1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2010-2019, NVIDIA CORPORATION.  All rights reserved.
4  */
5 
6 /* Tegra SoC common clock control functions */
7 
8 #include <common.h>
9 #include <div64.h>
10 #include <dm.h>
11 #include <errno.h>
12 #include <log.h>
13 #include <time.h>
14 #include <asm/io.h>
15 #include <asm/arch/clock.h>
16 #include <asm/arch/tegra.h>
17 #include <asm/arch-tegra/ap.h>
18 #include <asm/arch-tegra/clk_rst.h>
19 #include <asm/arch-tegra/pmc.h>
20 #include <asm/arch-tegra/timer.h>
21 #include <linux/delay.h>
22 
23 /*
24  * This is our record of the current clock rate of each clock. We don't
25  * fill all of these in since we are only really interested in clocks which
26  * we use as parents.
27  */
28 static unsigned pll_rate[CLOCK_ID_COUNT];
29 
30 /*
31  * The oscillator frequency is fixed to one of seven set values. Based on this
32  * the other clocks are set up appropriately.
33  */
34 static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
35 	13000000,
36 	16800000,
37 	       0,
38 	       0,
39 	19200000,
40 	38400000,
41 	       0,
42 	       0,
43 	12000000,
44 	48000000,
45 	       0,
46 	       0,
47 	26000000,
48 };
49 
50 /* return 1 if a peripheral ID is in range */
51 #define clock_type_id_isvalid(id) ((id) >= 0 && \
52 		(id) < CLOCK_TYPE_COUNT)
53 
54 char pllp_valid = 1;	/* PLLP is set up correctly */
55 
56 /* return 1 if a periphc_internal_id is in range */
57 #define periphc_internal_id_isvalid(id) ((id) >= 0 && \
58 		(id) < PERIPHC_COUNT)
59 
60 /* number of clock outputs of a PLL */
61 static const u8 pll_num_clkouts[] = {
62 	1,	/* PLLC */
63 	1,	/* PLLM */
64 	4,	/* PLLP */
65 	1,	/* PLLA */
66 	0,	/* PLLU */
67 	0,	/* PLLD */
68 };
69 
clock_get_osc_bypass(void)70 int clock_get_osc_bypass(void)
71 {
72 	struct clk_rst_ctlr *clkrst =
73 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
74 	u32 reg;
75 
76 	reg = readl(&clkrst->crc_osc_ctrl);
77 	return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
78 }
79 
80 /* Returns a pointer to the registers of the given pll */
get_pll(enum clock_id clkid)81 static struct clk_pll *get_pll(enum clock_id clkid)
82 {
83 	struct clk_rst_ctlr *clkrst =
84 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
85 
86 	assert(clock_id_is_pll(clkid));
87 	if (clkid >= (enum clock_id)TEGRA_CLK_PLLS) {
88 		debug("%s: Invalid PLL %d\n", __func__, clkid);
89 		return NULL;
90 	}
91 	return &clkrst->crc_pll[clkid];
92 }
93 
clock_get_simple_pll(enum clock_id clkid)94 __weak struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
95 {
96 	return NULL;
97 }
98 
clock_ll_read_pll(enum clock_id clkid,u32 * divm,u32 * divn,u32 * divp,u32 * cpcon,u32 * lfcon)99 int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
100 		u32 *divp, u32 *cpcon, u32 *lfcon)
101 {
102 	struct clk_pll *pll = get_pll(clkid);
103 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
104 	u32 data;
105 
106 	assert(clkid != CLOCK_ID_USB);
107 
108 	/* Safety check, adds to code size but is small */
109 	if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
110 		return -1;
111 	data = readl(&pll->pll_base);
112 	*divm = (data >> pllinfo->m_shift) & pllinfo->m_mask;
113 	*divn = (data >> pllinfo->n_shift) & pllinfo->n_mask;
114 	*divp = (data >> pllinfo->p_shift) & pllinfo->p_mask;
115 	data = readl(&pll->pll_misc);
116 	/* NOTE: On T210, cpcon/lfcon no longer exist, moved to KCP/KVCO */
117 	*cpcon = (data >> pllinfo->kcp_shift) & pllinfo->kcp_mask;
118 	*lfcon = (data >> pllinfo->kvco_shift) & pllinfo->kvco_mask;
119 
120 	return 0;
121 }
122 
clock_start_pll(enum clock_id clkid,u32 divm,u32 divn,u32 divp,u32 cpcon,u32 lfcon)123 unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
124 		u32 divp, u32 cpcon, u32 lfcon)
125 {
126 	struct clk_pll *pll = NULL;
127 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
128 	struct clk_pll_simple *simple_pll = NULL;
129 	u32 misc_data, data;
130 
131 	if (clkid < (enum clock_id)TEGRA_CLK_PLLS) {
132 		pll = get_pll(clkid);
133 	} else {
134 		simple_pll = clock_get_simple_pll(clkid);
135 		if (!simple_pll) {
136 			debug("%s: Uknown simple PLL %d\n", __func__, clkid);
137 			return 0;
138 		}
139 	}
140 
141 	/*
142 	 * pllinfo has the m/n/p and kcp/kvco mask and shift
143 	 * values for all of the PLLs used in U-Boot, with any
144 	 * SoC differences accounted for.
145 	 *
146 	 * Preserve EN_LOCKDET, etc.
147 	 */
148 	if (pll)
149 		misc_data = readl(&pll->pll_misc);
150 	else
151 		misc_data = readl(&simple_pll->pll_misc);
152 	misc_data &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
153 	misc_data |= cpcon << pllinfo->kcp_shift;
154 	misc_data &= ~(pllinfo->kvco_mask << pllinfo->kvco_shift);
155 	misc_data |= lfcon << pllinfo->kvco_shift;
156 
157 	data = (divm << pllinfo->m_shift) | (divn << pllinfo->n_shift);
158 	data |= divp << pllinfo->p_shift;
159 	data |= (1 << PLL_ENABLE_SHIFT);	/* BYPASS s/b 0 already */
160 
161 	if (pll) {
162 		writel(misc_data, &pll->pll_misc);
163 		writel(data, &pll->pll_base);
164 	} else {
165 		writel(misc_data, &simple_pll->pll_misc);
166 		writel(data, &simple_pll->pll_base);
167 	}
168 
169 	/* calculate the stable time */
170 	return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
171 }
172 
clock_ll_set_source_divisor(enum periph_id periph_id,unsigned source,unsigned divisor)173 void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
174 			unsigned divisor)
175 {
176 	u32 *reg = get_periph_source_reg(periph_id);
177 	u32 value;
178 
179 	value = readl(reg);
180 
181 	value &= ~OUT_CLK_SOURCE_31_30_MASK;
182 	value |= source << OUT_CLK_SOURCE_31_30_SHIFT;
183 
184 	value &= ~OUT_CLK_DIVISOR_MASK;
185 	value |= divisor << OUT_CLK_DIVISOR_SHIFT;
186 
187 	writel(value, reg);
188 }
189 
clock_ll_set_source_bits(enum periph_id periph_id,int mux_bits,unsigned source)190 int clock_ll_set_source_bits(enum periph_id periph_id, int mux_bits,
191 			     unsigned source)
192 {
193 	u32 *reg = get_periph_source_reg(periph_id);
194 
195 	switch (mux_bits) {
196 	case MASK_BITS_31_30:
197 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK,
198 				source << OUT_CLK_SOURCE_31_30_SHIFT);
199 		break;
200 
201 	case MASK_BITS_31_29:
202 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_29_MASK,
203 				source << OUT_CLK_SOURCE_31_29_SHIFT);
204 		break;
205 
206 	case MASK_BITS_31_28:
207 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_28_MASK,
208 				source << OUT_CLK_SOURCE_31_28_SHIFT);
209 		break;
210 
211 	default:
212 		return -1;
213 	}
214 
215 	return 0;
216 }
217 
clock_ll_get_source_bits(enum periph_id periph_id,int mux_bits)218 static int clock_ll_get_source_bits(enum periph_id periph_id, int mux_bits)
219 {
220 	u32 *reg = get_periph_source_reg(periph_id);
221 	u32 val = readl(reg);
222 
223 	switch (mux_bits) {
224 	case MASK_BITS_31_30:
225 		val >>= OUT_CLK_SOURCE_31_30_SHIFT;
226 		val &= OUT_CLK_SOURCE_31_30_MASK;
227 		return val;
228 	case MASK_BITS_31_29:
229 		val >>= OUT_CLK_SOURCE_31_29_SHIFT;
230 		val &= OUT_CLK_SOURCE_31_29_MASK;
231 		return val;
232 	case MASK_BITS_31_28:
233 		val >>= OUT_CLK_SOURCE_31_28_SHIFT;
234 		val &= OUT_CLK_SOURCE_31_28_MASK;
235 		return val;
236 	default:
237 		return -1;
238 	}
239 }
240 
clock_ll_set_source(enum periph_id periph_id,unsigned source)241 void clock_ll_set_source(enum periph_id periph_id, unsigned source)
242 {
243 	clock_ll_set_source_bits(periph_id, MASK_BITS_31_30, source);
244 }
245 
246 /**
247  * Given the parent's rate and the required rate for the children, this works
248  * out the peripheral clock divider to use, in 7.1 binary format.
249  *
250  * @param divider_bits	number of divider bits (8 or 16)
251  * @param parent_rate	clock rate of parent clock in Hz
252  * @param rate		required clock rate for this clock
253  * Return: divider which should be used
254  */
clk_get_divider(unsigned divider_bits,unsigned long parent_rate,unsigned long rate)255 static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
256 			   unsigned long rate)
257 {
258 	u64 divider = parent_rate * 2;
259 	unsigned max_divider = 1 << divider_bits;
260 
261 	divider += rate - 1;
262 	do_div(divider, rate);
263 
264 	if ((s64)divider - 2 < 0)
265 		return 0;
266 
267 	if ((s64)divider - 2 >= max_divider)
268 		return -1;
269 
270 	return divider - 2;
271 }
272 
clock_set_pllout(enum clock_id clkid,enum pll_out_id pllout,unsigned rate)273 int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate)
274 {
275 	struct clk_pll *pll = get_pll(clkid);
276 	int data = 0, div = 0, offset = 0;
277 
278 	if (!clock_id_is_pll(clkid))
279 		return -1;
280 
281 	if (pllout + 1 > pll_num_clkouts[clkid])
282 		return -1;
283 
284 	div = clk_get_divider(8, pll_rate[clkid], rate);
285 
286 	if (div < 0)
287 		return -1;
288 
289 	/* out2 and out4 are in the high part of the register */
290 	if (pllout == PLL_OUT2 || pllout == PLL_OUT4)
291 		offset = 16;
292 
293 	data = (div << PLL_OUT_RATIO_SHIFT) |
294 			PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN;
295 	clrsetbits_le32(&pll->pll_out[pllout >> 1],
296 			PLL_OUT_RATIO_MASK << offset, data << offset);
297 
298 	return 0;
299 }
300 
301 /**
302  * Given the parent's rate and the divider in 7.1 format, this works out the
303  * resulting peripheral clock rate.
304  *
305  * @param parent_rate	clock rate of parent clock in Hz
306  * @param divider which should be used in 7.1 format
307  * Return: effective clock rate of peripheral
308  */
get_rate_from_divider(unsigned long parent_rate,int divider)309 static unsigned long get_rate_from_divider(unsigned long parent_rate,
310 					   int divider)
311 {
312 	u64 rate;
313 
314 	rate = (u64)parent_rate * 2;
315 	do_div(rate, divider + 2);
316 	return rate;
317 }
318 
clock_get_periph_rate(enum periph_id periph_id,enum clock_id parent)319 unsigned long clock_get_periph_rate(enum periph_id periph_id,
320 		enum clock_id parent)
321 {
322 	u32 *reg = get_periph_source_reg(periph_id);
323 	unsigned parent_rate = pll_rate[parent];
324 	int div = (readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT;
325 
326 	switch (periph_id) {
327 	case PERIPH_ID_UART1:
328 	case PERIPH_ID_UART2:
329 	case PERIPH_ID_UART3:
330 	case PERIPH_ID_UART4:
331 	case PERIPH_ID_UART5:
332 #ifdef CONFIG_TEGRA20
333 		/* There's no divider for these clocks in this SoC. */
334 		return parent_rate;
335 #else
336 		/*
337 		 * This undoes the +2 in get_rate_from_divider() which I
338 		 * believe is incorrect. Ideally we would fix
339 		 * get_rate_from_divider(), but... Removing the +2 from
340 		 * get_rate_from_divider() would probably require remove the -2
341 		 * from the tail of clk_get_divider() since I believe that's
342 		 * only there to invert get_rate_from_divider()'s +2. Observe
343 		 * how find_best_divider() uses those two functions together.
344 		 * However, doing so breaks other stuff, such as Seaboard's
345 		 * display, likely due to clock_set_pllout()'s call to
346 		 * clk_get_divider(). Attempting to fix that by making
347 		 * clock_set_pllout() subtract 2 from clk_get_divider()'s
348 		 * return value doesn't help. In summary this clock driver is
349 		 * quite broken but I'm afraid I have no idea how to fix it
350 		 * without completely replacing it.
351 		 *
352 		 * Be careful to avoid a divide by zero error.
353 		 */
354 		if (div >= 1)
355 			div -= 2;
356 		break;
357 #endif
358 	default:
359 		break;
360 	}
361 
362 	return get_rate_from_divider(parent_rate, div);
363 }
364 
365 /**
366  * Find the best available 7.1 format divisor given a parent clock rate and
367  * required child clock rate. This function assumes that a second-stage
368  * divisor is available which can divide by powers of 2 from 1 to 256.
369  *
370  * @param divider_bits	number of divider bits (8 or 16)
371  * @param parent_rate	clock rate of parent clock in Hz
372  * @param rate		required clock rate for this clock
373  * @param extra_div	value for the second-stage divisor (not set if this
374  *			function returns -1.
375  * Return: divider which should be used, or -1 if nothing is valid
376  *
377  */
find_best_divider(unsigned divider_bits,unsigned long parent_rate,unsigned long rate,int * extra_div)378 static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
379 				unsigned long rate, int *extra_div)
380 {
381 	int shift;
382 	int best_divider = -1;
383 	int best_error = rate;
384 
385 	/* try dividers from 1 to 256 and find closest match */
386 	for (shift = 0; shift <= 8 && best_error > 0; shift++) {
387 		unsigned divided_parent = parent_rate >> shift;
388 		int divider = clk_get_divider(divider_bits, divided_parent,
389 						rate);
390 		unsigned effective_rate = get_rate_from_divider(divided_parent,
391 						divider);
392 		int error = rate - effective_rate;
393 
394 		/* Given a valid divider, look for the lowest error */
395 		if (divider != -1 && error < best_error) {
396 			best_error = error;
397 			*extra_div = 1 << shift;
398 			best_divider = divider;
399 		}
400 	}
401 
402 	/* return what we found - *extra_div will already be set */
403 	return best_divider;
404 }
405 
406 /**
407  * Adjust peripheral PLL to use the given divider and source.
408  *
409  * @param periph_id	peripheral to adjust
410  * @param source	Source number (0-3 or 0-7)
411  * @param mux_bits	Number of mux bits (2 or 4)
412  * @param divider	Required divider in 7.1 or 15.1 format
413  * Return: 0 if ok, -1 on error (requesting a parent clock which is not valid
414  *		for this peripheral)
415  */
adjust_periph_pll(enum periph_id periph_id,int source,int mux_bits,unsigned divider)416 static int adjust_periph_pll(enum periph_id periph_id, int source,
417 				int mux_bits, unsigned divider)
418 {
419 	u32 *reg = get_periph_source_reg(periph_id);
420 
421 	clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
422 			divider << OUT_CLK_DIVISOR_SHIFT);
423 	udelay(1);
424 
425 	/* work out the source clock and set it */
426 	if (source < 0)
427 		return -1;
428 
429 	clock_ll_set_source_bits(periph_id, mux_bits, source);
430 
431 	udelay(2);
432 	return 0;
433 }
434 
clock_get_periph_parent(enum periph_id periph_id)435 enum clock_id clock_get_periph_parent(enum periph_id periph_id)
436 {
437 	int err, mux_bits, divider_bits, type;
438 	int source;
439 
440 	err = get_periph_clock_info(periph_id, &mux_bits, &divider_bits, &type);
441 	if (err)
442 		return CLOCK_ID_NONE;
443 
444 	source = clock_ll_get_source_bits(periph_id, mux_bits);
445 
446 	return get_periph_clock_id(periph_id, source);
447 }
448 
clock_adjust_periph_pll_div(enum periph_id periph_id,enum clock_id parent,unsigned rate,int * extra_div)449 unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
450 		enum clock_id parent, unsigned rate, int *extra_div)
451 {
452 	unsigned effective_rate;
453 	int mux_bits, divider_bits, source;
454 	int divider;
455 	int xdiv = 0;
456 
457 	/* work out the source clock and set it */
458 	source = get_periph_clock_source(periph_id, parent, &mux_bits,
459 					 &divider_bits);
460 
461 	divider = find_best_divider(divider_bits, pll_rate[parent],
462 				    rate, &xdiv);
463 	if (extra_div)
464 		*extra_div = xdiv;
465 
466 	assert(divider >= 0);
467 	if (adjust_periph_pll(periph_id, source, mux_bits, divider))
468 		return -1U;
469 	debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
470 		get_periph_source_reg(periph_id),
471 		readl(get_periph_source_reg(periph_id)));
472 
473 	/* Check what we ended up with. This shouldn't matter though */
474 	effective_rate = clock_get_periph_rate(periph_id, parent);
475 	if (extra_div)
476 		effective_rate /= *extra_div;
477 	if (rate != effective_rate)
478 		debug("Requested clock rate %u not honored (got %u)\n",
479 			rate, effective_rate);
480 	return effective_rate;
481 }
482 
clock_start_periph_pll(enum periph_id periph_id,enum clock_id parent,unsigned rate)483 unsigned clock_start_periph_pll(enum periph_id periph_id,
484 		enum clock_id parent, unsigned rate)
485 {
486 	unsigned effective_rate;
487 
488 	reset_set_enable(periph_id, 1);
489 	clock_enable(periph_id);
490 	udelay(2);
491 
492 	effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
493 						 NULL);
494 
495 	reset_set_enable(periph_id, 0);
496 	return effective_rate;
497 }
498 
clock_enable(enum periph_id clkid)499 void clock_enable(enum periph_id clkid)
500 {
501 	clock_set_enable(clkid, 1);
502 }
503 
clock_disable(enum periph_id clkid)504 void clock_disable(enum periph_id clkid)
505 {
506 	clock_set_enable(clkid, 0);
507 }
508 
reset_periph(enum periph_id periph_id,int us_delay)509 void reset_periph(enum periph_id periph_id, int us_delay)
510 {
511 	/* Put peripheral into reset */
512 	reset_set_enable(periph_id, 1);
513 	udelay(us_delay);
514 
515 	/* Remove reset */
516 	reset_set_enable(periph_id, 0);
517 
518 	udelay(us_delay);
519 }
520 
reset_cmplx_set_enable(int cpu,int which,int reset)521 void reset_cmplx_set_enable(int cpu, int which, int reset)
522 {
523 	struct clk_rst_ctlr *clkrst =
524 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
525 	u32 mask;
526 
527 	/* Form the mask, which depends on the cpu chosen (2 or 4) */
528 	assert(cpu >= 0 && cpu < MAX_NUM_CPU);
529 	mask = which << cpu;
530 
531 	/* either enable or disable those reset for that CPU */
532 	if (reset)
533 		writel(mask, &clkrst->crc_cpu_cmplx_set);
534 	else
535 		writel(mask, &clkrst->crc_cpu_cmplx_clr);
536 }
537 
clk_m_get_rate(unsigned int parent_rate)538 unsigned int __weak clk_m_get_rate(unsigned int parent_rate)
539 {
540 	return parent_rate;
541 }
542 
clock_get_rate(enum clock_id clkid)543 unsigned clock_get_rate(enum clock_id clkid)
544 {
545 	struct clk_pll *pll;
546 	u32 base, divm;
547 	u64 parent_rate, rate;
548 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
549 
550 	parent_rate = osc_freq[clock_get_osc_freq()];
551 	if (clkid == CLOCK_ID_OSC)
552 		return parent_rate;
553 
554 	if (clkid == CLOCK_ID_CLK_M)
555 		return clk_m_get_rate(parent_rate);
556 
557 	pll = get_pll(clkid);
558 	if (!pll)
559 		return 0;
560 	base = readl(&pll->pll_base);
561 
562 	rate = parent_rate * ((base >> pllinfo->n_shift) & pllinfo->n_mask);
563 	divm = (base >> pllinfo->m_shift) & pllinfo->m_mask;
564 	/*
565 	 * PLLU uses p_mask/p_shift for VCO on all but T210,
566 	 * T210 uses normal DIVP. Handled in pllinfo table.
567 	 */
568 #ifdef CONFIG_TEGRA210
569 	/*
570 	 * PLLP's primary output (pllP_out0) on T210 is the VCO, and divp is
571 	 * not applied. pllP_out2 does have divp applied. All other pllP_outN
572 	 * are divided down from pllP_out0. We only support pllP_out0 in
573 	 * U-Boot at the time of writing this comment.
574 	 */
575 	if (clkid != CLOCK_ID_PERIPH)
576 #endif
577 		divm <<= (base >> pllinfo->p_shift) & pllinfo->p_mask;
578 	do_div(rate, divm);
579 	return rate;
580 }
581 
582 /**
583  * Set the output frequency you want for each PLL clock.
584  * PLL output frequencies are programmed by setting their N, M and P values.
585  * The governing equations are:
586  *     VCO = (Fi / m) * n, Fo = VCO / (2^p)
587  *     where Fo is the output frequency from the PLL.
588  * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
589  *     216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
590  * Please see Tegra TRM section 5.3 to get the detail for PLL Programming
591  *
592  * @param n PLL feedback divider(DIVN)
593  * @param m PLL input divider(DIVN)
594  * @param p post divider(DIVP)
595  * @param cpcon base PLL charge pump(CPCON)
596  * Return: 0 if ok, -1 on error (the requested PLL is incorrect and cannot
597  *		be overridden), 1 if PLL is already correct
598  */
clock_set_rate(enum clock_id clkid,u32 n,u32 m,u32 p,u32 cpcon)599 int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
600 {
601 	u32 base_reg, misc_reg;
602 	struct clk_pll *pll;
603 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
604 
605 	pll = get_pll(clkid);
606 
607 	base_reg = readl(&pll->pll_base);
608 
609 	/* Set BYPASS, m, n and p to PLL_BASE */
610 	base_reg &= ~(pllinfo->m_mask << pllinfo->m_shift);
611 	base_reg |= m << pllinfo->m_shift;
612 
613 	base_reg &= ~(pllinfo->n_mask << pllinfo->n_shift);
614 	base_reg |= n << pllinfo->n_shift;
615 
616 	base_reg &= ~(pllinfo->p_mask << pllinfo->p_shift);
617 	base_reg |= p << pllinfo->p_shift;
618 
619 	if (clkid == CLOCK_ID_PERIPH) {
620 		/*
621 		 * If the PLL is already set up, check that it is correct
622 		 * and record this info for clock_verify() to check.
623 		 */
624 		if (base_reg & PLL_BASE_OVRRIDE_MASK) {
625 			base_reg |= PLL_ENABLE_MASK;
626 			if (base_reg != readl(&pll->pll_base))
627 				pllp_valid = 0;
628 			return pllp_valid ? 1 : -1;
629 		}
630 		base_reg |= PLL_BASE_OVRRIDE_MASK;
631 	}
632 
633 	base_reg |= PLL_BYPASS_MASK;
634 	writel(base_reg, &pll->pll_base);
635 
636 	/* Set cpcon (KCP) to PLL_MISC */
637 	misc_reg = readl(&pll->pll_misc);
638 	misc_reg &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
639 	misc_reg |= cpcon << pllinfo->kcp_shift;
640 	writel(misc_reg, &pll->pll_misc);
641 
642 	/* Enable PLL */
643 	base_reg |= PLL_ENABLE_MASK;
644 	writel(base_reg, &pll->pll_base);
645 
646 	/* Disable BYPASS */
647 	base_reg &= ~PLL_BYPASS_MASK;
648 	writel(base_reg, &pll->pll_base);
649 
650 	return 0;
651 }
652 
clock_ll_start_uart(enum periph_id periph_id)653 void clock_ll_start_uart(enum periph_id periph_id)
654 {
655 	/* Assert UART reset and enable clock */
656 	reset_set_enable(periph_id, 1);
657 	clock_enable(periph_id);
658 	clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
659 
660 	/* wait for 2us */
661 	udelay(2);
662 
663 	/* De-assert reset to UART */
664 	reset_set_enable(periph_id, 0);
665 }
666 
667 #if CONFIG_IS_ENABLED(OF_CONTROL)
clock_decode_periph_id(struct udevice * dev)668 int clock_decode_periph_id(struct udevice *dev)
669 {
670 	enum periph_id id;
671 	u32 cell[2];
672 	int err;
673 
674 	err = dev_read_u32_array(dev, "clocks", cell, ARRAY_SIZE(cell));
675 	if (err)
676 		return -1;
677 	id = clk_id_to_periph_id(cell[1]);
678 	assert(clock_periph_id_isvalid(id));
679 	return id;
680 }
681 
682 /*
683  * Get periph clock id and its parent from device tree.
684  *
685  * @param dev		udevice associated with FDT node
686  * @param clk_id	pointer to u32 array of 2 values
687  *			first is periph clock, second is
688  *			its PLL parent according to FDT.
689  */
clock_decode_pair(struct udevice * dev,int * clk_id)690 int clock_decode_pair(struct udevice *dev, int *clk_id)
691 {
692 	u32 cell[4];
693 	int err;
694 
695 	err = dev_read_u32_array(dev, "clocks", cell, ARRAY_SIZE(cell));
696 	if (err)
697 		return -EINVAL;
698 
699 	clk_id[0] = clk_id_to_periph_id(cell[1]);
700 	clk_id[1] = clk_id_to_pll_id(cell[3]);
701 
702 	return 0;
703 }
704 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
705 
clock_verify(void)706 int clock_verify(void)
707 {
708 	struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
709 	u32 reg = readl(&pll->pll_base);
710 
711 	if (!pllp_valid) {
712 		printf("Warning: PLLP %x is not correct\n", reg);
713 		return -1;
714 	}
715 	debug("PLLP %x is correct\n", reg);
716 	return 0;
717 }
718 
clock_init(void)719 void clock_init(void)
720 {
721 	int i;
722 
723 	pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
724 	pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
725 	pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
726 	pll_rate[CLOCK_ID_USB] = clock_get_rate(CLOCK_ID_USB);
727 	pll_rate[CLOCK_ID_DISPLAY] = clock_get_rate(CLOCK_ID_DISPLAY);
728 	pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU);
729 	pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
730 	pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
731 	pll_rate[CLOCK_ID_CLK_M] = clock_get_rate(CLOCK_ID_CLK_M);
732 
733 	debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
734 	debug("CLKM = %d\n", pll_rate[CLOCK_ID_CLK_M]);
735 	debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]);
736 	debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
737 	debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
738 	debug("PLLU = %d\n", pll_rate[CLOCK_ID_USB]);
739 	debug("PLLD = %d\n", pll_rate[CLOCK_ID_DISPLAY]);
740 	debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]);
741 
742 	for (i = 0; periph_clk_init_table[i].periph_id != -1; i++) {
743 		enum periph_id periph_id;
744 		enum clock_id parent;
745 		int source, mux_bits, divider_bits;
746 
747 		periph_id = periph_clk_init_table[i].periph_id;
748 		parent = periph_clk_init_table[i].parent_clock_id;
749 
750 		source = get_periph_clock_source(periph_id, parent, &mux_bits,
751 						 &divider_bits);
752 		clock_ll_set_source_bits(periph_id, mux_bits, source);
753 	}
754 }
755 
set_avp_clock_source(u32 src)756 static void set_avp_clock_source(u32 src)
757 {
758 	struct clk_rst_ctlr *clkrst =
759 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
760 	u32 val;
761 
762 	val = (src << SCLK_SWAKEUP_FIQ_SOURCE_SHIFT) |
763 		(src << SCLK_SWAKEUP_IRQ_SOURCE_SHIFT) |
764 		(src << SCLK_SWAKEUP_RUN_SOURCE_SHIFT) |
765 		(src << SCLK_SWAKEUP_IDLE_SOURCE_SHIFT) |
766 		(SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT);
767 	writel(val, &clkrst->crc_sclk_brst_pol);
768 	udelay(3);
769 }
770 
771 /*
772  * This function is useful on Tegra30, and any later SoCs that have compatible
773  * PLLP configuration registers.
774  * NOTE: Not used on Tegra210 - see tegra210_setup_pllp in T210 clock.c
775  */
tegra30_set_up_pllp(void)776 void tegra30_set_up_pllp(void)
777 {
778 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
779 	u32 reg;
780 
781 	/*
782 	 * Based on the Tegra TRM, the system clock (which is the AVP clock) can
783 	 * run up to 275MHz. On power on, the default sytem clock source is set
784 	 * to PLLP_OUT0. This function sets PLLP's (hence PLLP_OUT0's) rate to
785 	 * 408MHz which is beyond system clock's upper limit.
786 	 *
787 	 * The fix is to set the system clock to CLK_M before initializing PLLP,
788 	 * and then switch back to PLLP_OUT4, which has an appropriate divider
789 	 * configured, after PLLP has been configured
790 	 */
791 	set_avp_clock_source(SCLK_SOURCE_CLKM);
792 
793 	/*
794 	 * PLLP output frequency set to 408Mhz
795 	 * PLLC output frequency set to 228Mhz
796 	 */
797 	switch (clock_get_osc_freq()) {
798 	case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
799 	case CLOCK_OSC_FREQ_48_0: /* OSC is 48Mhz */
800 		clock_set_rate(CLOCK_ID_PERIPH, 408, 12, 0, 8);
801 		clock_set_rate(CLOCK_ID_CGENERAL, 456, 12, 1, 8);
802 		break;
803 
804 	case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
805 		clock_set_rate(CLOCK_ID_PERIPH, 408, 26, 0, 8);
806 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
807 		break;
808 
809 	case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
810 	case CLOCK_OSC_FREQ_16_8: /* OSC is 16.8Mhz */
811 		clock_set_rate(CLOCK_ID_PERIPH, 408, 13, 0, 8);
812 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
813 		break;
814 
815 	case CLOCK_OSC_FREQ_19_2:
816 	case CLOCK_OSC_FREQ_38_4:
817 	default:
818 		/*
819 		 * These are not supported. It is too early to print a
820 		 * message and the UART likely won't work anyway due to the
821 		 * oscillator being wrong.
822 		 */
823 		break;
824 	}
825 
826 	/* Set PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */
827 
828 	/* OUT1, 2 */
829 	/* Assert RSTN before enable */
830 	reg = PLLP_OUT2_RSTN_EN | PLLP_OUT1_RSTN_EN;
831 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
832 	/* Set divisor and reenable */
833 	reg = (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO)
834 		| PLLP_OUT2_OVR | PLLP_OUT2_CLKEN | PLLP_OUT2_RSTN_DIS
835 		| (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
836 		| PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
837 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
838 
839 	/* OUT3, 4 */
840 	/* Assert RSTN before enable */
841 	reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
842 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
843 	/* Set divisor and reenable */
844 	reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
845 		| PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
846 		| (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
847 		| PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
848 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
849 
850 	set_avp_clock_source(SCLK_SOURCE_PLLP_OUT4);
851 }
852 
clock_external_output(int clk_id)853 int clock_external_output(int clk_id)
854 {
855 	u32 val;
856 
857 	if (clk_id >= 1 && clk_id <= 3) {
858 		val = tegra_pmc_readl(offsetof(struct pmc_ctlr,
859 				      pmc_clk_out_cntrl));
860 		val |= 1 << (2 + (clk_id - 1) * 8);
861 		tegra_pmc_writel(val,
862 				 offsetof(struct pmc_ctlr,
863 				 pmc_clk_out_cntrl));
864 
865 	} else {
866 		printf("%s: Unknown output clock id %d\n", __func__, clk_id);
867 		return -EINVAL;
868 	}
869 
870 	return 0;
871 }
872 
clock_early_init_done(void)873 __weak bool clock_early_init_done(void)
874 {
875 	return true;
876 }
877