1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3
4 #include <linux/bpf_trace.h>
5 #include <net/xdp_sock_drv.h>
6 #include <net/xdp.h>
7 #include "ice.h"
8 #include "ice_base.h"
9 #include "ice_type.h"
10 #include "ice_xsk.h"
11 #include "ice_txrx.h"
12 #include "ice_txrx_lib.h"
13 #include "ice_lib.h"
14
ice_xdp_buf(struct ice_rx_ring * rx_ring,u32 idx)15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx)
16 {
17 return &rx_ring->xdp_buf[idx];
18 }
19
20 /**
21 * ice_qp_reset_stats - Resets all stats for rings of given index
22 * @vsi: VSI that contains rings of interest
23 * @q_idx: ring index in array
24 */
ice_qp_reset_stats(struct ice_vsi * vsi,u16 q_idx)25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
26 {
27 memset(&vsi->rx_rings[q_idx]->rx_stats, 0,
28 sizeof(vsi->rx_rings[q_idx]->rx_stats));
29 memset(&vsi->tx_rings[q_idx]->stats, 0,
30 sizeof(vsi->tx_rings[q_idx]->stats));
31 if (ice_is_xdp_ena_vsi(vsi))
32 memset(&vsi->xdp_rings[q_idx]->stats, 0,
33 sizeof(vsi->xdp_rings[q_idx]->stats));
34 }
35
36 /**
37 * ice_qp_clean_rings - Cleans all the rings of a given index
38 * @vsi: VSI that contains rings of interest
39 * @q_idx: ring index in array
40 */
ice_qp_clean_rings(struct ice_vsi * vsi,u16 q_idx)41 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
42 {
43 ice_clean_tx_ring(vsi->tx_rings[q_idx]);
44 if (ice_is_xdp_ena_vsi(vsi))
45 ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
46 ice_clean_rx_ring(vsi->rx_rings[q_idx]);
47 }
48
49 /**
50 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
51 * @vsi: VSI that has netdev
52 * @q_vector: q_vector that has NAPI context
53 * @enable: true for enable, false for disable
54 */
55 static void
ice_qvec_toggle_napi(struct ice_vsi * vsi,struct ice_q_vector * q_vector,bool enable)56 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
57 bool enable)
58 {
59 if (!vsi->netdev || !q_vector)
60 return;
61
62 if (enable)
63 napi_enable(&q_vector->napi);
64 else
65 napi_disable(&q_vector->napi);
66 }
67
68 /**
69 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
70 * @vsi: the VSI that contains queue vector being un-configured
71 * @rx_ring: Rx ring that will have its IRQ disabled
72 * @q_vector: queue vector
73 */
74 static void
ice_qvec_dis_irq(struct ice_vsi * vsi,struct ice_rx_ring * rx_ring,struct ice_q_vector * q_vector)75 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring,
76 struct ice_q_vector *q_vector)
77 {
78 struct ice_pf *pf = vsi->back;
79 struct ice_hw *hw = &pf->hw;
80 int base = vsi->base_vector;
81 u16 reg;
82 u32 val;
83
84 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
85 * here only QINT_RQCTL
86 */
87 reg = rx_ring->reg_idx;
88 val = rd32(hw, QINT_RQCTL(reg));
89 val &= ~QINT_RQCTL_CAUSE_ENA_M;
90 wr32(hw, QINT_RQCTL(reg), val);
91
92 if (q_vector) {
93 u16 v_idx = q_vector->v_idx;
94
95 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
96 ice_flush(hw);
97 synchronize_irq(pf->msix_entries[v_idx + base].vector);
98 }
99 }
100
101 /**
102 * ice_qvec_cfg_msix - Enable IRQ for given queue vector
103 * @vsi: the VSI that contains queue vector
104 * @q_vector: queue vector
105 */
106 static void
ice_qvec_cfg_msix(struct ice_vsi * vsi,struct ice_q_vector * q_vector)107 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
108 {
109 u16 reg_idx = q_vector->reg_idx;
110 struct ice_pf *pf = vsi->back;
111 struct ice_hw *hw = &pf->hw;
112 struct ice_tx_ring *tx_ring;
113 struct ice_rx_ring *rx_ring;
114
115 ice_cfg_itr(hw, q_vector);
116
117 ice_for_each_tx_ring(tx_ring, q_vector->tx)
118 ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx,
119 q_vector->tx.itr_idx);
120
121 ice_for_each_rx_ring(rx_ring, q_vector->rx)
122 ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx,
123 q_vector->rx.itr_idx);
124
125 ice_flush(hw);
126 }
127
128 /**
129 * ice_qvec_ena_irq - Enable IRQ for given queue vector
130 * @vsi: the VSI that contains queue vector
131 * @q_vector: queue vector
132 */
ice_qvec_ena_irq(struct ice_vsi * vsi,struct ice_q_vector * q_vector)133 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
134 {
135 struct ice_pf *pf = vsi->back;
136 struct ice_hw *hw = &pf->hw;
137
138 ice_irq_dynamic_ena(hw, vsi, q_vector);
139
140 ice_flush(hw);
141 }
142
143 /**
144 * ice_qp_dis - Disables a queue pair
145 * @vsi: VSI of interest
146 * @q_idx: ring index in array
147 *
148 * Returns 0 on success, negative on failure.
149 */
ice_qp_dis(struct ice_vsi * vsi,u16 q_idx)150 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
151 {
152 struct ice_txq_meta txq_meta = { };
153 struct ice_q_vector *q_vector;
154 struct ice_tx_ring *tx_ring;
155 struct ice_rx_ring *rx_ring;
156 int timeout = 50;
157 int err;
158
159 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
160 return -EINVAL;
161
162 tx_ring = vsi->tx_rings[q_idx];
163 rx_ring = vsi->rx_rings[q_idx];
164 q_vector = rx_ring->q_vector;
165
166 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) {
167 timeout--;
168 if (!timeout)
169 return -EBUSY;
170 usleep_range(1000, 2000);
171 }
172 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
173
174 ice_qvec_dis_irq(vsi, rx_ring, q_vector);
175
176 ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
177 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
178 if (err)
179 return err;
180 if (ice_is_xdp_ena_vsi(vsi)) {
181 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
182
183 memset(&txq_meta, 0, sizeof(txq_meta));
184 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
185 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
186 &txq_meta);
187 if (err)
188 return err;
189 }
190 err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true);
191 if (err)
192 return err;
193
194 ice_qvec_toggle_napi(vsi, q_vector, false);
195 ice_qp_clean_rings(vsi, q_idx);
196 ice_qp_reset_stats(vsi, q_idx);
197
198 return 0;
199 }
200
201 /**
202 * ice_qp_ena - Enables a queue pair
203 * @vsi: VSI of interest
204 * @q_idx: ring index in array
205 *
206 * Returns 0 on success, negative on failure.
207 */
ice_qp_ena(struct ice_vsi * vsi,u16 q_idx)208 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
209 {
210 struct ice_aqc_add_tx_qgrp *qg_buf;
211 struct ice_q_vector *q_vector;
212 struct ice_tx_ring *tx_ring;
213 struct ice_rx_ring *rx_ring;
214 u16 size;
215 int err;
216
217 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
218 return -EINVAL;
219
220 size = struct_size(qg_buf, txqs, 1);
221 qg_buf = kzalloc(size, GFP_KERNEL);
222 if (!qg_buf)
223 return -ENOMEM;
224
225 qg_buf->num_txqs = 1;
226
227 tx_ring = vsi->tx_rings[q_idx];
228 rx_ring = vsi->rx_rings[q_idx];
229 q_vector = rx_ring->q_vector;
230
231 err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf);
232 if (err)
233 goto free_buf;
234
235 if (ice_is_xdp_ena_vsi(vsi)) {
236 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
237
238 memset(qg_buf, 0, size);
239 qg_buf->num_txqs = 1;
240 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf);
241 if (err)
242 goto free_buf;
243 ice_set_ring_xdp(xdp_ring);
244 xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring);
245 }
246
247 err = ice_vsi_cfg_rxq(rx_ring);
248 if (err)
249 goto free_buf;
250
251 ice_qvec_cfg_msix(vsi, q_vector);
252
253 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
254 if (err)
255 goto free_buf;
256
257 clear_bit(ICE_CFG_BUSY, vsi->state);
258 ice_qvec_toggle_napi(vsi, q_vector, true);
259 ice_qvec_ena_irq(vsi, q_vector);
260
261 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
262 free_buf:
263 kfree(qg_buf);
264 return err;
265 }
266
267 /**
268 * ice_xsk_pool_disable - disable a buffer pool region
269 * @vsi: Current VSI
270 * @qid: queue ID
271 *
272 * Returns 0 on success, negative on failure
273 */
ice_xsk_pool_disable(struct ice_vsi * vsi,u16 qid)274 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid)
275 {
276 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid);
277
278 if (!pool)
279 return -EINVAL;
280
281 clear_bit(qid, vsi->af_xdp_zc_qps);
282 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR);
283
284 return 0;
285 }
286
287 /**
288 * ice_xsk_pool_enable - enable a buffer pool region
289 * @vsi: Current VSI
290 * @pool: pointer to a requested buffer pool region
291 * @qid: queue ID
292 *
293 * Returns 0 on success, negative on failure
294 */
295 static int
ice_xsk_pool_enable(struct ice_vsi * vsi,struct xsk_buff_pool * pool,u16 qid)296 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
297 {
298 int err;
299
300 if (vsi->type != ICE_VSI_PF)
301 return -EINVAL;
302
303 if (qid >= vsi->netdev->real_num_rx_queues ||
304 qid >= vsi->netdev->real_num_tx_queues)
305 return -EINVAL;
306
307 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back),
308 ICE_RX_DMA_ATTR);
309 if (err)
310 return err;
311
312 set_bit(qid, vsi->af_xdp_zc_qps);
313
314 return 0;
315 }
316
317 /**
318 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state
319 * @vsi: Current VSI
320 * @pool: buffer pool to enable/associate to a ring, NULL to disable
321 * @qid: queue ID
322 *
323 * Returns 0 on success, negative on failure
324 */
ice_xsk_pool_setup(struct ice_vsi * vsi,struct xsk_buff_pool * pool,u16 qid)325 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
326 {
327 bool if_running, pool_present = !!pool;
328 int ret = 0, pool_failure = 0;
329
330 if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
331
332 if (if_running) {
333 ret = ice_qp_dis(vsi, qid);
334 if (ret) {
335 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
336 goto xsk_pool_if_up;
337 }
338 }
339
340 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) :
341 ice_xsk_pool_disable(vsi, qid);
342
343 xsk_pool_if_up:
344 if (if_running) {
345 ret = ice_qp_ena(vsi, qid);
346 if (!ret && pool_present)
347 napi_schedule(&vsi->xdp_rings[qid]->q_vector->napi);
348 else if (ret)
349 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
350 }
351
352 if (pool_failure) {
353 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n",
354 pool_present ? "en" : "dis", pool_failure);
355 return pool_failure;
356 }
357
358 return ret;
359 }
360
361 /**
362 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
363 * @rx_ring: Rx ring
364 * @count: The number of buffers to allocate
365 *
366 * This function allocates a number of Rx buffers from the fill ring
367 * or the internal recycle mechanism and places them on the Rx ring.
368 *
369 * Returns true if all allocations were successful, false if any fail.
370 */
ice_alloc_rx_bufs_zc(struct ice_rx_ring * rx_ring,u16 count)371 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
372 {
373 union ice_32b_rx_flex_desc *rx_desc;
374 u16 ntu = rx_ring->next_to_use;
375 struct xdp_buff **xdp;
376 u32 nb_buffs, i;
377 dma_addr_t dma;
378
379 rx_desc = ICE_RX_DESC(rx_ring, ntu);
380 xdp = ice_xdp_buf(rx_ring, ntu);
381
382 nb_buffs = min_t(u16, count, rx_ring->count - ntu);
383 nb_buffs = xsk_buff_alloc_batch(rx_ring->xsk_pool, xdp, nb_buffs);
384 if (!nb_buffs)
385 return false;
386
387 i = nb_buffs;
388 while (i--) {
389 dma = xsk_buff_xdp_get_dma(*xdp);
390 rx_desc->read.pkt_addr = cpu_to_le64(dma);
391 rx_desc->wb.status_error0 = 0;
392
393 rx_desc++;
394 xdp++;
395 }
396
397 ntu += nb_buffs;
398 if (ntu == rx_ring->count)
399 ntu = 0;
400
401 ice_release_rx_desc(rx_ring, ntu);
402
403 return count == nb_buffs;
404 }
405
406 /**
407 * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring
408 * @rx_ring: Rx ring
409 */
ice_bump_ntc(struct ice_rx_ring * rx_ring)410 static void ice_bump_ntc(struct ice_rx_ring *rx_ring)
411 {
412 int ntc = rx_ring->next_to_clean + 1;
413
414 ntc = (ntc < rx_ring->count) ? ntc : 0;
415 rx_ring->next_to_clean = ntc;
416 prefetch(ICE_RX_DESC(rx_ring, ntc));
417 }
418
419 /**
420 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
421 * @rx_ring: Rx ring
422 * @xdp: Pointer to XDP buffer
423 *
424 * This function allocates a new skb from a zero-copy Rx buffer.
425 *
426 * Returns the skb on success, NULL on failure.
427 */
428 static struct sk_buff *
ice_construct_skb_zc(struct ice_rx_ring * rx_ring,struct xdp_buff * xdp)429 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
430 {
431 unsigned int datasize_hard = xdp->data_end - xdp->data_hard_start;
432 unsigned int metasize = xdp->data - xdp->data_meta;
433 unsigned int datasize = xdp->data_end - xdp->data;
434 struct sk_buff *skb;
435
436 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, datasize_hard,
437 GFP_ATOMIC | __GFP_NOWARN);
438 if (unlikely(!skb))
439 return NULL;
440
441 skb_reserve(skb, xdp->data - xdp->data_hard_start);
442 memcpy(__skb_put(skb, datasize), xdp->data, datasize);
443 if (metasize)
444 skb_metadata_set(skb, metasize);
445
446 xsk_buff_free(xdp);
447 return skb;
448 }
449
450 /**
451 * ice_run_xdp_zc - Executes an XDP program in zero-copy path
452 * @rx_ring: Rx ring
453 * @xdp: xdp_buff used as input to the XDP program
454 * @xdp_prog: XDP program to run
455 * @xdp_ring: ring to be used for XDP_TX action
456 *
457 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
458 */
459 static int
ice_run_xdp_zc(struct ice_rx_ring * rx_ring,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,struct ice_tx_ring * xdp_ring)460 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
461 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring)
462 {
463 int err, result = ICE_XDP_PASS;
464 u32 act;
465
466 act = bpf_prog_run_xdp(xdp_prog, xdp);
467
468 if (likely(act == XDP_REDIRECT)) {
469 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
470 if (err)
471 goto out_failure;
472 return ICE_XDP_REDIR;
473 }
474
475 switch (act) {
476 case XDP_PASS:
477 break;
478 case XDP_TX:
479 result = ice_xmit_xdp_buff(xdp, xdp_ring);
480 if (result == ICE_XDP_CONSUMED)
481 goto out_failure;
482 break;
483 default:
484 bpf_warn_invalid_xdp_action(act);
485 fallthrough;
486 case XDP_ABORTED:
487 out_failure:
488 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
489 fallthrough;
490 case XDP_DROP:
491 result = ICE_XDP_CONSUMED;
492 break;
493 }
494
495 return result;
496 }
497
498 /**
499 * ice_clean_rx_irq_zc - consumes packets from the hardware ring
500 * @rx_ring: AF_XDP Rx ring
501 * @budget: NAPI budget
502 *
503 * Returns number of processed packets on success, remaining budget on failure.
504 */
ice_clean_rx_irq_zc(struct ice_rx_ring * rx_ring,int budget)505 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget)
506 {
507 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
508 struct ice_tx_ring *xdp_ring;
509 unsigned int xdp_xmit = 0;
510 struct bpf_prog *xdp_prog;
511 bool failure = false;
512
513 /* ZC patch is enabled only when XDP program is set,
514 * so here it can not be NULL
515 */
516 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
517 xdp_ring = rx_ring->xdp_ring;
518
519 while (likely(total_rx_packets < (unsigned int)budget)) {
520 union ice_32b_rx_flex_desc *rx_desc;
521 unsigned int size, xdp_res = 0;
522 struct xdp_buff *xdp;
523 struct sk_buff *skb;
524 u16 stat_err_bits;
525 u16 vlan_tag = 0;
526 u16 rx_ptype;
527
528 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
529
530 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
531 if (!ice_test_staterr(rx_desc, stat_err_bits))
532 break;
533
534 /* This memory barrier is needed to keep us from reading
535 * any other fields out of the rx_desc until we have
536 * verified the descriptor has been written back.
537 */
538 dma_rmb();
539
540 xdp = *ice_xdp_buf(rx_ring, rx_ring->next_to_clean);
541
542 size = le16_to_cpu(rx_desc->wb.pkt_len) &
543 ICE_RX_FLX_DESC_PKT_LEN_M;
544 if (!size) {
545 xdp->data = NULL;
546 xdp->data_end = NULL;
547 xdp->data_hard_start = NULL;
548 xdp->data_meta = NULL;
549 goto construct_skb;
550 }
551
552 xsk_buff_set_size(xdp, size);
553 xsk_buff_dma_sync_for_cpu(xdp, rx_ring->xsk_pool);
554
555 xdp_res = ice_run_xdp_zc(rx_ring, xdp, xdp_prog, xdp_ring);
556 if (xdp_res) {
557 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))
558 xdp_xmit |= xdp_res;
559 else
560 xsk_buff_free(xdp);
561
562 total_rx_bytes += size;
563 total_rx_packets++;
564
565 ice_bump_ntc(rx_ring);
566 continue;
567 }
568 construct_skb:
569 /* XDP_PASS path */
570 skb = ice_construct_skb_zc(rx_ring, xdp);
571 if (!skb) {
572 rx_ring->rx_stats.alloc_buf_failed++;
573 break;
574 }
575
576 ice_bump_ntc(rx_ring);
577
578 if (eth_skb_pad(skb)) {
579 skb = NULL;
580 continue;
581 }
582
583 total_rx_bytes += skb->len;
584 total_rx_packets++;
585
586 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
587 if (ice_test_staterr(rx_desc, stat_err_bits))
588 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
589
590 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
591 ICE_RX_FLEX_DESC_PTYPE_M;
592
593 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
594 ice_receive_skb(rx_ring, skb, vlan_tag);
595 }
596
597 failure = !ice_alloc_rx_bufs_zc(rx_ring, ICE_DESC_UNUSED(rx_ring));
598
599 ice_finalize_xdp_rx(xdp_ring, xdp_xmit);
600 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
601
602 if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) {
603 if (failure || rx_ring->next_to_clean == rx_ring->next_to_use)
604 xsk_set_rx_need_wakeup(rx_ring->xsk_pool);
605 else
606 xsk_clear_rx_need_wakeup(rx_ring->xsk_pool);
607
608 return (int)total_rx_packets;
609 }
610
611 return failure ? budget : (int)total_rx_packets;
612 }
613
614 /**
615 * ice_xmit_zc - Completes AF_XDP entries, and cleans XDP entries
616 * @xdp_ring: XDP Tx ring
617 * @budget: max number of frames to xmit
618 *
619 * Returns true if cleanup/transmission is done.
620 */
ice_xmit_zc(struct ice_tx_ring * xdp_ring,int budget)621 static bool ice_xmit_zc(struct ice_tx_ring *xdp_ring, int budget)
622 {
623 struct ice_tx_desc *tx_desc = NULL;
624 bool work_done = true;
625 struct xdp_desc desc;
626 dma_addr_t dma;
627
628 while (likely(budget-- > 0)) {
629 struct ice_tx_buf *tx_buf;
630
631 if (unlikely(!ICE_DESC_UNUSED(xdp_ring))) {
632 xdp_ring->tx_stats.tx_busy++;
633 work_done = false;
634 break;
635 }
636
637 tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use];
638
639 if (!xsk_tx_peek_desc(xdp_ring->xsk_pool, &desc))
640 break;
641
642 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc.addr);
643 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma,
644 desc.len);
645
646 tx_buf->bytecount = desc.len;
647
648 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use);
649 tx_desc->buf_addr = cpu_to_le64(dma);
650 tx_desc->cmd_type_offset_bsz =
651 ice_build_ctob(ICE_TXD_LAST_DESC_CMD, 0, desc.len, 0);
652
653 xdp_ring->next_to_use++;
654 if (xdp_ring->next_to_use == xdp_ring->count)
655 xdp_ring->next_to_use = 0;
656 }
657
658 if (tx_desc) {
659 ice_xdp_ring_update_tail(xdp_ring);
660 xsk_tx_release(xdp_ring->xsk_pool);
661 }
662
663 return budget > 0 && work_done;
664 }
665
666 /**
667 * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer
668 * @xdp_ring: XDP Tx ring
669 * @tx_buf: Tx buffer to clean
670 */
671 static void
ice_clean_xdp_tx_buf(struct ice_tx_ring * xdp_ring,struct ice_tx_buf * tx_buf)672 ice_clean_xdp_tx_buf(struct ice_tx_ring *xdp_ring, struct ice_tx_buf *tx_buf)
673 {
674 xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf);
675 dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma),
676 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
677 dma_unmap_len_set(tx_buf, len, 0);
678 }
679
680 /**
681 * ice_clean_tx_irq_zc - Completes AF_XDP entries, and cleans XDP entries
682 * @xdp_ring: XDP Tx ring
683 * @budget: NAPI budget
684 *
685 * Returns true if cleanup/tranmission is done.
686 */
ice_clean_tx_irq_zc(struct ice_tx_ring * xdp_ring,int budget)687 bool ice_clean_tx_irq_zc(struct ice_tx_ring *xdp_ring, int budget)
688 {
689 int total_packets = 0, total_bytes = 0;
690 s16 ntc = xdp_ring->next_to_clean;
691 struct ice_tx_desc *tx_desc;
692 struct ice_tx_buf *tx_buf;
693 u32 xsk_frames = 0;
694 bool xmit_done;
695
696 tx_desc = ICE_TX_DESC(xdp_ring, ntc);
697 tx_buf = &xdp_ring->tx_buf[ntc];
698 ntc -= xdp_ring->count;
699
700 do {
701 if (!(tx_desc->cmd_type_offset_bsz &
702 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
703 break;
704
705 total_bytes += tx_buf->bytecount;
706 total_packets++;
707
708 if (tx_buf->raw_buf) {
709 ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
710 tx_buf->raw_buf = NULL;
711 } else {
712 xsk_frames++;
713 }
714
715 tx_desc->cmd_type_offset_bsz = 0;
716 tx_buf++;
717 tx_desc++;
718 ntc++;
719
720 if (unlikely(!ntc)) {
721 ntc -= xdp_ring->count;
722 tx_buf = xdp_ring->tx_buf;
723 tx_desc = ICE_TX_DESC(xdp_ring, 0);
724 }
725
726 prefetch(tx_desc);
727
728 } while (likely(--budget));
729
730 ntc += xdp_ring->count;
731 xdp_ring->next_to_clean = ntc;
732
733 if (xsk_frames)
734 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
735
736 if (xsk_uses_need_wakeup(xdp_ring->xsk_pool))
737 xsk_set_tx_need_wakeup(xdp_ring->xsk_pool);
738
739 ice_update_tx_ring_stats(xdp_ring, total_packets, total_bytes);
740 xmit_done = ice_xmit_zc(xdp_ring, ICE_DFLT_IRQ_WORK);
741
742 return budget > 0 && xmit_done;
743 }
744
745 /**
746 * ice_xsk_wakeup - Implements ndo_xsk_wakeup
747 * @netdev: net_device
748 * @queue_id: queue to wake up
749 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI
750 *
751 * Returns negative on error, zero otherwise.
752 */
753 int
ice_xsk_wakeup(struct net_device * netdev,u32 queue_id,u32 __always_unused flags)754 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
755 u32 __always_unused flags)
756 {
757 struct ice_netdev_priv *np = netdev_priv(netdev);
758 struct ice_q_vector *q_vector;
759 struct ice_vsi *vsi = np->vsi;
760 struct ice_tx_ring *ring;
761
762 if (test_bit(ICE_DOWN, vsi->state))
763 return -ENETDOWN;
764
765 if (!ice_is_xdp_ena_vsi(vsi))
766 return -ENXIO;
767
768 if (queue_id >= vsi->num_txq)
769 return -ENXIO;
770
771 if (!vsi->xdp_rings[queue_id]->xsk_pool)
772 return -ENXIO;
773
774 ring = vsi->xdp_rings[queue_id];
775
776 /* The idea here is that if NAPI is running, mark a miss, so
777 * it will run again. If not, trigger an interrupt and
778 * schedule the NAPI from interrupt context. If NAPI would be
779 * scheduled here, the interrupt affinity would not be
780 * honored.
781 */
782 q_vector = ring->q_vector;
783 if (!napi_if_scheduled_mark_missed(&q_vector->napi))
784 ice_trigger_sw_intr(&vsi->back->hw, q_vector);
785
786 return 0;
787 }
788
789 /**
790 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached
791 * @vsi: VSI to be checked
792 *
793 * Returns true if any of the Rx rings has an AF_XDP buff pool attached
794 */
ice_xsk_any_rx_ring_ena(struct ice_vsi * vsi)795 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
796 {
797 int i;
798
799 ice_for_each_rxq(vsi, i) {
800 if (xsk_get_pool_from_qid(vsi->netdev, i))
801 return true;
802 }
803
804 return false;
805 }
806
807 /**
808 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring
809 * @rx_ring: ring to be cleaned
810 */
ice_xsk_clean_rx_ring(struct ice_rx_ring * rx_ring)811 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring)
812 {
813 u16 count_mask = rx_ring->count - 1;
814 u16 ntc = rx_ring->next_to_clean;
815 u16 ntu = rx_ring->next_to_use;
816
817 for ( ; ntc != ntu; ntc = (ntc + 1) & count_mask) {
818 struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc);
819
820 xsk_buff_free(xdp);
821 }
822 }
823
824 /**
825 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues
826 * @xdp_ring: XDP_Tx ring
827 */
ice_xsk_clean_xdp_ring(struct ice_tx_ring * xdp_ring)828 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring)
829 {
830 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
831 u32 xsk_frames = 0;
832
833 while (ntc != ntu) {
834 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
835
836 if (tx_buf->raw_buf)
837 ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
838 else
839 xsk_frames++;
840
841 tx_buf->raw_buf = NULL;
842
843 ntc++;
844 if (ntc >= xdp_ring->count)
845 ntc = 0;
846 }
847
848 if (xsk_frames)
849 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
850 }
851