
2908 	}
2909 
2910 	if (interrupt_id == HL_COMMON_USER_INTERRUPT_ID)
2911 		interrupt_offset = HL_COMMON_USER_INTERRUPT_ID;
2912 	else
2913 		interrupt_offset = interrupt_id - first_interrupt;
2914 
2915 	rc = _hl_interrupt_wait_ioctl(hdev, hpriv->ctx,
2916 				args->in.interrupt_timeout_us, args->in.addr,
2917 				args->in.target, interrupt_offset, &status,
2918 				&timestamp);
2919 
2920 	if (rc) {
2921 		if (rc != -EINTR)
2922 			dev_err_ratelimited(hdev->dev,
2923 				"interrupt_wait_ioctl failed (%d)\n", rc);
2924 
2925 		return rc;
2926 	}
2927 
2928 	memset(args, 0, sizeof(*args));
2929 
2930 	if (timestamp) {
2931 		args->out.timestamp_nsec = timestamp;
2932 		args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
2933 	}
2934 
2935 	switch (status) {
2936 	case CS_WAIT_STATUS_COMPLETED:
2937 		args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
2938 		break;
2939 	case CS_WAIT_STATUS_BUSY:
2940 	default:
2941 		args->out.status = HL_WAIT_CS_STATUS_BUSY;
2942 		break;
2943 	}
2944 
2945 	return 0;
2946 }
2947 
hl_wait_ioctl(struct hl_fpriv * hpriv,void * data)2948 int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data)
2949 {
2950 	union hl_wait_cs_args *args = data;
2951 	u32 flags = args->in.flags;
2952 	int rc;
2953 
2954 	/* If the device is not operational, no point in waiting for any command submission or
2955 	 * user interrupt
2956 	 */
2957 	if (!hl_device_operational(hpriv->hdev, NULL))
2958 		return -EPERM;
2959 
2960 	if (flags & HL_WAIT_CS_FLAGS_INTERRUPT)
2961 		rc = hl_interrupt_wait_ioctl(hpriv, data);
2962 	else if (flags & HL_WAIT_CS_FLAGS_MULTI_CS)
2963 		rc = hl_multi_cs_wait_ioctl(hpriv, data);
2964 	else
2965 		rc = hl_cs_wait_ioctl(hpriv, data);
2966 
2967 	return rc;
2968 }
2969