1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * f2fs compress support
4 *
5 * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6 */
7
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/moduleparam.h>
11 #include <linux/writeback.h>
12 #include <linux/backing-dev.h>
13 #include <linux/lzo.h>
14 #include <linux/lz4.h>
15 #include <linux/zstd.h>
16 #include <linux/pagevec.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22
23 static struct kmem_cache *cic_entry_slab;
24 static struct kmem_cache *dic_entry_slab;
25
page_array_alloc(struct inode * inode,int nr)26 static void *page_array_alloc(struct inode *inode, int nr)
27 {
28 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
29 unsigned int size = sizeof(struct page *) * nr;
30
31 if (likely(size <= sbi->page_array_slab_size))
32 return f2fs_kmem_cache_alloc(sbi->page_array_slab,
33 GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
34 return f2fs_kzalloc(sbi, size, GFP_NOFS);
35 }
36
page_array_free(struct inode * inode,void * pages,int nr)37 static void page_array_free(struct inode *inode, void *pages, int nr)
38 {
39 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 unsigned int size = sizeof(struct page *) * nr;
41
42 if (!pages)
43 return;
44
45 if (likely(size <= sbi->page_array_slab_size))
46 kmem_cache_free(sbi->page_array_slab, pages);
47 else
48 kfree(pages);
49 }
50
51 struct f2fs_compress_ops {
52 int (*init_compress_ctx)(struct compress_ctx *cc);
53 void (*destroy_compress_ctx)(struct compress_ctx *cc);
54 int (*compress_pages)(struct compress_ctx *cc);
55 int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
56 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
57 int (*decompress_pages)(struct decompress_io_ctx *dic);
58 };
59
offset_in_cluster(struct compress_ctx * cc,pgoff_t index)60 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
61 {
62 return index & (cc->cluster_size - 1);
63 }
64
cluster_idx(struct compress_ctx * cc,pgoff_t index)65 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
66 {
67 return index >> cc->log_cluster_size;
68 }
69
start_idx_of_cluster(struct compress_ctx * cc)70 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
71 {
72 return cc->cluster_idx << cc->log_cluster_size;
73 }
74
f2fs_is_compressed_page(struct page * page)75 bool f2fs_is_compressed_page(struct page *page)
76 {
77 if (!PagePrivate(page))
78 return false;
79 if (!page_private(page))
80 return false;
81 if (page_private_nonpointer(page))
82 return false;
83
84 f2fs_bug_on(F2FS_M_SB(page->mapping),
85 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
86 return true;
87 }
88
f2fs_set_compressed_page(struct page * page,struct inode * inode,pgoff_t index,void * data)89 static void f2fs_set_compressed_page(struct page *page,
90 struct inode *inode, pgoff_t index, void *data)
91 {
92 attach_page_private(page, (void *)data);
93
94 /* i_crypto_info and iv index */
95 page->index = index;
96 page->mapping = inode->i_mapping;
97 }
98
f2fs_drop_rpages(struct compress_ctx * cc,int len,bool unlock)99 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
100 {
101 int i;
102
103 for (i = 0; i < len; i++) {
104 if (!cc->rpages[i])
105 continue;
106 if (unlock)
107 unlock_page(cc->rpages[i]);
108 else
109 put_page(cc->rpages[i]);
110 }
111 }
112
f2fs_put_rpages(struct compress_ctx * cc)113 static void f2fs_put_rpages(struct compress_ctx *cc)
114 {
115 f2fs_drop_rpages(cc, cc->cluster_size, false);
116 }
117
f2fs_unlock_rpages(struct compress_ctx * cc,int len)118 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
119 {
120 f2fs_drop_rpages(cc, len, true);
121 }
122
f2fs_put_rpages_wbc(struct compress_ctx * cc,struct writeback_control * wbc,bool redirty,int unlock)123 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
124 struct writeback_control *wbc, bool redirty, int unlock)
125 {
126 unsigned int i;
127
128 for (i = 0; i < cc->cluster_size; i++) {
129 if (!cc->rpages[i])
130 continue;
131 if (redirty)
132 redirty_page_for_writepage(wbc, cc->rpages[i]);
133 f2fs_put_page(cc->rpages[i], unlock);
134 }
135 }
136
f2fs_compress_control_page(struct page * page)137 struct page *f2fs_compress_control_page(struct page *page)
138 {
139 return ((struct compress_io_ctx *)page_private(page))->rpages[0];
140 }
141
f2fs_init_compress_ctx(struct compress_ctx * cc)142 int f2fs_init_compress_ctx(struct compress_ctx *cc)
143 {
144 if (cc->rpages)
145 return 0;
146
147 cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
148 return cc->rpages ? 0 : -ENOMEM;
149 }
150
f2fs_destroy_compress_ctx(struct compress_ctx * cc,bool reuse)151 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
152 {
153 page_array_free(cc->inode, cc->rpages, cc->cluster_size);
154 cc->rpages = NULL;
155 cc->nr_rpages = 0;
156 cc->nr_cpages = 0;
157 if (!reuse)
158 cc->cluster_idx = NULL_CLUSTER;
159 }
160
f2fs_compress_ctx_add_page(struct compress_ctx * cc,struct page * page)161 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
162 {
163 unsigned int cluster_ofs;
164
165 if (!f2fs_cluster_can_merge_page(cc, page->index))
166 f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
167
168 cluster_ofs = offset_in_cluster(cc, page->index);
169 cc->rpages[cluster_ofs] = page;
170 cc->nr_rpages++;
171 cc->cluster_idx = cluster_idx(cc, page->index);
172 }
173
174 #ifdef CONFIG_F2FS_FS_LZO
lzo_init_compress_ctx(struct compress_ctx * cc)175 static int lzo_init_compress_ctx(struct compress_ctx *cc)
176 {
177 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
178 LZO1X_MEM_COMPRESS, GFP_NOFS);
179 if (!cc->private)
180 return -ENOMEM;
181
182 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
183 return 0;
184 }
185
lzo_destroy_compress_ctx(struct compress_ctx * cc)186 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
187 {
188 kvfree(cc->private);
189 cc->private = NULL;
190 }
191
lzo_compress_pages(struct compress_ctx * cc)192 static int lzo_compress_pages(struct compress_ctx *cc)
193 {
194 int ret;
195
196 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
197 &cc->clen, cc->private);
198 if (ret != LZO_E_OK) {
199 printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
200 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
201 return -EIO;
202 }
203 return 0;
204 }
205
lzo_decompress_pages(struct decompress_io_ctx * dic)206 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
207 {
208 int ret;
209
210 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
211 dic->rbuf, &dic->rlen);
212 if (ret != LZO_E_OK) {
213 printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
214 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
215 return -EIO;
216 }
217
218 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
219 printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
220 "expected:%lu\n", KERN_ERR,
221 F2FS_I_SB(dic->inode)->sb->s_id,
222 dic->rlen,
223 PAGE_SIZE << dic->log_cluster_size);
224 return -EIO;
225 }
226 return 0;
227 }
228
229 static const struct f2fs_compress_ops f2fs_lzo_ops = {
230 .init_compress_ctx = lzo_init_compress_ctx,
231 .destroy_compress_ctx = lzo_destroy_compress_ctx,
232 .compress_pages = lzo_compress_pages,
233 .decompress_pages = lzo_decompress_pages,
234 };
235 #endif
236
237 #ifdef CONFIG_F2FS_FS_LZ4
lz4_init_compress_ctx(struct compress_ctx * cc)238 static int lz4_init_compress_ctx(struct compress_ctx *cc)
239 {
240 unsigned int size = LZ4_MEM_COMPRESS;
241
242 #ifdef CONFIG_F2FS_FS_LZ4HC
243 if (F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET)
244 size = LZ4HC_MEM_COMPRESS;
245 #endif
246
247 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
248 if (!cc->private)
249 return -ENOMEM;
250
251 /*
252 * we do not change cc->clen to LZ4_compressBound(inputsize) to
253 * adapt worst compress case, because lz4 compressor can handle
254 * output budget properly.
255 */
256 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
257 return 0;
258 }
259
lz4_destroy_compress_ctx(struct compress_ctx * cc)260 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
261 {
262 kvfree(cc->private);
263 cc->private = NULL;
264 }
265
266 #ifdef CONFIG_F2FS_FS_LZ4HC
lz4hc_compress_pages(struct compress_ctx * cc)267 static int lz4hc_compress_pages(struct compress_ctx *cc)
268 {
269 unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
270 COMPRESS_LEVEL_OFFSET;
271 int len;
272
273 if (level)
274 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
275 cc->clen, level, cc->private);
276 else
277 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
278 cc->clen, cc->private);
279 if (!len)
280 return -EAGAIN;
281
282 cc->clen = len;
283 return 0;
284 }
285 #endif
286
lz4_compress_pages(struct compress_ctx * cc)287 static int lz4_compress_pages(struct compress_ctx *cc)
288 {
289 int len;
290
291 #ifdef CONFIG_F2FS_FS_LZ4HC
292 return lz4hc_compress_pages(cc);
293 #endif
294 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
295 cc->clen, cc->private);
296 if (!len)
297 return -EAGAIN;
298
299 cc->clen = len;
300 return 0;
301 }
302
lz4_decompress_pages(struct decompress_io_ctx * dic)303 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
304 {
305 int ret;
306
307 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
308 dic->clen, dic->rlen);
309 if (ret < 0) {
310 printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
311 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
312 return -EIO;
313 }
314
315 if (ret != PAGE_SIZE << dic->log_cluster_size) {
316 printk_ratelimited("%sF2FS-fs (%s): lz4 invalid rlen:%zu, "
317 "expected:%lu\n", KERN_ERR,
318 F2FS_I_SB(dic->inode)->sb->s_id,
319 dic->rlen,
320 PAGE_SIZE << dic->log_cluster_size);
321 return -EIO;
322 }
323 return 0;
324 }
325
326 static const struct f2fs_compress_ops f2fs_lz4_ops = {
327 .init_compress_ctx = lz4_init_compress_ctx,
328 .destroy_compress_ctx = lz4_destroy_compress_ctx,
329 .compress_pages = lz4_compress_pages,
330 .decompress_pages = lz4_decompress_pages,
331 };
332 #endif
333
334 #ifdef CONFIG_F2FS_FS_ZSTD
335 #define F2FS_ZSTD_DEFAULT_CLEVEL 1
336
zstd_init_compress_ctx(struct compress_ctx * cc)337 static int zstd_init_compress_ctx(struct compress_ctx *cc)
338 {
339 zstd_parameters params;
340 zstd_cstream *stream;
341 void *workspace;
342 unsigned int workspace_size;
343 unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
344 COMPRESS_LEVEL_OFFSET;
345
346 if (!level)
347 level = F2FS_ZSTD_DEFAULT_CLEVEL;
348
349 params = zstd_get_params(F2FS_ZSTD_DEFAULT_CLEVEL, cc->rlen);
350 workspace_size = zstd_cstream_workspace_bound(¶ms.cParams);
351
352 workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
353 workspace_size, GFP_NOFS);
354 if (!workspace)
355 return -ENOMEM;
356
357 stream = zstd_init_cstream(¶ms, 0, workspace, workspace_size);
358 if (!stream) {
359 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n",
360 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
361 __func__);
362 kvfree(workspace);
363 return -EIO;
364 }
365
366 cc->private = workspace;
367 cc->private2 = stream;
368
369 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
370 return 0;
371 }
372
zstd_destroy_compress_ctx(struct compress_ctx * cc)373 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
374 {
375 kvfree(cc->private);
376 cc->private = NULL;
377 cc->private2 = NULL;
378 }
379
zstd_compress_pages(struct compress_ctx * cc)380 static int zstd_compress_pages(struct compress_ctx *cc)
381 {
382 zstd_cstream *stream = cc->private2;
383 zstd_in_buffer inbuf;
384 zstd_out_buffer outbuf;
385 int src_size = cc->rlen;
386 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
387 int ret;
388
389 inbuf.pos = 0;
390 inbuf.src = cc->rbuf;
391 inbuf.size = src_size;
392
393 outbuf.pos = 0;
394 outbuf.dst = cc->cbuf->cdata;
395 outbuf.size = dst_size;
396
397 ret = zstd_compress_stream(stream, &outbuf, &inbuf);
398 if (zstd_is_error(ret)) {
399 printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n",
400 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
401 __func__, zstd_get_error_code(ret));
402 return -EIO;
403 }
404
405 ret = zstd_end_stream(stream, &outbuf);
406 if (zstd_is_error(ret)) {
407 printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n",
408 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
409 __func__, zstd_get_error_code(ret));
410 return -EIO;
411 }
412
413 /*
414 * there is compressed data remained in intermediate buffer due to
415 * no more space in cbuf.cdata
416 */
417 if (ret)
418 return -EAGAIN;
419
420 cc->clen = outbuf.pos;
421 return 0;
422 }
423
zstd_init_decompress_ctx(struct decompress_io_ctx * dic)424 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
425 {
426 zstd_dstream *stream;
427 void *workspace;
428 unsigned int workspace_size;
429 unsigned int max_window_size =
430 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
431
432 workspace_size = zstd_dstream_workspace_bound(max_window_size);
433
434 workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
435 workspace_size, GFP_NOFS);
436 if (!workspace)
437 return -ENOMEM;
438
439 stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
440 if (!stream) {
441 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n",
442 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
443 __func__);
444 kvfree(workspace);
445 return -EIO;
446 }
447
448 dic->private = workspace;
449 dic->private2 = stream;
450
451 return 0;
452 }
453
zstd_destroy_decompress_ctx(struct decompress_io_ctx * dic)454 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
455 {
456 kvfree(dic->private);
457 dic->private = NULL;
458 dic->private2 = NULL;
459 }
460
zstd_decompress_pages(struct decompress_io_ctx * dic)461 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
462 {
463 zstd_dstream *stream = dic->private2;
464 zstd_in_buffer inbuf;
465 zstd_out_buffer outbuf;
466 int ret;
467
468 inbuf.pos = 0;
469 inbuf.src = dic->cbuf->cdata;
470 inbuf.size = dic->clen;
471
472 outbuf.pos = 0;
473 outbuf.dst = dic->rbuf;
474 outbuf.size = dic->rlen;
475
476 ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
477 if (zstd_is_error(ret)) {
478 printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n",
479 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
480 __func__, zstd_get_error_code(ret));
481 return -EIO;
482 }
483
484 if (dic->rlen != outbuf.pos) {
485 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
486 "expected:%lu\n", KERN_ERR,
487 F2FS_I_SB(dic->inode)->sb->s_id,
488 __func__, dic->rlen,
489 PAGE_SIZE << dic->log_cluster_size);
490 return -EIO;
491 }
492
493 return 0;
494 }
495
496 static const struct f2fs_compress_ops f2fs_zstd_ops = {
497 .init_compress_ctx = zstd_init_compress_ctx,
498 .destroy_compress_ctx = zstd_destroy_compress_ctx,
499 .compress_pages = zstd_compress_pages,
500 .init_decompress_ctx = zstd_init_decompress_ctx,
501 .destroy_decompress_ctx = zstd_destroy_decompress_ctx,
502 .decompress_pages = zstd_decompress_pages,
503 };
504 #endif
505
506 #ifdef CONFIG_F2FS_FS_LZO
507 #ifdef CONFIG_F2FS_FS_LZORLE
lzorle_compress_pages(struct compress_ctx * cc)508 static int lzorle_compress_pages(struct compress_ctx *cc)
509 {
510 int ret;
511
512 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
513 &cc->clen, cc->private);
514 if (ret != LZO_E_OK) {
515 printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
516 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
517 return -EIO;
518 }
519 return 0;
520 }
521
522 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
523 .init_compress_ctx = lzo_init_compress_ctx,
524 .destroy_compress_ctx = lzo_destroy_compress_ctx,
525 .compress_pages = lzorle_compress_pages,
526 .decompress_pages = lzo_decompress_pages,
527 };
528 #endif
529 #endif
530
531 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
532 #ifdef CONFIG_F2FS_FS_LZO
533 &f2fs_lzo_ops,
534 #else
535 NULL,
536 #endif
537 #ifdef CONFIG_F2FS_FS_LZ4
538 &f2fs_lz4_ops,
539 #else
540 NULL,
541 #endif
542 #ifdef CONFIG_F2FS_FS_ZSTD
543 &f2fs_zstd_ops,
544 #else
545 NULL,
546 #endif
547 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
548 &f2fs_lzorle_ops,
549 #else
550 NULL,
551 #endif
552 };
553
f2fs_is_compress_backend_ready(struct inode * inode)554 bool f2fs_is_compress_backend_ready(struct inode *inode)
555 {
556 if (!f2fs_compressed_file(inode))
557 return true;
558 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
559 }
560
561 static mempool_t *compress_page_pool;
562 static int num_compress_pages = 512;
563 module_param(num_compress_pages, uint, 0444);
564 MODULE_PARM_DESC(num_compress_pages,
565 "Number of intermediate compress pages to preallocate");
566
f2fs_init_compress_mempool(void)567 int f2fs_init_compress_mempool(void)
568 {
569 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
570 if (!compress_page_pool)
571 return -ENOMEM;
572
573 return 0;
574 }
575
f2fs_destroy_compress_mempool(void)576 void f2fs_destroy_compress_mempool(void)
577 {
578 mempool_destroy(compress_page_pool);
579 }
580
f2fs_compress_alloc_page(void)581 static struct page *f2fs_compress_alloc_page(void)
582 {
583 struct page *page;
584
585 page = mempool_alloc(compress_page_pool, GFP_NOFS);
586 lock_page(page);
587
588 return page;
589 }
590
f2fs_compress_free_page(struct page * page)591 static void f2fs_compress_free_page(struct page *page)
592 {
593 if (!page)
594 return;
595 detach_page_private(page);
596 page->mapping = NULL;
597 unlock_page(page);
598 mempool_free(page, compress_page_pool);
599 }
600
601 #define MAX_VMAP_RETRIES 3
602
f2fs_vmap(struct page ** pages,unsigned int count)603 static void *f2fs_vmap(struct page **pages, unsigned int count)
604 {
605 int i;
606 void *buf = NULL;
607
608 for (i = 0; i < MAX_VMAP_RETRIES; i++) {
609 buf = vm_map_ram(pages, count, -1);
610 if (buf)
611 break;
612 vm_unmap_aliases();
613 }
614 return buf;
615 }
616
f2fs_compress_pages(struct compress_ctx * cc)617 static int f2fs_compress_pages(struct compress_ctx *cc)
618 {
619 struct f2fs_inode_info *fi = F2FS_I(cc->inode);
620 const struct f2fs_compress_ops *cops =
621 f2fs_cops[fi->i_compress_algorithm];
622 unsigned int max_len, new_nr_cpages;
623 struct page **new_cpages;
624 u32 chksum = 0;
625 int i, ret;
626
627 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
628 cc->cluster_size, fi->i_compress_algorithm);
629
630 if (cops->init_compress_ctx) {
631 ret = cops->init_compress_ctx(cc);
632 if (ret)
633 goto out;
634 }
635
636 max_len = COMPRESS_HEADER_SIZE + cc->clen;
637 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
638
639 cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
640 if (!cc->cpages) {
641 ret = -ENOMEM;
642 goto destroy_compress_ctx;
643 }
644
645 for (i = 0; i < cc->nr_cpages; i++) {
646 cc->cpages[i] = f2fs_compress_alloc_page();
647 if (!cc->cpages[i]) {
648 ret = -ENOMEM;
649 goto out_free_cpages;
650 }
651 }
652
653 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
654 if (!cc->rbuf) {
655 ret = -ENOMEM;
656 goto out_free_cpages;
657 }
658
659 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
660 if (!cc->cbuf) {
661 ret = -ENOMEM;
662 goto out_vunmap_rbuf;
663 }
664
665 ret = cops->compress_pages(cc);
666 if (ret)
667 goto out_vunmap_cbuf;
668
669 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
670
671 if (cc->clen > max_len) {
672 ret = -EAGAIN;
673 goto out_vunmap_cbuf;
674 }
675
676 cc->cbuf->clen = cpu_to_le32(cc->clen);
677
678 if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)
679 chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
680 cc->cbuf->cdata, cc->clen);
681 cc->cbuf->chksum = cpu_to_le32(chksum);
682
683 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
684 cc->cbuf->reserved[i] = cpu_to_le32(0);
685
686 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
687
688 /* Now we're going to cut unnecessary tail pages */
689 new_cpages = page_array_alloc(cc->inode, new_nr_cpages);
690 if (!new_cpages) {
691 ret = -ENOMEM;
692 goto out_vunmap_cbuf;
693 }
694
695 /* zero out any unused part of the last page */
696 memset(&cc->cbuf->cdata[cc->clen], 0,
697 (new_nr_cpages * PAGE_SIZE) -
698 (cc->clen + COMPRESS_HEADER_SIZE));
699
700 vm_unmap_ram(cc->cbuf, cc->nr_cpages);
701 vm_unmap_ram(cc->rbuf, cc->cluster_size);
702
703 for (i = 0; i < cc->nr_cpages; i++) {
704 if (i < new_nr_cpages) {
705 new_cpages[i] = cc->cpages[i];
706 continue;
707 }
708 f2fs_compress_free_page(cc->cpages[i]);
709 cc->cpages[i] = NULL;
710 }
711
712 if (cops->destroy_compress_ctx)
713 cops->destroy_compress_ctx(cc);
714
715 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
716 cc->cpages = new_cpages;
717 cc->nr_cpages = new_nr_cpages;
718
719 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
720 cc->clen, ret);
721 return 0;
722
723 out_vunmap_cbuf:
724 vm_unmap_ram(cc->cbuf, cc->nr_cpages);
725 out_vunmap_rbuf:
726 vm_unmap_ram(cc->rbuf, cc->cluster_size);
727 out_free_cpages:
728 for (i = 0; i < cc->nr_cpages; i++) {
729 if (cc->cpages[i])
730 f2fs_compress_free_page(cc->cpages[i]);
731 }
732 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
733 cc->cpages = NULL;
734 destroy_compress_ctx:
735 if (cops->destroy_compress_ctx)
736 cops->destroy_compress_ctx(cc);
737 out:
738 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
739 cc->clen, ret);
740 return ret;
741 }
742
f2fs_decompress_cluster(struct decompress_io_ctx * dic)743 void f2fs_decompress_cluster(struct decompress_io_ctx *dic)
744 {
745 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
746 struct f2fs_inode_info *fi = F2FS_I(dic->inode);
747 const struct f2fs_compress_ops *cops =
748 f2fs_cops[fi->i_compress_algorithm];
749 int ret;
750 int i;
751
752 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
753 dic->cluster_size, fi->i_compress_algorithm);
754
755 if (dic->failed) {
756 ret = -EIO;
757 goto out_end_io;
758 }
759
760 dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
761 if (!dic->tpages) {
762 ret = -ENOMEM;
763 goto out_end_io;
764 }
765
766 for (i = 0; i < dic->cluster_size; i++) {
767 if (dic->rpages[i]) {
768 dic->tpages[i] = dic->rpages[i];
769 continue;
770 }
771
772 dic->tpages[i] = f2fs_compress_alloc_page();
773 if (!dic->tpages[i]) {
774 ret = -ENOMEM;
775 goto out_end_io;
776 }
777 }
778
779 if (cops->init_decompress_ctx) {
780 ret = cops->init_decompress_ctx(dic);
781 if (ret)
782 goto out_end_io;
783 }
784
785 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
786 if (!dic->rbuf) {
787 ret = -ENOMEM;
788 goto out_destroy_decompress_ctx;
789 }
790
791 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
792 if (!dic->cbuf) {
793 ret = -ENOMEM;
794 goto out_vunmap_rbuf;
795 }
796
797 dic->clen = le32_to_cpu(dic->cbuf->clen);
798 dic->rlen = PAGE_SIZE << dic->log_cluster_size;
799
800 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
801 ret = -EFSCORRUPTED;
802 goto out_vunmap_cbuf;
803 }
804
805 ret = cops->decompress_pages(dic);
806
807 if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) {
808 u32 provided = le32_to_cpu(dic->cbuf->chksum);
809 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
810
811 if (provided != calculated) {
812 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
813 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
814 printk_ratelimited(
815 "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
816 KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
817 provided, calculated);
818 }
819 set_sbi_flag(sbi, SBI_NEED_FSCK);
820 }
821 }
822
823 out_vunmap_cbuf:
824 vm_unmap_ram(dic->cbuf, dic->nr_cpages);
825 out_vunmap_rbuf:
826 vm_unmap_ram(dic->rbuf, dic->cluster_size);
827 out_destroy_decompress_ctx:
828 if (cops->destroy_decompress_ctx)
829 cops->destroy_decompress_ctx(dic);
830 out_end_io:
831 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
832 dic->clen, ret);
833 f2fs_decompress_end_io(dic, ret);
834 }
835
836 /*
837 * This is called when a page of a compressed cluster has been read from disk
838 * (or failed to be read from disk). It checks whether this page was the last
839 * page being waited on in the cluster, and if so, it decompresses the cluster
840 * (or in the case of a failure, cleans up without actually decompressing).
841 */
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr)842 void f2fs_end_read_compressed_page(struct page *page, bool failed,
843 block_t blkaddr)
844 {
845 struct decompress_io_ctx *dic =
846 (struct decompress_io_ctx *)page_private(page);
847 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
848
849 dec_page_count(sbi, F2FS_RD_DATA);
850
851 if (failed)
852 WRITE_ONCE(dic->failed, true);
853 else if (blkaddr)
854 f2fs_cache_compressed_page(sbi, page,
855 dic->inode->i_ino, blkaddr);
856
857 if (atomic_dec_and_test(&dic->remaining_pages))
858 f2fs_decompress_cluster(dic);
859 }
860
is_page_in_cluster(struct compress_ctx * cc,pgoff_t index)861 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
862 {
863 if (cc->cluster_idx == NULL_CLUSTER)
864 return true;
865 return cc->cluster_idx == cluster_idx(cc, index);
866 }
867
f2fs_cluster_is_empty(struct compress_ctx * cc)868 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
869 {
870 return cc->nr_rpages == 0;
871 }
872
f2fs_cluster_is_full(struct compress_ctx * cc)873 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
874 {
875 return cc->cluster_size == cc->nr_rpages;
876 }
877
f2fs_cluster_can_merge_page(struct compress_ctx * cc,pgoff_t index)878 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
879 {
880 if (f2fs_cluster_is_empty(cc))
881 return true;
882 return is_page_in_cluster(cc, index);
883 }
884
f2fs_all_cluster_page_loaded(struct compress_ctx * cc,struct pagevec * pvec,int index,int nr_pages)885 bool f2fs_all_cluster_page_loaded(struct compress_ctx *cc, struct pagevec *pvec,
886 int index, int nr_pages)
887 {
888 unsigned long pgidx;
889 int i;
890
891 if (nr_pages - index < cc->cluster_size)
892 return false;
893
894 pgidx = pvec->pages[index]->index;
895
896 for (i = 1; i < cc->cluster_size; i++) {
897 if (pvec->pages[index + i]->index != pgidx + i)
898 return false;
899 }
900
901 return true;
902 }
903
cluster_has_invalid_data(struct compress_ctx * cc)904 static bool cluster_has_invalid_data(struct compress_ctx *cc)
905 {
906 loff_t i_size = i_size_read(cc->inode);
907 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
908 int i;
909
910 for (i = 0; i < cc->cluster_size; i++) {
911 struct page *page = cc->rpages[i];
912
913 f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
914
915 /* beyond EOF */
916 if (page->index >= nr_pages)
917 return true;
918 }
919 return false;
920 }
921
f2fs_sanity_check_cluster(struct dnode_of_data * dn)922 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
923 {
924 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
925 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
926 bool compressed = dn->data_blkaddr == COMPRESS_ADDR;
927 int cluster_end = 0;
928 int i;
929 char *reason = "";
930
931 if (!compressed)
932 return false;
933
934 /* [..., COMPR_ADDR, ...] */
935 if (dn->ofs_in_node % cluster_size) {
936 reason = "[*|C|*|*]";
937 goto out;
938 }
939
940 for (i = 1; i < cluster_size; i++) {
941 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
942 dn->ofs_in_node + i);
943
944 /* [COMPR_ADDR, ..., COMPR_ADDR] */
945 if (blkaddr == COMPRESS_ADDR) {
946 reason = "[C|*|C|*]";
947 goto out;
948 }
949 if (compressed) {
950 if (!__is_valid_data_blkaddr(blkaddr)) {
951 if (!cluster_end)
952 cluster_end = i;
953 continue;
954 }
955 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
956 if (cluster_end) {
957 reason = "[C|N|N|V]";
958 goto out;
959 }
960 }
961 }
962 return false;
963 out:
964 f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
965 dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
966 set_sbi_flag(sbi, SBI_NEED_FSCK);
967 return true;
968 }
969
__f2fs_cluster_blocks(struct inode * inode,unsigned int cluster_idx,bool compr)970 static int __f2fs_cluster_blocks(struct inode *inode,
971 unsigned int cluster_idx, bool compr)
972 {
973 struct dnode_of_data dn;
974 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
975 unsigned int start_idx = cluster_idx <<
976 F2FS_I(inode)->i_log_cluster_size;
977 int ret;
978
979 set_new_dnode(&dn, inode, NULL, NULL, 0);
980 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
981 if (ret) {
982 if (ret == -ENOENT)
983 ret = 0;
984 goto fail;
985 }
986
987 if (f2fs_sanity_check_cluster(&dn)) {
988 ret = -EFSCORRUPTED;
989 goto fail;
990 }
991
992 if (dn.data_blkaddr == COMPRESS_ADDR) {
993 int i;
994
995 ret = 1;
996 for (i = 1; i < cluster_size; i++) {
997 block_t blkaddr;
998
999 blkaddr = data_blkaddr(dn.inode,
1000 dn.node_page, dn.ofs_in_node + i);
1001 if (compr) {
1002 if (__is_valid_data_blkaddr(blkaddr))
1003 ret++;
1004 } else {
1005 if (blkaddr != NULL_ADDR)
1006 ret++;
1007 }
1008 }
1009
1010 f2fs_bug_on(F2FS_I_SB(inode),
1011 !compr && ret != cluster_size &&
1012 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED));
1013 }
1014 fail:
1015 f2fs_put_dnode(&dn);
1016 return ret;
1017 }
1018
1019 /* return # of compressed blocks in compressed cluster */
f2fs_compressed_blocks(struct compress_ctx * cc)1020 static int f2fs_compressed_blocks(struct compress_ctx *cc)
1021 {
1022 return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
1023 }
1024
1025 /* return # of valid blocks in compressed cluster */
f2fs_is_compressed_cluster(struct inode * inode,pgoff_t index)1026 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
1027 {
1028 return __f2fs_cluster_blocks(inode,
1029 index >> F2FS_I(inode)->i_log_cluster_size,
1030 false);
1031 }
1032
cluster_may_compress(struct compress_ctx * cc)1033 static bool cluster_may_compress(struct compress_ctx *cc)
1034 {
1035 if (!f2fs_need_compress_data(cc->inode))
1036 return false;
1037 if (f2fs_is_atomic_file(cc->inode))
1038 return false;
1039 if (!f2fs_cluster_is_full(cc))
1040 return false;
1041 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1042 return false;
1043 return !cluster_has_invalid_data(cc);
1044 }
1045
set_cluster_writeback(struct compress_ctx * cc)1046 static void set_cluster_writeback(struct compress_ctx *cc)
1047 {
1048 int i;
1049
1050 for (i = 0; i < cc->cluster_size; i++) {
1051 if (cc->rpages[i])
1052 set_page_writeback(cc->rpages[i]);
1053 }
1054 }
1055
set_cluster_dirty(struct compress_ctx * cc)1056 static void set_cluster_dirty(struct compress_ctx *cc)
1057 {
1058 int i;
1059
1060 for (i = 0; i < cc->cluster_size; i++)
1061 if (cc->rpages[i])
1062 set_page_dirty(cc->rpages[i]);
1063 }
1064
prepare_compress_overwrite(struct compress_ctx * cc,struct page ** pagep,pgoff_t index,void ** fsdata)1065 static int prepare_compress_overwrite(struct compress_ctx *cc,
1066 struct page **pagep, pgoff_t index, void **fsdata)
1067 {
1068 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1069 struct address_space *mapping = cc->inode->i_mapping;
1070 struct page *page;
1071 sector_t last_block_in_bio;
1072 unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1073 pgoff_t start_idx = start_idx_of_cluster(cc);
1074 int i, ret;
1075
1076 retry:
1077 ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1078 if (ret <= 0)
1079 return ret;
1080
1081 ret = f2fs_init_compress_ctx(cc);
1082 if (ret)
1083 return ret;
1084
1085 /* keep page reference to avoid page reclaim */
1086 for (i = 0; i < cc->cluster_size; i++) {
1087 page = f2fs_pagecache_get_page(mapping, start_idx + i,
1088 fgp_flag, GFP_NOFS);
1089 if (!page) {
1090 ret = -ENOMEM;
1091 goto unlock_pages;
1092 }
1093
1094 if (PageUptodate(page))
1095 f2fs_put_page(page, 1);
1096 else
1097 f2fs_compress_ctx_add_page(cc, page);
1098 }
1099
1100 if (!f2fs_cluster_is_empty(cc)) {
1101 struct bio *bio = NULL;
1102
1103 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1104 &last_block_in_bio, false, true);
1105 f2fs_put_rpages(cc);
1106 f2fs_destroy_compress_ctx(cc, true);
1107 if (ret)
1108 goto out;
1109 if (bio)
1110 f2fs_submit_bio(sbi, bio, DATA);
1111
1112 ret = f2fs_init_compress_ctx(cc);
1113 if (ret)
1114 goto out;
1115 }
1116
1117 for (i = 0; i < cc->cluster_size; i++) {
1118 f2fs_bug_on(sbi, cc->rpages[i]);
1119
1120 page = find_lock_page(mapping, start_idx + i);
1121 if (!page) {
1122 /* page can be truncated */
1123 goto release_and_retry;
1124 }
1125
1126 f2fs_wait_on_page_writeback(page, DATA, true, true);
1127 f2fs_compress_ctx_add_page(cc, page);
1128
1129 if (!PageUptodate(page)) {
1130 release_and_retry:
1131 f2fs_put_rpages(cc);
1132 f2fs_unlock_rpages(cc, i + 1);
1133 f2fs_destroy_compress_ctx(cc, true);
1134 goto retry;
1135 }
1136 }
1137
1138 if (likely(!ret)) {
1139 *fsdata = cc->rpages;
1140 *pagep = cc->rpages[offset_in_cluster(cc, index)];
1141 return cc->cluster_size;
1142 }
1143
1144 unlock_pages:
1145 f2fs_put_rpages(cc);
1146 f2fs_unlock_rpages(cc, i);
1147 f2fs_destroy_compress_ctx(cc, true);
1148 out:
1149 return ret;
1150 }
1151
f2fs_prepare_compress_overwrite(struct inode * inode,struct page ** pagep,pgoff_t index,void ** fsdata)1152 int f2fs_prepare_compress_overwrite(struct inode *inode,
1153 struct page **pagep, pgoff_t index, void **fsdata)
1154 {
1155 struct compress_ctx cc = {
1156 .inode = inode,
1157 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1158 .cluster_size = F2FS_I(inode)->i_cluster_size,
1159 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1160 .rpages = NULL,
1161 .nr_rpages = 0,
1162 };
1163
1164 return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1165 }
1166
f2fs_compress_write_end(struct inode * inode,void * fsdata,pgoff_t index,unsigned copied)1167 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1168 pgoff_t index, unsigned copied)
1169
1170 {
1171 struct compress_ctx cc = {
1172 .inode = inode,
1173 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1174 .cluster_size = F2FS_I(inode)->i_cluster_size,
1175 .rpages = fsdata,
1176 };
1177 bool first_index = (index == cc.rpages[0]->index);
1178
1179 if (copied)
1180 set_cluster_dirty(&cc);
1181
1182 f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1183 f2fs_destroy_compress_ctx(&cc, false);
1184
1185 return first_index;
1186 }
1187
f2fs_truncate_partial_cluster(struct inode * inode,u64 from,bool lock)1188 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1189 {
1190 void *fsdata = NULL;
1191 struct page *pagep;
1192 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1193 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1194 log_cluster_size;
1195 int err;
1196
1197 err = f2fs_is_compressed_cluster(inode, start_idx);
1198 if (err < 0)
1199 return err;
1200
1201 /* truncate normal cluster */
1202 if (!err)
1203 return f2fs_do_truncate_blocks(inode, from, lock);
1204
1205 /* truncate compressed cluster */
1206 err = f2fs_prepare_compress_overwrite(inode, &pagep,
1207 start_idx, &fsdata);
1208
1209 /* should not be a normal cluster */
1210 f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1211
1212 if (err <= 0)
1213 return err;
1214
1215 if (err > 0) {
1216 struct page **rpages = fsdata;
1217 int cluster_size = F2FS_I(inode)->i_cluster_size;
1218 int i;
1219
1220 for (i = cluster_size - 1; i >= 0; i--) {
1221 loff_t start = rpages[i]->index << PAGE_SHIFT;
1222
1223 if (from <= start) {
1224 zero_user_segment(rpages[i], 0, PAGE_SIZE);
1225 } else {
1226 zero_user_segment(rpages[i], from - start,
1227 PAGE_SIZE);
1228 break;
1229 }
1230 }
1231
1232 f2fs_compress_write_end(inode, fsdata, start_idx, true);
1233 }
1234 return 0;
1235 }
1236
f2fs_write_compressed_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1237 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1238 int *submitted,
1239 struct writeback_control *wbc,
1240 enum iostat_type io_type)
1241 {
1242 struct inode *inode = cc->inode;
1243 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1244 struct f2fs_inode_info *fi = F2FS_I(inode);
1245 struct f2fs_io_info fio = {
1246 .sbi = sbi,
1247 .ino = cc->inode->i_ino,
1248 .type = DATA,
1249 .op = REQ_OP_WRITE,
1250 .op_flags = wbc_to_write_flags(wbc),
1251 .old_blkaddr = NEW_ADDR,
1252 .page = NULL,
1253 .encrypted_page = NULL,
1254 .compressed_page = NULL,
1255 .submitted = false,
1256 .io_type = io_type,
1257 .io_wbc = wbc,
1258 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode),
1259 };
1260 struct dnode_of_data dn;
1261 struct node_info ni;
1262 struct compress_io_ctx *cic;
1263 pgoff_t start_idx = start_idx_of_cluster(cc);
1264 unsigned int last_index = cc->cluster_size - 1;
1265 loff_t psize;
1266 int i, err;
1267
1268 /* we should bypass data pages to proceed the kworkder jobs */
1269 if (unlikely(f2fs_cp_error(sbi))) {
1270 mapping_set_error(cc->rpages[0]->mapping, -EIO);
1271 goto out_free;
1272 }
1273
1274 if (IS_NOQUOTA(inode)) {
1275 /*
1276 * We need to wait for node_write to avoid block allocation during
1277 * checkpoint. This can only happen to quota writes which can cause
1278 * the below discard race condition.
1279 */
1280 down_read(&sbi->node_write);
1281 } else if (!f2fs_trylock_op(sbi)) {
1282 goto out_free;
1283 }
1284
1285 set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1286
1287 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1288 if (err)
1289 goto out_unlock_op;
1290
1291 for (i = 0; i < cc->cluster_size; i++) {
1292 if (data_blkaddr(dn.inode, dn.node_page,
1293 dn.ofs_in_node + i) == NULL_ADDR)
1294 goto out_put_dnode;
1295 }
1296
1297 psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1298
1299 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni);
1300 if (err)
1301 goto out_put_dnode;
1302
1303 fio.version = ni.version;
1304
1305 cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1306 if (!cic)
1307 goto out_put_dnode;
1308
1309 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1310 cic->inode = inode;
1311 atomic_set(&cic->pending_pages, cc->nr_cpages);
1312 cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1313 if (!cic->rpages)
1314 goto out_put_cic;
1315
1316 cic->nr_rpages = cc->cluster_size;
1317
1318 for (i = 0; i < cc->nr_cpages; i++) {
1319 f2fs_set_compressed_page(cc->cpages[i], inode,
1320 cc->rpages[i + 1]->index, cic);
1321 fio.compressed_page = cc->cpages[i];
1322
1323 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1324 dn.ofs_in_node + i + 1);
1325
1326 /* wait for GCed page writeback via META_MAPPING */
1327 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1328
1329 if (fio.encrypted) {
1330 fio.page = cc->rpages[i + 1];
1331 err = f2fs_encrypt_one_page(&fio);
1332 if (err)
1333 goto out_destroy_crypt;
1334 cc->cpages[i] = fio.encrypted_page;
1335 }
1336 }
1337
1338 set_cluster_writeback(cc);
1339
1340 for (i = 0; i < cc->cluster_size; i++)
1341 cic->rpages[i] = cc->rpages[i];
1342
1343 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1344 block_t blkaddr;
1345
1346 blkaddr = f2fs_data_blkaddr(&dn);
1347 fio.page = cc->rpages[i];
1348 fio.old_blkaddr = blkaddr;
1349
1350 /* cluster header */
1351 if (i == 0) {
1352 if (blkaddr == COMPRESS_ADDR)
1353 fio.compr_blocks++;
1354 if (__is_valid_data_blkaddr(blkaddr))
1355 f2fs_invalidate_blocks(sbi, blkaddr);
1356 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1357 goto unlock_continue;
1358 }
1359
1360 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1361 fio.compr_blocks++;
1362
1363 if (i > cc->nr_cpages) {
1364 if (__is_valid_data_blkaddr(blkaddr)) {
1365 f2fs_invalidate_blocks(sbi, blkaddr);
1366 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1367 }
1368 goto unlock_continue;
1369 }
1370
1371 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1372
1373 if (fio.encrypted)
1374 fio.encrypted_page = cc->cpages[i - 1];
1375 else
1376 fio.compressed_page = cc->cpages[i - 1];
1377
1378 cc->cpages[i - 1] = NULL;
1379 f2fs_outplace_write_data(&dn, &fio);
1380 (*submitted)++;
1381 unlock_continue:
1382 inode_dec_dirty_pages(cc->inode);
1383 unlock_page(fio.page);
1384 }
1385
1386 if (fio.compr_blocks)
1387 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1388 f2fs_i_compr_blocks_update(inode, cc->nr_cpages, true);
1389 add_compr_block_stat(inode, cc->nr_cpages);
1390
1391 set_inode_flag(cc->inode, FI_APPEND_WRITE);
1392 if (cc->cluster_idx == 0)
1393 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1394
1395 f2fs_put_dnode(&dn);
1396 if (IS_NOQUOTA(inode))
1397 up_read(&sbi->node_write);
1398 else
1399 f2fs_unlock_op(sbi);
1400
1401 spin_lock(&fi->i_size_lock);
1402 if (fi->last_disk_size < psize)
1403 fi->last_disk_size = psize;
1404 spin_unlock(&fi->i_size_lock);
1405
1406 f2fs_put_rpages(cc);
1407 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1408 cc->cpages = NULL;
1409 f2fs_destroy_compress_ctx(cc, false);
1410 return 0;
1411
1412 out_destroy_crypt:
1413 page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1414
1415 for (--i; i >= 0; i--)
1416 fscrypt_finalize_bounce_page(&cc->cpages[i]);
1417 out_put_cic:
1418 kmem_cache_free(cic_entry_slab, cic);
1419 out_put_dnode:
1420 f2fs_put_dnode(&dn);
1421 out_unlock_op:
1422 if (IS_NOQUOTA(inode))
1423 up_read(&sbi->node_write);
1424 else
1425 f2fs_unlock_op(sbi);
1426 out_free:
1427 for (i = 0; i < cc->nr_cpages; i++) {
1428 if (!cc->cpages[i])
1429 continue;
1430 f2fs_compress_free_page(cc->cpages[i]);
1431 cc->cpages[i] = NULL;
1432 }
1433 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1434 cc->cpages = NULL;
1435 return -EAGAIN;
1436 }
1437
f2fs_compress_write_end_io(struct bio * bio,struct page * page)1438 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1439 {
1440 struct f2fs_sb_info *sbi = bio->bi_private;
1441 struct compress_io_ctx *cic =
1442 (struct compress_io_ctx *)page_private(page);
1443 int i;
1444
1445 if (unlikely(bio->bi_status))
1446 mapping_set_error(cic->inode->i_mapping, -EIO);
1447
1448 f2fs_compress_free_page(page);
1449
1450 dec_page_count(sbi, F2FS_WB_DATA);
1451
1452 if (atomic_dec_return(&cic->pending_pages))
1453 return;
1454
1455 for (i = 0; i < cic->nr_rpages; i++) {
1456 WARN_ON(!cic->rpages[i]);
1457 clear_page_private_gcing(cic->rpages[i]);
1458 end_page_writeback(cic->rpages[i]);
1459 }
1460
1461 page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1462 kmem_cache_free(cic_entry_slab, cic);
1463 }
1464
f2fs_write_raw_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1465 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1466 int *submitted,
1467 struct writeback_control *wbc,
1468 enum iostat_type io_type)
1469 {
1470 struct address_space *mapping = cc->inode->i_mapping;
1471 int _submitted, compr_blocks, ret;
1472 int i = -1, err = 0;
1473
1474 compr_blocks = f2fs_compressed_blocks(cc);
1475 if (compr_blocks < 0) {
1476 err = compr_blocks;
1477 goto out_err;
1478 }
1479
1480 for (i = 0; i < cc->cluster_size; i++) {
1481 if (!cc->rpages[i])
1482 continue;
1483 retry_write:
1484 if (cc->rpages[i]->mapping != mapping) {
1485 unlock_page(cc->rpages[i]);
1486 continue;
1487 }
1488
1489 BUG_ON(!PageLocked(cc->rpages[i]));
1490
1491 ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
1492 NULL, NULL, wbc, io_type,
1493 compr_blocks, false);
1494 if (ret) {
1495 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1496 unlock_page(cc->rpages[i]);
1497 ret = 0;
1498 } else if (ret == -EAGAIN) {
1499 /*
1500 * for quota file, just redirty left pages to
1501 * avoid deadlock caused by cluster update race
1502 * from foreground operation.
1503 */
1504 if (IS_NOQUOTA(cc->inode)) {
1505 err = 0;
1506 goto out_err;
1507 }
1508 ret = 0;
1509 cond_resched();
1510 congestion_wait(BLK_RW_ASYNC,
1511 DEFAULT_IO_TIMEOUT);
1512 lock_page(cc->rpages[i]);
1513
1514 if (!PageDirty(cc->rpages[i])) {
1515 unlock_page(cc->rpages[i]);
1516 continue;
1517 }
1518
1519 clear_page_dirty_for_io(cc->rpages[i]);
1520 goto retry_write;
1521 }
1522 err = ret;
1523 goto out_err;
1524 }
1525
1526 *submitted += _submitted;
1527 }
1528
1529 f2fs_balance_fs(F2FS_M_SB(mapping), true);
1530
1531 return 0;
1532 out_err:
1533 for (++i; i < cc->cluster_size; i++) {
1534 if (!cc->rpages[i])
1535 continue;
1536 redirty_page_for_writepage(wbc, cc->rpages[i]);
1537 unlock_page(cc->rpages[i]);
1538 }
1539 return err;
1540 }
1541
f2fs_write_multi_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1542 int f2fs_write_multi_pages(struct compress_ctx *cc,
1543 int *submitted,
1544 struct writeback_control *wbc,
1545 enum iostat_type io_type)
1546 {
1547 int err;
1548
1549 *submitted = 0;
1550 if (cluster_may_compress(cc)) {
1551 err = f2fs_compress_pages(cc);
1552 if (err == -EAGAIN) {
1553 add_compr_block_stat(cc->inode, cc->cluster_size);
1554 goto write;
1555 } else if (err) {
1556 f2fs_put_rpages_wbc(cc, wbc, true, 1);
1557 goto destroy_out;
1558 }
1559
1560 err = f2fs_write_compressed_pages(cc, submitted,
1561 wbc, io_type);
1562 if (!err)
1563 return 0;
1564 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1565 }
1566 write:
1567 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1568
1569 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1570 f2fs_put_rpages_wbc(cc, wbc, false, 0);
1571 destroy_out:
1572 f2fs_destroy_compress_ctx(cc, false);
1573 return err;
1574 }
1575
1576 static void f2fs_free_dic(struct decompress_io_ctx *dic);
1577
f2fs_alloc_dic(struct compress_ctx * cc)1578 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1579 {
1580 struct decompress_io_ctx *dic;
1581 pgoff_t start_idx = start_idx_of_cluster(cc);
1582 int i;
1583
1584 dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO,
1585 false, F2FS_I_SB(cc->inode));
1586 if (!dic)
1587 return ERR_PTR(-ENOMEM);
1588
1589 dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1590 if (!dic->rpages) {
1591 kmem_cache_free(dic_entry_slab, dic);
1592 return ERR_PTR(-ENOMEM);
1593 }
1594
1595 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1596 dic->inode = cc->inode;
1597 atomic_set(&dic->remaining_pages, cc->nr_cpages);
1598 dic->cluster_idx = cc->cluster_idx;
1599 dic->cluster_size = cc->cluster_size;
1600 dic->log_cluster_size = cc->log_cluster_size;
1601 dic->nr_cpages = cc->nr_cpages;
1602 refcount_set(&dic->refcnt, 1);
1603 dic->failed = false;
1604 dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1605
1606 for (i = 0; i < dic->cluster_size; i++)
1607 dic->rpages[i] = cc->rpages[i];
1608 dic->nr_rpages = cc->cluster_size;
1609
1610 dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1611 if (!dic->cpages)
1612 goto out_free;
1613
1614 for (i = 0; i < dic->nr_cpages; i++) {
1615 struct page *page;
1616
1617 page = f2fs_compress_alloc_page();
1618 if (!page)
1619 goto out_free;
1620
1621 f2fs_set_compressed_page(page, cc->inode,
1622 start_idx + i + 1, dic);
1623 dic->cpages[i] = page;
1624 }
1625
1626 return dic;
1627
1628 out_free:
1629 f2fs_free_dic(dic);
1630 return ERR_PTR(-ENOMEM);
1631 }
1632
f2fs_free_dic(struct decompress_io_ctx * dic)1633 static void f2fs_free_dic(struct decompress_io_ctx *dic)
1634 {
1635 int i;
1636
1637 if (dic->tpages) {
1638 for (i = 0; i < dic->cluster_size; i++) {
1639 if (dic->rpages[i])
1640 continue;
1641 if (!dic->tpages[i])
1642 continue;
1643 f2fs_compress_free_page(dic->tpages[i]);
1644 }
1645 page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1646 }
1647
1648 if (dic->cpages) {
1649 for (i = 0; i < dic->nr_cpages; i++) {
1650 if (!dic->cpages[i])
1651 continue;
1652 f2fs_compress_free_page(dic->cpages[i]);
1653 }
1654 page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1655 }
1656
1657 page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1658 kmem_cache_free(dic_entry_slab, dic);
1659 }
1660
f2fs_put_dic(struct decompress_io_ctx * dic)1661 static void f2fs_put_dic(struct decompress_io_ctx *dic)
1662 {
1663 if (refcount_dec_and_test(&dic->refcnt))
1664 f2fs_free_dic(dic);
1665 }
1666
1667 /*
1668 * Update and unlock the cluster's pagecache pages, and release the reference to
1669 * the decompress_io_ctx that was being held for I/O completion.
1670 */
__f2fs_decompress_end_io(struct decompress_io_ctx * dic,bool failed)1671 static void __f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed)
1672 {
1673 int i;
1674
1675 for (i = 0; i < dic->cluster_size; i++) {
1676 struct page *rpage = dic->rpages[i];
1677
1678 if (!rpage)
1679 continue;
1680
1681 /* PG_error was set if verity failed. */
1682 if (failed || PageError(rpage)) {
1683 ClearPageUptodate(rpage);
1684 /* will re-read again later */
1685 ClearPageError(rpage);
1686 } else {
1687 SetPageUptodate(rpage);
1688 }
1689 unlock_page(rpage);
1690 }
1691
1692 f2fs_put_dic(dic);
1693 }
1694
f2fs_verify_cluster(struct work_struct * work)1695 static void f2fs_verify_cluster(struct work_struct *work)
1696 {
1697 struct decompress_io_ctx *dic =
1698 container_of(work, struct decompress_io_ctx, verity_work);
1699 int i;
1700
1701 /* Verify the cluster's decompressed pages with fs-verity. */
1702 for (i = 0; i < dic->cluster_size; i++) {
1703 struct page *rpage = dic->rpages[i];
1704
1705 if (rpage && !fsverity_verify_page(rpage))
1706 SetPageError(rpage);
1707 }
1708
1709 __f2fs_decompress_end_io(dic, false);
1710 }
1711
1712 /*
1713 * This is called when a compressed cluster has been decompressed
1714 * (or failed to be read and/or decompressed).
1715 */
f2fs_decompress_end_io(struct decompress_io_ctx * dic,bool failed)1716 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed)
1717 {
1718 if (!failed && dic->need_verity) {
1719 /*
1720 * Note that to avoid deadlocks, the verity work can't be done
1721 * on the decompression workqueue. This is because verifying
1722 * the data pages can involve reading metadata pages from the
1723 * file, and these metadata pages may be compressed.
1724 */
1725 INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1726 fsverity_enqueue_verify_work(&dic->verity_work);
1727 } else {
1728 __f2fs_decompress_end_io(dic, failed);
1729 }
1730 }
1731
1732 /*
1733 * Put a reference to a compressed page's decompress_io_ctx.
1734 *
1735 * This is called when the page is no longer needed and can be freed.
1736 */
f2fs_put_page_dic(struct page * page)1737 void f2fs_put_page_dic(struct page *page)
1738 {
1739 struct decompress_io_ctx *dic =
1740 (struct decompress_io_ctx *)page_private(page);
1741
1742 f2fs_put_dic(dic);
1743 }
1744
1745 /*
1746 * check whether cluster blocks are contiguous, and add extent cache entry
1747 * only if cluster blocks are logically and physically contiguous.
1748 */
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn)1749 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn)
1750 {
1751 bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR;
1752 int i = compressed ? 1 : 0;
1753 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1754 dn->ofs_in_node + i);
1755
1756 for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1757 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1758 dn->ofs_in_node + i);
1759
1760 if (!__is_valid_data_blkaddr(blkaddr))
1761 break;
1762 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1763 return 0;
1764 }
1765
1766 return compressed ? i - 1 : i;
1767 }
1768
1769 const struct address_space_operations f2fs_compress_aops = {
1770 .releasepage = f2fs_release_page,
1771 .invalidatepage = f2fs_invalidate_page,
1772 };
1773
COMPRESS_MAPPING(struct f2fs_sb_info * sbi)1774 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1775 {
1776 return sbi->compress_inode->i_mapping;
1777 }
1778
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)1779 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1780 {
1781 if (!sbi->compress_inode)
1782 return;
1783 invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1784 }
1785
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)1786 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1787 nid_t ino, block_t blkaddr)
1788 {
1789 struct page *cpage;
1790 int ret;
1791
1792 if (!test_opt(sbi, COMPRESS_CACHE))
1793 return;
1794
1795 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1796 return;
1797
1798 if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1799 return;
1800
1801 cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1802 if (cpage) {
1803 f2fs_put_page(cpage, 0);
1804 return;
1805 }
1806
1807 cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1808 if (!cpage)
1809 return;
1810
1811 ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1812 blkaddr, GFP_NOFS);
1813 if (ret) {
1814 f2fs_put_page(cpage, 0);
1815 return;
1816 }
1817
1818 set_page_private_data(cpage, ino);
1819
1820 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1821 goto out;
1822
1823 memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1824 SetPageUptodate(cpage);
1825 out:
1826 f2fs_put_page(cpage, 1);
1827 }
1828
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)1829 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1830 block_t blkaddr)
1831 {
1832 struct page *cpage;
1833 bool hitted = false;
1834
1835 if (!test_opt(sbi, COMPRESS_CACHE))
1836 return false;
1837
1838 cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1839 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1840 if (cpage) {
1841 if (PageUptodate(cpage)) {
1842 atomic_inc(&sbi->compress_page_hit);
1843 memcpy(page_address(page),
1844 page_address(cpage), PAGE_SIZE);
1845 hitted = true;
1846 }
1847 f2fs_put_page(cpage, 1);
1848 }
1849
1850 return hitted;
1851 }
1852
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)1853 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1854 {
1855 struct address_space *mapping = sbi->compress_inode->i_mapping;
1856 struct pagevec pvec;
1857 pgoff_t index = 0;
1858 pgoff_t end = MAX_BLKADDR(sbi);
1859
1860 if (!mapping->nrpages)
1861 return;
1862
1863 pagevec_init(&pvec);
1864
1865 do {
1866 unsigned int nr_pages;
1867 int i;
1868
1869 nr_pages = pagevec_lookup_range(&pvec, mapping,
1870 &index, end - 1);
1871 if (!nr_pages)
1872 break;
1873
1874 for (i = 0; i < nr_pages; i++) {
1875 struct page *page = pvec.pages[i];
1876
1877 if (page->index > end)
1878 break;
1879
1880 lock_page(page);
1881 if (page->mapping != mapping) {
1882 unlock_page(page);
1883 continue;
1884 }
1885
1886 if (ino != get_page_private_data(page)) {
1887 unlock_page(page);
1888 continue;
1889 }
1890
1891 generic_error_remove_page(mapping, page);
1892 unlock_page(page);
1893 }
1894 pagevec_release(&pvec);
1895 cond_resched();
1896 } while (index < end);
1897 }
1898
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)1899 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1900 {
1901 struct inode *inode;
1902
1903 if (!test_opt(sbi, COMPRESS_CACHE))
1904 return 0;
1905
1906 inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1907 if (IS_ERR(inode))
1908 return PTR_ERR(inode);
1909 sbi->compress_inode = inode;
1910
1911 sbi->compress_percent = COMPRESS_PERCENT;
1912 sbi->compress_watermark = COMPRESS_WATERMARK;
1913
1914 atomic_set(&sbi->compress_page_hit, 0);
1915
1916 return 0;
1917 }
1918
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)1919 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1920 {
1921 if (!sbi->compress_inode)
1922 return;
1923 iput(sbi->compress_inode);
1924 sbi->compress_inode = NULL;
1925 }
1926
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)1927 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1928 {
1929 dev_t dev = sbi->sb->s_bdev->bd_dev;
1930 char slab_name[32];
1931
1932 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1933
1934 sbi->page_array_slab_size = sizeof(struct page *) <<
1935 F2FS_OPTION(sbi).compress_log_size;
1936
1937 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
1938 sbi->page_array_slab_size);
1939 if (!sbi->page_array_slab)
1940 return -ENOMEM;
1941 return 0;
1942 }
1943
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)1944 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
1945 {
1946 kmem_cache_destroy(sbi->page_array_slab);
1947 }
1948
f2fs_init_cic_cache(void)1949 static int __init f2fs_init_cic_cache(void)
1950 {
1951 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
1952 sizeof(struct compress_io_ctx));
1953 if (!cic_entry_slab)
1954 return -ENOMEM;
1955 return 0;
1956 }
1957
f2fs_destroy_cic_cache(void)1958 static void f2fs_destroy_cic_cache(void)
1959 {
1960 kmem_cache_destroy(cic_entry_slab);
1961 }
1962
f2fs_init_dic_cache(void)1963 static int __init f2fs_init_dic_cache(void)
1964 {
1965 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
1966 sizeof(struct decompress_io_ctx));
1967 if (!dic_entry_slab)
1968 return -ENOMEM;
1969 return 0;
1970 }
1971
f2fs_destroy_dic_cache(void)1972 static void f2fs_destroy_dic_cache(void)
1973 {
1974 kmem_cache_destroy(dic_entry_slab);
1975 }
1976
f2fs_init_compress_cache(void)1977 int __init f2fs_init_compress_cache(void)
1978 {
1979 int err;
1980
1981 err = f2fs_init_cic_cache();
1982 if (err)
1983 goto out;
1984 err = f2fs_init_dic_cache();
1985 if (err)
1986 goto free_cic;
1987 return 0;
1988 free_cic:
1989 f2fs_destroy_cic_cache();
1990 out:
1991 return -ENOMEM;
1992 }
1993
f2fs_destroy_compress_cache(void)1994 void f2fs_destroy_compress_cache(void)
1995 {
1996 f2fs_destroy_dic_cache();
1997 f2fs_destroy_cic_cache();
1998 }
1999