1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
3 *
4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/netfs.h>
15 #include <linux/fscache.h>
16 #include "internal.h"
17
18 /*
19 * mark a page as having been made dirty and thus needing writeback
20 */
afs_set_page_dirty(struct page * page)21 int afs_set_page_dirty(struct page *page)
22 {
23 _enter("");
24 return __set_page_dirty_nobuffers(page);
25 }
26
27 /*
28 * prepare to perform part of a write to a page
29 */
afs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** _page,void ** fsdata)30 int afs_write_begin(struct file *file, struct address_space *mapping,
31 loff_t pos, unsigned len, unsigned flags,
32 struct page **_page, void **fsdata)
33 {
34 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
35 struct folio *folio;
36 unsigned long priv;
37 unsigned f, from;
38 unsigned t, to;
39 pgoff_t index;
40 int ret;
41
42 _enter("{%llx:%llu},%llx,%x",
43 vnode->fid.vid, vnode->fid.vnode, pos, len);
44
45 /* Prefetch area to be written into the cache if we're caching this
46 * file. We need to do this before we get a lock on the page in case
47 * there's more than one writer competing for the same cache block.
48 */
49 ret = netfs_write_begin(file, mapping, pos, len, flags, &folio, fsdata,
50 &afs_req_ops, NULL);
51 if (ret < 0)
52 return ret;
53
54 index = folio_index(folio);
55 from = pos - index * PAGE_SIZE;
56 to = from + len;
57
58 try_again:
59 /* See if this page is already partially written in a way that we can
60 * merge the new write with.
61 */
62 if (folio_test_private(folio)) {
63 priv = (unsigned long)folio_get_private(folio);
64 f = afs_folio_dirty_from(folio, priv);
65 t = afs_folio_dirty_to(folio, priv);
66 ASSERTCMP(f, <=, t);
67
68 if (folio_test_writeback(folio)) {
69 trace_afs_folio_dirty(vnode, tracepoint_string("alrdy"), folio);
70 goto flush_conflicting_write;
71 }
72 /* If the file is being filled locally, allow inter-write
73 * spaces to be merged into writes. If it's not, only write
74 * back what the user gives us.
75 */
76 if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
77 (to < f || from > t))
78 goto flush_conflicting_write;
79 }
80
81 *_page = &folio->page;
82 _leave(" = 0");
83 return 0;
84
85 /* The previous write and this write aren't adjacent or overlapping, so
86 * flush the page out.
87 */
88 flush_conflicting_write:
89 _debug("flush conflict");
90 ret = folio_write_one(folio);
91 if (ret < 0)
92 goto error;
93
94 ret = folio_lock_killable(folio);
95 if (ret < 0)
96 goto error;
97 goto try_again;
98
99 error:
100 folio_put(folio);
101 _leave(" = %d", ret);
102 return ret;
103 }
104
105 /*
106 * finalise part of a write to a page
107 */
afs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * subpage,void * fsdata)108 int afs_write_end(struct file *file, struct address_space *mapping,
109 loff_t pos, unsigned len, unsigned copied,
110 struct page *subpage, void *fsdata)
111 {
112 struct folio *folio = page_folio(subpage);
113 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
114 unsigned long priv;
115 unsigned int f, from = offset_in_folio(folio, pos);
116 unsigned int t, to = from + copied;
117 loff_t i_size, maybe_i_size;
118
119 _enter("{%llx:%llu},{%lx}",
120 vnode->fid.vid, vnode->fid.vnode, folio_index(folio));
121
122 if (!folio_test_uptodate(folio)) {
123 if (copied < len) {
124 copied = 0;
125 goto out;
126 }
127
128 folio_mark_uptodate(folio);
129 }
130
131 if (copied == 0)
132 goto out;
133
134 maybe_i_size = pos + copied;
135
136 i_size = i_size_read(&vnode->vfs_inode);
137 if (maybe_i_size > i_size) {
138 write_seqlock(&vnode->cb_lock);
139 i_size = i_size_read(&vnode->vfs_inode);
140 if (maybe_i_size > i_size)
141 afs_set_i_size(vnode, maybe_i_size);
142 write_sequnlock(&vnode->cb_lock);
143 }
144
145 if (folio_test_private(folio)) {
146 priv = (unsigned long)folio_get_private(folio);
147 f = afs_folio_dirty_from(folio, priv);
148 t = afs_folio_dirty_to(folio, priv);
149 if (from < f)
150 f = from;
151 if (to > t)
152 t = to;
153 priv = afs_folio_dirty(folio, f, t);
154 folio_change_private(folio, (void *)priv);
155 trace_afs_folio_dirty(vnode, tracepoint_string("dirty+"), folio);
156 } else {
157 priv = afs_folio_dirty(folio, from, to);
158 folio_attach_private(folio, (void *)priv);
159 trace_afs_folio_dirty(vnode, tracepoint_string("dirty"), folio);
160 }
161
162 if (folio_mark_dirty(folio))
163 _debug("dirtied %lx", folio_index(folio));
164
165 out:
166 folio_unlock(folio);
167 folio_put(folio);
168 return copied;
169 }
170
171 /*
172 * kill all the pages in the given range
173 */
afs_kill_pages(struct address_space * mapping,loff_t start,loff_t len)174 static void afs_kill_pages(struct address_space *mapping,
175 loff_t start, loff_t len)
176 {
177 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
178 struct folio *folio;
179 pgoff_t index = start / PAGE_SIZE;
180 pgoff_t last = (start + len - 1) / PAGE_SIZE, next;
181
182 _enter("{%llx:%llu},%llx @%llx",
183 vnode->fid.vid, vnode->fid.vnode, len, start);
184
185 do {
186 _debug("kill %lx (to %lx)", index, last);
187
188 folio = filemap_get_folio(mapping, index);
189 if (!folio) {
190 next = index + 1;
191 continue;
192 }
193
194 next = folio_next_index(folio);
195
196 folio_clear_uptodate(folio);
197 folio_end_writeback(folio);
198 folio_lock(folio);
199 generic_error_remove_page(mapping, &folio->page);
200 folio_unlock(folio);
201 folio_put(folio);
202
203 } while (index = next, index <= last);
204
205 _leave("");
206 }
207
208 /*
209 * Redirty all the pages in a given range.
210 */
afs_redirty_pages(struct writeback_control * wbc,struct address_space * mapping,loff_t start,loff_t len)211 static void afs_redirty_pages(struct writeback_control *wbc,
212 struct address_space *mapping,
213 loff_t start, loff_t len)
214 {
215 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
216 struct folio *folio;
217 pgoff_t index = start / PAGE_SIZE;
218 pgoff_t last = (start + len - 1) / PAGE_SIZE, next;
219
220 _enter("{%llx:%llu},%llx @%llx",
221 vnode->fid.vid, vnode->fid.vnode, len, start);
222
223 do {
224 _debug("redirty %llx @%llx", len, start);
225
226 folio = filemap_get_folio(mapping, index);
227 if (!folio) {
228 next = index + 1;
229 continue;
230 }
231
232 next = index + folio_nr_pages(folio);
233 folio_redirty_for_writepage(wbc, folio);
234 folio_end_writeback(folio);
235 folio_put(folio);
236 } while (index = next, index <= last);
237
238 _leave("");
239 }
240
241 /*
242 * completion of write to server
243 */
afs_pages_written_back(struct afs_vnode * vnode,loff_t start,unsigned int len)244 static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len)
245 {
246 struct address_space *mapping = vnode->vfs_inode.i_mapping;
247 struct folio *folio;
248 pgoff_t end;
249
250 XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE);
251
252 _enter("{%llx:%llu},{%x @%llx}",
253 vnode->fid.vid, vnode->fid.vnode, len, start);
254
255 rcu_read_lock();
256
257 end = (start + len - 1) / PAGE_SIZE;
258 xas_for_each(&xas, folio, end) {
259 if (!folio_test_writeback(folio)) {
260 kdebug("bad %x @%llx page %lx %lx",
261 len, start, folio_index(folio), end);
262 ASSERT(folio_test_writeback(folio));
263 }
264
265 trace_afs_folio_dirty(vnode, tracepoint_string("clear"), folio);
266 folio_detach_private(folio);
267 folio_end_writeback(folio);
268 }
269
270 rcu_read_unlock();
271
272 afs_prune_wb_keys(vnode);
273 _leave("");
274 }
275
276 /*
277 * Find a key to use for the writeback. We cached the keys used to author the
278 * writes on the vnode. *_wbk will contain the last writeback key used or NULL
279 * and we need to start from there if it's set.
280 */
afs_get_writeback_key(struct afs_vnode * vnode,struct afs_wb_key ** _wbk)281 static int afs_get_writeback_key(struct afs_vnode *vnode,
282 struct afs_wb_key **_wbk)
283 {
284 struct afs_wb_key *wbk = NULL;
285 struct list_head *p;
286 int ret = -ENOKEY, ret2;
287
288 spin_lock(&vnode->wb_lock);
289 if (*_wbk)
290 p = (*_wbk)->vnode_link.next;
291 else
292 p = vnode->wb_keys.next;
293
294 while (p != &vnode->wb_keys) {
295 wbk = list_entry(p, struct afs_wb_key, vnode_link);
296 _debug("wbk %u", key_serial(wbk->key));
297 ret2 = key_validate(wbk->key);
298 if (ret2 == 0) {
299 refcount_inc(&wbk->usage);
300 _debug("USE WB KEY %u", key_serial(wbk->key));
301 break;
302 }
303
304 wbk = NULL;
305 if (ret == -ENOKEY)
306 ret = ret2;
307 p = p->next;
308 }
309
310 spin_unlock(&vnode->wb_lock);
311 if (*_wbk)
312 afs_put_wb_key(*_wbk);
313 *_wbk = wbk;
314 return 0;
315 }
316
afs_store_data_success(struct afs_operation * op)317 static void afs_store_data_success(struct afs_operation *op)
318 {
319 struct afs_vnode *vnode = op->file[0].vnode;
320
321 op->ctime = op->file[0].scb.status.mtime_client;
322 afs_vnode_commit_status(op, &op->file[0]);
323 if (op->error == 0) {
324 if (!op->store.laundering)
325 afs_pages_written_back(vnode, op->store.pos, op->store.size);
326 afs_stat_v(vnode, n_stores);
327 atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes);
328 }
329 }
330
331 static const struct afs_operation_ops afs_store_data_operation = {
332 .issue_afs_rpc = afs_fs_store_data,
333 .issue_yfs_rpc = yfs_fs_store_data,
334 .success = afs_store_data_success,
335 };
336
337 /*
338 * write to a file
339 */
afs_store_data(struct afs_vnode * vnode,struct iov_iter * iter,loff_t pos,bool laundering)340 static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos,
341 bool laundering)
342 {
343 struct afs_operation *op;
344 struct afs_wb_key *wbk = NULL;
345 loff_t size = iov_iter_count(iter), i_size;
346 int ret = -ENOKEY;
347
348 _enter("%s{%llx:%llu.%u},%llx,%llx",
349 vnode->volume->name,
350 vnode->fid.vid,
351 vnode->fid.vnode,
352 vnode->fid.unique,
353 size, pos);
354
355 ret = afs_get_writeback_key(vnode, &wbk);
356 if (ret) {
357 _leave(" = %d [no keys]", ret);
358 return ret;
359 }
360
361 op = afs_alloc_operation(wbk->key, vnode->volume);
362 if (IS_ERR(op)) {
363 afs_put_wb_key(wbk);
364 return -ENOMEM;
365 }
366
367 i_size = i_size_read(&vnode->vfs_inode);
368
369 afs_op_set_vnode(op, 0, vnode);
370 op->file[0].dv_delta = 1;
371 op->file[0].modification = true;
372 op->store.write_iter = iter;
373 op->store.pos = pos;
374 op->store.size = size;
375 op->store.i_size = max(pos + size, i_size);
376 op->store.laundering = laundering;
377 op->mtime = vnode->vfs_inode.i_mtime;
378 op->flags |= AFS_OPERATION_UNINTR;
379 op->ops = &afs_store_data_operation;
380
381 try_next_key:
382 afs_begin_vnode_operation(op);
383 afs_wait_for_operation(op);
384
385 switch (op->error) {
386 case -EACCES:
387 case -EPERM:
388 case -ENOKEY:
389 case -EKEYEXPIRED:
390 case -EKEYREJECTED:
391 case -EKEYREVOKED:
392 _debug("next");
393
394 ret = afs_get_writeback_key(vnode, &wbk);
395 if (ret == 0) {
396 key_put(op->key);
397 op->key = key_get(wbk->key);
398 goto try_next_key;
399 }
400 break;
401 }
402
403 afs_put_wb_key(wbk);
404 _leave(" = %d", op->error);
405 return afs_put_operation(op);
406 }
407
408 /*
409 * Extend the region to be written back to include subsequent contiguously
410 * dirty pages if possible, but don't sleep while doing so.
411 *
412 * If this page holds new content, then we can include filler zeros in the
413 * writeback.
414 */
afs_extend_writeback(struct address_space * mapping,struct afs_vnode * vnode,long * _count,loff_t start,loff_t max_len,bool new_content,unsigned int * _len)415 static void afs_extend_writeback(struct address_space *mapping,
416 struct afs_vnode *vnode,
417 long *_count,
418 loff_t start,
419 loff_t max_len,
420 bool new_content,
421 unsigned int *_len)
422 {
423 struct pagevec pvec;
424 struct folio *folio;
425 unsigned long priv;
426 unsigned int psize, filler = 0;
427 unsigned int f, t;
428 loff_t len = *_len;
429 pgoff_t index = (start + len) / PAGE_SIZE;
430 bool stop = true;
431 unsigned int i;
432
433 XA_STATE(xas, &mapping->i_pages, index);
434 pagevec_init(&pvec);
435
436 do {
437 /* Firstly, we gather up a batch of contiguous dirty pages
438 * under the RCU read lock - but we can't clear the dirty flags
439 * there if any of those pages are mapped.
440 */
441 rcu_read_lock();
442
443 xas_for_each(&xas, folio, ULONG_MAX) {
444 stop = true;
445 if (xas_retry(&xas, folio))
446 continue;
447 if (xa_is_value(folio))
448 break;
449 if (folio_index(folio) != index)
450 break;
451
452 if (!folio_try_get_rcu(folio)) {
453 xas_reset(&xas);
454 continue;
455 }
456
457 /* Has the page moved or been split? */
458 if (unlikely(folio != xas_reload(&xas))) {
459 folio_put(folio);
460 break;
461 }
462
463 if (!folio_trylock(folio)) {
464 folio_put(folio);
465 break;
466 }
467 if (!folio_test_dirty(folio) || folio_test_writeback(folio)) {
468 folio_unlock(folio);
469 folio_put(folio);
470 break;
471 }
472
473 psize = folio_size(folio);
474 priv = (unsigned long)folio_get_private(folio);
475 f = afs_folio_dirty_from(folio, priv);
476 t = afs_folio_dirty_to(folio, priv);
477 if (f != 0 && !new_content) {
478 folio_unlock(folio);
479 folio_put(folio);
480 break;
481 }
482
483 len += filler + t;
484 filler = psize - t;
485 if (len >= max_len || *_count <= 0)
486 stop = true;
487 else if (t == psize || new_content)
488 stop = false;
489
490 index += folio_nr_pages(folio);
491 if (!pagevec_add(&pvec, &folio->page))
492 break;
493 if (stop)
494 break;
495 }
496
497 if (!stop)
498 xas_pause(&xas);
499 rcu_read_unlock();
500
501 /* Now, if we obtained any pages, we can shift them to being
502 * writable and mark them for caching.
503 */
504 if (!pagevec_count(&pvec))
505 break;
506
507 for (i = 0; i < pagevec_count(&pvec); i++) {
508 folio = page_folio(pvec.pages[i]);
509 trace_afs_folio_dirty(vnode, tracepoint_string("store+"), folio);
510
511 if (!folio_clear_dirty_for_io(folio))
512 BUG();
513 if (folio_start_writeback(folio))
514 BUG();
515
516 *_count -= folio_nr_pages(folio);
517 folio_unlock(folio);
518 }
519
520 pagevec_release(&pvec);
521 cond_resched();
522 } while (!stop);
523
524 *_len = len;
525 }
526
527 /*
528 * Synchronously write back the locked page and any subsequent non-locked dirty
529 * pages.
530 */
afs_write_back_from_locked_folio(struct address_space * mapping,struct writeback_control * wbc,struct folio * folio,loff_t start,loff_t end)531 static ssize_t afs_write_back_from_locked_folio(struct address_space *mapping,
532 struct writeback_control *wbc,
533 struct folio *folio,
534 loff_t start, loff_t end)
535 {
536 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
537 struct iov_iter iter;
538 unsigned long priv;
539 unsigned int offset, to, len, max_len;
540 loff_t i_size = i_size_read(&vnode->vfs_inode);
541 bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
542 long count = wbc->nr_to_write;
543 int ret;
544
545 _enter(",%lx,%llx-%llx", folio_index(folio), start, end);
546
547 if (folio_start_writeback(folio))
548 BUG();
549
550 count -= folio_nr_pages(folio);
551
552 /* Find all consecutive lockable dirty pages that have contiguous
553 * written regions, stopping when we find a page that is not
554 * immediately lockable, is not dirty or is missing, or we reach the
555 * end of the range.
556 */
557 priv = (unsigned long)folio_get_private(folio);
558 offset = afs_folio_dirty_from(folio, priv);
559 to = afs_folio_dirty_to(folio, priv);
560 trace_afs_folio_dirty(vnode, tracepoint_string("store"), folio);
561
562 len = to - offset;
563 start += offset;
564 if (start < i_size) {
565 /* Trim the write to the EOF; the extra data is ignored. Also
566 * put an upper limit on the size of a single storedata op.
567 */
568 max_len = 65536 * 4096;
569 max_len = min_t(unsigned long long, max_len, end - start + 1);
570 max_len = min_t(unsigned long long, max_len, i_size - start);
571
572 if (len < max_len &&
573 (to == folio_size(folio) || new_content))
574 afs_extend_writeback(mapping, vnode, &count,
575 start, max_len, new_content, &len);
576 len = min_t(loff_t, len, max_len);
577 }
578
579 /* We now have a contiguous set of dirty pages, each with writeback
580 * set; the first page is still locked at this point, but all the rest
581 * have been unlocked.
582 */
583 folio_unlock(folio);
584
585 if (start < i_size) {
586 _debug("write back %x @%llx [%llx]", len, start, i_size);
587
588 iov_iter_xarray(&iter, WRITE, &mapping->i_pages, start, len);
589 ret = afs_store_data(vnode, &iter, start, false);
590 } else {
591 _debug("write discard %x @%llx [%llx]", len, start, i_size);
592
593 /* The dirty region was entirely beyond the EOF. */
594 afs_pages_written_back(vnode, start, len);
595 ret = 0;
596 }
597
598 switch (ret) {
599 case 0:
600 wbc->nr_to_write = count;
601 ret = len;
602 break;
603
604 default:
605 pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
606 fallthrough;
607 case -EACCES:
608 case -EPERM:
609 case -ENOKEY:
610 case -EKEYEXPIRED:
611 case -EKEYREJECTED:
612 case -EKEYREVOKED:
613 afs_redirty_pages(wbc, mapping, start, len);
614 mapping_set_error(mapping, ret);
615 break;
616
617 case -EDQUOT:
618 case -ENOSPC:
619 afs_redirty_pages(wbc, mapping, start, len);
620 mapping_set_error(mapping, -ENOSPC);
621 break;
622
623 case -EROFS:
624 case -EIO:
625 case -EREMOTEIO:
626 case -EFBIG:
627 case -ENOENT:
628 case -ENOMEDIUM:
629 case -ENXIO:
630 trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
631 afs_kill_pages(mapping, start, len);
632 mapping_set_error(mapping, ret);
633 break;
634 }
635
636 _leave(" = %d", ret);
637 return ret;
638 }
639
640 /*
641 * write a page back to the server
642 * - the caller locked the page for us
643 */
afs_writepage(struct page * subpage,struct writeback_control * wbc)644 int afs_writepage(struct page *subpage, struct writeback_control *wbc)
645 {
646 struct folio *folio = page_folio(subpage);
647 ssize_t ret;
648 loff_t start;
649
650 _enter("{%lx},", folio_index(folio));
651
652 start = folio_index(folio) * PAGE_SIZE;
653 ret = afs_write_back_from_locked_folio(folio_mapping(folio), wbc,
654 folio, start, LLONG_MAX - start);
655 if (ret < 0) {
656 _leave(" = %zd", ret);
657 return ret;
658 }
659
660 _leave(" = 0");
661 return 0;
662 }
663
664 /*
665 * write a region of pages back to the server
666 */
afs_writepages_region(struct address_space * mapping,struct writeback_control * wbc,loff_t start,loff_t end,loff_t * _next)667 static int afs_writepages_region(struct address_space *mapping,
668 struct writeback_control *wbc,
669 loff_t start, loff_t end, loff_t *_next)
670 {
671 struct folio *folio;
672 struct page *head_page;
673 ssize_t ret;
674 int n;
675
676 _enter("%llx,%llx,", start, end);
677
678 do {
679 pgoff_t index = start / PAGE_SIZE;
680
681 n = find_get_pages_range_tag(mapping, &index, end / PAGE_SIZE,
682 PAGECACHE_TAG_DIRTY, 1, &head_page);
683 if (!n)
684 break;
685
686 folio = page_folio(head_page);
687 start = folio_pos(folio); /* May regress with THPs */
688
689 _debug("wback %lx", folio_index(folio));
690
691 /* At this point we hold neither the i_pages lock nor the
692 * page lock: the page may be truncated or invalidated
693 * (changing page->mapping to NULL), or even swizzled
694 * back from swapper_space to tmpfs file mapping
695 */
696 if (wbc->sync_mode != WB_SYNC_NONE) {
697 ret = folio_lock_killable(folio);
698 if (ret < 0) {
699 folio_put(folio);
700 return ret;
701 }
702 } else {
703 if (!folio_trylock(folio)) {
704 folio_put(folio);
705 return 0;
706 }
707 }
708
709 if (folio_mapping(folio) != mapping ||
710 !folio_test_dirty(folio)) {
711 start += folio_size(folio);
712 folio_unlock(folio);
713 folio_put(folio);
714 continue;
715 }
716
717 if (folio_test_writeback(folio)) {
718 folio_unlock(folio);
719 if (wbc->sync_mode != WB_SYNC_NONE)
720 folio_wait_writeback(folio);
721 folio_put(folio);
722 continue;
723 }
724
725 if (!folio_clear_dirty_for_io(folio))
726 BUG();
727 ret = afs_write_back_from_locked_folio(mapping, wbc, folio, start, end);
728 folio_put(folio);
729 if (ret < 0) {
730 _leave(" = %zd", ret);
731 return ret;
732 }
733
734 start += ret;
735
736 cond_resched();
737 } while (wbc->nr_to_write > 0);
738
739 *_next = start;
740 _leave(" = 0 [%llx]", *_next);
741 return 0;
742 }
743
744 /*
745 * write some of the pending data back to the server
746 */
afs_writepages(struct address_space * mapping,struct writeback_control * wbc)747 int afs_writepages(struct address_space *mapping,
748 struct writeback_control *wbc)
749 {
750 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
751 loff_t start, next;
752 int ret;
753
754 _enter("");
755
756 /* We have to be careful as we can end up racing with setattr()
757 * truncating the pagecache since the caller doesn't take a lock here
758 * to prevent it.
759 */
760 if (wbc->sync_mode == WB_SYNC_ALL)
761 down_read(&vnode->validate_lock);
762 else if (!down_read_trylock(&vnode->validate_lock))
763 return 0;
764
765 if (wbc->range_cyclic) {
766 start = mapping->writeback_index * PAGE_SIZE;
767 ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX, &next);
768 if (ret == 0) {
769 mapping->writeback_index = next / PAGE_SIZE;
770 if (start > 0 && wbc->nr_to_write > 0) {
771 ret = afs_writepages_region(mapping, wbc, 0,
772 start, &next);
773 if (ret == 0)
774 mapping->writeback_index =
775 next / PAGE_SIZE;
776 }
777 }
778 } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
779 ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX, &next);
780 if (wbc->nr_to_write > 0 && ret == 0)
781 mapping->writeback_index = next / PAGE_SIZE;
782 } else {
783 ret = afs_writepages_region(mapping, wbc,
784 wbc->range_start, wbc->range_end, &next);
785 }
786
787 up_read(&vnode->validate_lock);
788 _leave(" = %d", ret);
789 return ret;
790 }
791
792 /*
793 * write to an AFS file
794 */
afs_file_write(struct kiocb * iocb,struct iov_iter * from)795 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
796 {
797 struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
798 struct afs_file *af = iocb->ki_filp->private_data;
799 ssize_t result;
800 size_t count = iov_iter_count(from);
801
802 _enter("{%llx:%llu},{%zu},",
803 vnode->fid.vid, vnode->fid.vnode, count);
804
805 if (IS_SWAPFILE(&vnode->vfs_inode)) {
806 printk(KERN_INFO
807 "AFS: Attempt to write to active swap file!\n");
808 return -EBUSY;
809 }
810
811 if (!count)
812 return 0;
813
814 result = afs_validate(vnode, af->key);
815 if (result < 0)
816 return result;
817
818 result = generic_file_write_iter(iocb, from);
819
820 _leave(" = %zd", result);
821 return result;
822 }
823
824 /*
825 * flush any dirty pages for this process, and check for write errors.
826 * - the return status from this call provides a reliable indication of
827 * whether any write errors occurred for this process.
828 */
afs_fsync(struct file * file,loff_t start,loff_t end,int datasync)829 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
830 {
831 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
832 struct afs_file *af = file->private_data;
833 int ret;
834
835 _enter("{%llx:%llu},{n=%pD},%d",
836 vnode->fid.vid, vnode->fid.vnode, file,
837 datasync);
838
839 ret = afs_validate(vnode, af->key);
840 if (ret < 0)
841 return ret;
842
843 return file_write_and_wait_range(file, start, end);
844 }
845
846 /*
847 * notification that a previously read-only page is about to become writable
848 * - if it returns an error, the caller will deliver a bus error signal
849 */
afs_page_mkwrite(struct vm_fault * vmf)850 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
851 {
852 struct folio *folio = page_folio(vmf->page);
853 struct file *file = vmf->vma->vm_file;
854 struct inode *inode = file_inode(file);
855 struct afs_vnode *vnode = AFS_FS_I(inode);
856 struct afs_file *af = file->private_data;
857 unsigned long priv;
858 vm_fault_t ret = VM_FAULT_RETRY;
859
860 _enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, folio_index(folio));
861
862 afs_validate(vnode, af->key);
863
864 sb_start_pagefault(inode->i_sb);
865
866 /* Wait for the page to be written to the cache before we allow it to
867 * be modified. We then assume the entire page will need writing back.
868 */
869 #ifdef CONFIG_AFS_FSCACHE
870 if (folio_test_fscache(folio) &&
871 folio_wait_fscache_killable(folio) < 0)
872 goto out;
873 #endif
874
875 if (folio_wait_writeback_killable(folio))
876 goto out;
877
878 if (folio_lock_killable(folio) < 0)
879 goto out;
880
881 /* We mustn't change folio->private until writeback is complete as that
882 * details the portion of the page we need to write back and we might
883 * need to redirty the page if there's a problem.
884 */
885 if (folio_wait_writeback_killable(folio) < 0) {
886 folio_unlock(folio);
887 goto out;
888 }
889
890 priv = afs_folio_dirty(folio, 0, folio_size(folio));
891 priv = afs_folio_dirty_mmapped(priv);
892 if (folio_test_private(folio)) {
893 folio_change_private(folio, (void *)priv);
894 trace_afs_folio_dirty(vnode, tracepoint_string("mkwrite+"), folio);
895 } else {
896 folio_attach_private(folio, (void *)priv);
897 trace_afs_folio_dirty(vnode, tracepoint_string("mkwrite"), folio);
898 }
899 file_update_time(file);
900
901 ret = VM_FAULT_LOCKED;
902 out:
903 sb_end_pagefault(inode->i_sb);
904 return ret;
905 }
906
907 /*
908 * Prune the keys cached for writeback. The caller must hold vnode->wb_lock.
909 */
afs_prune_wb_keys(struct afs_vnode * vnode)910 void afs_prune_wb_keys(struct afs_vnode *vnode)
911 {
912 LIST_HEAD(graveyard);
913 struct afs_wb_key *wbk, *tmp;
914
915 /* Discard unused keys */
916 spin_lock(&vnode->wb_lock);
917
918 if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
919 !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
920 list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
921 if (refcount_read(&wbk->usage) == 1)
922 list_move(&wbk->vnode_link, &graveyard);
923 }
924 }
925
926 spin_unlock(&vnode->wb_lock);
927
928 while (!list_empty(&graveyard)) {
929 wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
930 list_del(&wbk->vnode_link);
931 afs_put_wb_key(wbk);
932 }
933 }
934
935 /*
936 * Clean up a page during invalidation.
937 */
afs_launder_page(struct page * subpage)938 int afs_launder_page(struct page *subpage)
939 {
940 struct folio *folio = page_folio(subpage);
941 struct afs_vnode *vnode = AFS_FS_I(folio_inode(folio));
942 struct iov_iter iter;
943 struct bio_vec bv[1];
944 unsigned long priv;
945 unsigned int f, t;
946 int ret = 0;
947
948 _enter("{%lx}", folio_index(folio));
949
950 priv = (unsigned long)folio_get_private(folio);
951 if (folio_clear_dirty_for_io(folio)) {
952 f = 0;
953 t = folio_size(folio);
954 if (folio_test_private(folio)) {
955 f = afs_folio_dirty_from(folio, priv);
956 t = afs_folio_dirty_to(folio, priv);
957 }
958
959 bv[0].bv_page = &folio->page;
960 bv[0].bv_offset = f;
961 bv[0].bv_len = t - f;
962 iov_iter_bvec(&iter, WRITE, bv, 1, bv[0].bv_len);
963
964 trace_afs_folio_dirty(vnode, tracepoint_string("launder"), folio);
965 ret = afs_store_data(vnode, &iter, folio_pos(folio) + f, true);
966 }
967
968 trace_afs_folio_dirty(vnode, tracepoint_string("laundered"), folio);
969 folio_detach_private(folio);
970 folio_wait_fscache(folio);
971 return ret;
972 }
973