1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Chromium OS cros_ec driver
4  *
5  * Copyright (c) 2012 The Chromium OS Authors.
6  */
7 
8 /*
9  * This is the interface to the Chrome OS EC. It provides keyboard functions,
10  * power control and battery management. Quite a few other functions are
11  * provided to enable the EC software to be updated, talk to the EC's I2C bus
12  * and store a small amount of data in a memory which persists while the EC
13  * is not reset.
14  */
15 
16 #define LOG_CATEGORY UCLASS_CROS_EC
17 
18 #include <common.h>
19 #include <command.h>
20 #include <dm.h>
21 #include <i2c.h>
22 #include <cros_ec.h>
23 #include <fdtdec.h>
24 #include <log.h>
25 #include <malloc.h>
26 #include <spi.h>
27 #include <linux/delay.h>
28 #include <linux/errno.h>
29 #include <asm/io.h>
30 #include <asm-generic/gpio.h>
31 #include <dm/device-internal.h>
32 #include <dm/of_extra.h>
33 #include <dm/uclass-internal.h>
34 
35 #ifdef DEBUG_TRACE
36 #define debug_trace(fmt, b...)	debug(fmt, #b)
37 #else
38 #define debug_trace(fmt, b...)
39 #endif
40 
41 enum {
42 	/* Timeout waiting for a flash erase command to complete */
43 	CROS_EC_CMD_TIMEOUT_MS	= 5000,
44 	/* Timeout waiting for a synchronous hash to be recomputed */
45 	CROS_EC_CMD_HASH_TIMEOUT_MS = 2000,
46 
47 	/* Wait 10 ms between attempts to check if EC's hash is ready */
48 	CROS_EC_HASH_CHECK_DELAY_MS = 10,
49 
50 };
51 
52 #define INVALID_HCMD 0xFF
53 
54 /*
55  * Map UHEPI masks to non UHEPI commands in order to support old EC FW
56  * which does not support UHEPI command.
57  */
58 static const struct {
59 	u8 set_cmd;
60 	u8 clear_cmd;
61 	u8 get_cmd;
62 } event_map[] = {
63 	[EC_HOST_EVENT_MAIN] = {
64 		INVALID_HCMD, EC_CMD_HOST_EVENT_CLEAR,
65 		INVALID_HCMD,
66 	},
67 	[EC_HOST_EVENT_B] = {
68 		INVALID_HCMD, EC_CMD_HOST_EVENT_CLEAR_B,
69 		EC_CMD_HOST_EVENT_GET_B,
70 	},
71 	[EC_HOST_EVENT_SCI_MASK] = {
72 		EC_CMD_HOST_EVENT_SET_SCI_MASK, INVALID_HCMD,
73 		EC_CMD_HOST_EVENT_GET_SCI_MASK,
74 	},
75 	[EC_HOST_EVENT_SMI_MASK] = {
76 		EC_CMD_HOST_EVENT_SET_SMI_MASK, INVALID_HCMD,
77 		EC_CMD_HOST_EVENT_GET_SMI_MASK,
78 	},
79 	[EC_HOST_EVENT_ALWAYS_REPORT_MASK] = {
80 		INVALID_HCMD, INVALID_HCMD, INVALID_HCMD,
81 	},
82 	[EC_HOST_EVENT_ACTIVE_WAKE_MASK] = {
83 		EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
84 		EC_CMD_HOST_EVENT_GET_WAKE_MASK,
85 	},
86 	[EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX] = {
87 		EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
88 		EC_CMD_HOST_EVENT_GET_WAKE_MASK,
89 	},
90 	[EC_HOST_EVENT_LAZY_WAKE_MASK_S3] = {
91 		EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
92 		EC_CMD_HOST_EVENT_GET_WAKE_MASK,
93 	},
94 	[EC_HOST_EVENT_LAZY_WAKE_MASK_S5] = {
95 		EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
96 		EC_CMD_HOST_EVENT_GET_WAKE_MASK,
97 	},
98 };
99 
cros_ec_dump_data(const char * name,int cmd,const uint8_t * data,int len)100 void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len)
101 {
102 #ifdef DEBUG
103 	int i;
104 
105 	printf("%s: ", name);
106 	if (cmd != -1)
107 		printf("cmd=%#x: ", cmd);
108 	for (i = 0; i < len; i++)
109 		printf("%02x ", data[i]);
110 	printf("\n");
111 #endif
112 }
113 
114 /*
115  * Calculate a simple 8-bit checksum of a data block
116  *
117  * @param data	Data block to checksum
118  * @param size	Size of data block in bytes
119  * Return: checksum value (0 to 255)
120  */
cros_ec_calc_checksum(const uint8_t * data,int size)121 int cros_ec_calc_checksum(const uint8_t *data, int size)
122 {
123 	int csum, i;
124 
125 	for (i = csum = 0; i < size; i++)
126 		csum += data[i];
127 	return csum & 0xff;
128 }
129 
130 /**
131  * Create a request packet for protocol version 3.
132  *
133  * The packet is stored in the device's internal output buffer.
134  *
135  * @param dev		CROS-EC device
136  * @param cmd		Command to send (EC_CMD_...)
137  * @param cmd_version	Version of command to send (EC_VER_...)
138  * @param dout          Output data (may be NULL If dout_len=0)
139  * @param dout_len      Size of output data in bytes
140  * Return: packet size in bytes, or <0 if error.
141  */
create_proto3_request(struct cros_ec_dev * cdev,int cmd,int cmd_version,const void * dout,int dout_len)142 static int create_proto3_request(struct cros_ec_dev *cdev,
143 				 int cmd, int cmd_version,
144 				 const void *dout, int dout_len)
145 {
146 	struct ec_host_request *rq = (struct ec_host_request *)cdev->dout;
147 	int out_bytes = dout_len + sizeof(*rq);
148 
149 	/* Fail if output size is too big */
150 	if (out_bytes > (int)sizeof(cdev->dout)) {
151 		debug("%s: Cannot send %d bytes\n", __func__, dout_len);
152 		return -EC_RES_REQUEST_TRUNCATED;
153 	}
154 
155 	/* Fill in request packet */
156 	rq->struct_version = EC_HOST_REQUEST_VERSION;
157 	rq->checksum = 0;
158 	rq->command = cmd;
159 	rq->command_version = cmd_version;
160 	rq->reserved = 0;
161 	rq->data_len = dout_len;
162 
163 	/* Copy data after header */
164 	memcpy(rq + 1, dout, dout_len);
165 
166 	/* Write checksum field so the entire packet sums to 0 */
167 	rq->checksum = (uint8_t)(-cros_ec_calc_checksum(cdev->dout, out_bytes));
168 
169 	cros_ec_dump_data("out", cmd, cdev->dout, out_bytes);
170 
171 	/* Return size of request packet */
172 	return out_bytes;
173 }
174 
175 /**
176  * Prepare the device to receive a protocol version 3 response.
177  *
178  * @param dev		CROS-EC device
179  * @param din_len       Maximum size of response in bytes
180  * Return: maximum expected number of bytes in response, or <0 if error.
181  */
prepare_proto3_response_buffer(struct cros_ec_dev * cdev,int din_len)182 static int prepare_proto3_response_buffer(struct cros_ec_dev *cdev, int din_len)
183 {
184 	int in_bytes = din_len + sizeof(struct ec_host_response);
185 
186 	/* Fail if input size is too big */
187 	if (in_bytes > (int)sizeof(cdev->din)) {
188 		debug("%s: Cannot receive %d bytes\n", __func__, din_len);
189 		return -EC_RES_RESPONSE_TOO_BIG;
190 	}
191 
192 	/* Return expected size of response packet */
193 	return in_bytes;
194 }
195 
196 /**
197  * Handle a protocol version 3 response packet.
198  *
199  * The packet must already be stored in the device's internal input buffer.
200  *
201  * @param dev		CROS-EC device
202  * @param dinp          Returns pointer to response data
203  * @param din_len       Maximum size of response in bytes
204  * Return: number of bytes of response data, or <0 if error. Note that error
205  * codes can be from errno.h or -ve EC_RES_INVALID_CHECKSUM values (and they
206  * overlap!)
207  */
handle_proto3_response(struct cros_ec_dev * dev,uint8_t ** dinp,int din_len)208 static int handle_proto3_response(struct cros_ec_dev *dev,
209 				  uint8_t **dinp, int din_len)
210 {
211 	struct ec_host_response *rs = (struct ec_host_response *)dev->din;
212 	int in_bytes;
213 	int csum;
214 
215 	cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs));
216 
217 	/* Check input data */
218 	if (rs->struct_version != EC_HOST_RESPONSE_VERSION) {
219 		debug("%s: EC response version mismatch\n", __func__);
220 		return -EC_RES_INVALID_RESPONSE;
221 	}
222 
223 	if (rs->reserved) {
224 		debug("%s: EC response reserved != 0\n", __func__);
225 		return -EC_RES_INVALID_RESPONSE;
226 	}
227 
228 	if (rs->data_len > din_len) {
229 		debug("%s: EC returned too much data\n", __func__);
230 		return -EC_RES_RESPONSE_TOO_BIG;
231 	}
232 
233 	cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len);
234 
235 	/* Update in_bytes to actual data size */
236 	in_bytes = sizeof(*rs) + rs->data_len;
237 
238 	/* Verify checksum */
239 	csum = cros_ec_calc_checksum(dev->din, in_bytes);
240 	if (csum) {
241 		debug("%s: EC response checksum invalid: 0x%02x\n", __func__,
242 		      csum);
243 		return -EC_RES_INVALID_CHECKSUM;
244 	}
245 
246 	/* Return error result, if any */
247 	if (rs->result)
248 		return -(int)rs->result;
249 
250 	/* If we're still here, set response data pointer and return length */
251 	*dinp = (uint8_t *)(rs + 1);
252 
253 	return rs->data_len;
254 }
255 
send_command_proto3(struct cros_ec_dev * cdev,int cmd,int cmd_version,const void * dout,int dout_len,uint8_t ** dinp,int din_len)256 static int send_command_proto3(struct cros_ec_dev *cdev,
257 			       int cmd, int cmd_version,
258 			       const void *dout, int dout_len,
259 			       uint8_t **dinp, int din_len)
260 {
261 	struct dm_cros_ec_ops *ops;
262 	int out_bytes, in_bytes;
263 	int rv;
264 
265 	/* Create request packet */
266 	out_bytes = create_proto3_request(cdev, cmd, cmd_version,
267 					  dout, dout_len);
268 	if (out_bytes < 0)
269 		return out_bytes;
270 
271 	/* Prepare response buffer */
272 	in_bytes = prepare_proto3_response_buffer(cdev, din_len);
273 	if (in_bytes < 0)
274 		return in_bytes;
275 
276 	ops = dm_cros_ec_get_ops(cdev->dev);
277 	rv = ops->packet ? ops->packet(cdev->dev, out_bytes, in_bytes) :
278 			-ENOSYS;
279 	if (rv < 0)
280 		return rv;
281 
282 	/* Process the response */
283 	return handle_proto3_response(cdev, dinp, din_len);
284 }
285 
send_command(struct cros_ec_dev * dev,uint cmd,int cmd_version,const void * dout,int dout_len,uint8_t ** dinp,int din_len)286 static int send_command(struct cros_ec_dev *dev, uint cmd, int cmd_version,
287 			const void *dout, int dout_len,
288 			uint8_t **dinp, int din_len)
289 {
290 	struct dm_cros_ec_ops *ops;
291 	int ret = -1;
292 
293 	/* Handle protocol version 3 support */
294 	if (dev->protocol_version == 3) {
295 		return send_command_proto3(dev, cmd, cmd_version,
296 					   dout, dout_len, dinp, din_len);
297 	}
298 
299 	ops = dm_cros_ec_get_ops(dev->dev);
300 	ret = ops->command(dev->dev, cmd, cmd_version,
301 			   (const uint8_t *)dout, dout_len, dinp, din_len);
302 
303 	return ret;
304 }
305 
306 /**
307  * Send a command to the CROS-EC device and return the reply.
308  *
309  * The device's internal input/output buffers are used.
310  *
311  * @param dev		CROS-EC device
312  * @param cmd		Command to send (EC_CMD_...)
313  * @param cmd_version	Version of command to send (EC_VER_...)
314  * @param dout          Output data (may be NULL If dout_len=0)
315  * @param dout_len      Size of output data in bytes
316  * @param dinp          Response data (may be NULL If din_len=0).
317  *			If not NULL, it will be updated to point to the data
318  *			and will always be double word aligned (64-bits)
319  * @param din_len       Maximum size of response in bytes
320  * Return: number of bytes in response, or -ve on error
321  */
ec_command_inptr(struct udevice * dev,uint cmd,int cmd_version,const void * dout,int dout_len,uint8_t ** dinp,int din_len)322 static int ec_command_inptr(struct udevice *dev, uint cmd,
323 			    int cmd_version, const void *dout, int dout_len,
324 			    uint8_t **dinp, int din_len)
325 {
326 	struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
327 	uint8_t *din = NULL;
328 	int len;
329 
330 	len = send_command(cdev, cmd, cmd_version, dout, dout_len, &din,
331 			   din_len);
332 
333 	/* If the command doesn't complete, wait a while */
334 	if (len == -EC_RES_IN_PROGRESS) {
335 		struct ec_response_get_comms_status *resp = NULL;
336 		ulong start;
337 
338 		/* Wait for command to complete */
339 		start = get_timer(0);
340 		do {
341 			int ret;
342 
343 			mdelay(50);	/* Insert some reasonable delay */
344 			ret = send_command(cdev, EC_CMD_GET_COMMS_STATUS, 0,
345 					   NULL, 0,
346 					   (uint8_t **)&resp, sizeof(*resp));
347 			if (ret < 0)
348 				return ret;
349 
350 			if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) {
351 				debug("%s: Command %#02x timeout\n",
352 				      __func__, cmd);
353 				return -EC_RES_TIMEOUT;
354 			}
355 		} while (resp->flags & EC_COMMS_STATUS_PROCESSING);
356 
357 		/* OK it completed, so read the status response */
358 		/* not sure why it was 0 for the last argument */
359 		len = send_command(cdev, EC_CMD_RESEND_RESPONSE, 0, NULL, 0,
360 				   &din, din_len);
361 	}
362 
363 	debug("%s: len=%d, din=%p\n", __func__, len, din);
364 	if (dinp) {
365 		/* If we have any data to return, it must be 64bit-aligned */
366 		assert(len <= 0 || !((uintptr_t)din & 7));
367 		*dinp = din;
368 	}
369 
370 	return len;
371 }
372 
373 /**
374  * Send a command to the CROS-EC device and return the reply.
375  *
376  * The device's internal input/output buffers are used.
377  *
378  * @param dev		CROS-EC device
379  * @param cmd		Command to send (EC_CMD_...)
380  * @param cmd_version	Version of command to send (EC_VER_...)
381  * @param dout          Output data (may be NULL If dout_len=0)
382  * @param dout_len      Size of output data in bytes
383  * @param din           Response data (may be NULL If din_len=0).
384  *			It not NULL, it is a place for ec_command() to copy the
385  *      data to.
386  * @param din_len       Maximum size of response in bytes
387  * Return: number of bytes in response, or -ve on error
388  */
ec_command(struct udevice * dev,uint cmd,int cmd_version,const void * dout,int dout_len,void * din,int din_len)389 static int ec_command(struct udevice *dev, uint cmd, int cmd_version,
390 		      const void *dout, int dout_len,
391 		      void *din, int din_len)
392 {
393 	uint8_t *in_buffer;
394 	int len;
395 
396 	assert((din_len == 0) || din);
397 	len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len,
398 			       &in_buffer, din_len);
399 	if (len > 0) {
400 		/*
401 		 * If we were asked to put it somewhere, do so, otherwise just
402 		 * disregard the result.
403 		 */
404 		if (din && in_buffer) {
405 			assert(len <= din_len);
406 			if (len > din_len)
407 				return -ENOSPC;
408 			memmove(din, in_buffer, len);
409 		}
410 	}
411 	return len;
412 }
413 
cros_ec_scan_keyboard(struct udevice * dev,struct mbkp_keyscan * scan)414 int cros_ec_scan_keyboard(struct udevice *dev, struct mbkp_keyscan *scan)
415 {
416 	if (ec_command(dev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan,
417 		       sizeof(scan->data)) != sizeof(scan->data))
418 		return -1;
419 
420 	return 0;
421 }
422 
cros_ec_get_next_event(struct udevice * dev,struct ec_response_get_next_event * event)423 int cros_ec_get_next_event(struct udevice *dev,
424 			   struct ec_response_get_next_event *event)
425 {
426 	int ret;
427 
428 	ret = ec_command(dev, EC_CMD_GET_NEXT_EVENT, 0, NULL, 0,
429 			 event, sizeof(*event));
430 	if (ret < 0)
431 		return ret;
432 	else if (ret != sizeof(*event))
433 		return -EC_RES_INVALID_RESPONSE;
434 
435 	return 0;
436 }
437 
cros_ec_read_id(struct udevice * dev,char * id,int maxlen)438 int cros_ec_read_id(struct udevice *dev, char *id, int maxlen)
439 {
440 	struct ec_response_get_version *r;
441 	int ret;
442 
443 	ret = ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
444 			       (uint8_t **)&r, sizeof(*r));
445 	if (ret != sizeof(*r)) {
446 		log_err("Got rc %d, expected %u\n", ret, (uint)sizeof(*r));
447 		return -1;
448 	}
449 
450 	if (maxlen > (int)sizeof(r->version_string_ro))
451 		maxlen = sizeof(r->version_string_ro);
452 
453 	switch (r->current_image) {
454 	case EC_IMAGE_RO:
455 		memcpy(id, r->version_string_ro, maxlen);
456 		break;
457 	case EC_IMAGE_RW:
458 		memcpy(id, r->version_string_rw, maxlen);
459 		break;
460 	default:
461 		log_err("Invalid EC image %d\n", r->current_image);
462 		return -1;
463 	}
464 
465 	id[maxlen - 1] = '\0';
466 	return 0;
467 }
468 
cros_ec_read_version(struct udevice * dev,struct ec_response_get_version ** versionp)469 int cros_ec_read_version(struct udevice *dev,
470 			 struct ec_response_get_version **versionp)
471 {
472 	if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
473 			(uint8_t **)versionp, sizeof(**versionp))
474 			!= sizeof(**versionp))
475 		return -1;
476 
477 	return 0;
478 }
479 
cros_ec_read_build_info(struct udevice * dev,char ** strp)480 int cros_ec_read_build_info(struct udevice *dev, char **strp)
481 {
482 	if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0,
483 			(uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0)
484 		return -1;
485 
486 	return 0;
487 }
488 
cros_ec_read_current_image(struct udevice * dev,enum ec_current_image * image)489 int cros_ec_read_current_image(struct udevice *dev,
490 			       enum ec_current_image *image)
491 {
492 	struct ec_response_get_version *r;
493 
494 	if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
495 			(uint8_t **)&r, sizeof(*r)) != sizeof(*r))
496 		return -1;
497 
498 	*image = r->current_image;
499 	return 0;
500 }
501 
cros_ec_wait_on_hash_done(struct udevice * dev,struct ec_params_vboot_hash * p,struct ec_response_vboot_hash * hash)502 static int cros_ec_wait_on_hash_done(struct udevice *dev,
503 				     struct ec_params_vboot_hash *p,
504 				     struct ec_response_vboot_hash *hash)
505 {
506 	ulong start;
507 
508 	start = get_timer(0);
509 	while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) {
510 		mdelay(CROS_EC_HASH_CHECK_DELAY_MS);
511 
512 		p->cmd = EC_VBOOT_HASH_GET;
513 
514 		if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, p, sizeof(*p), hash,
515 			       sizeof(*hash)) < 0)
516 			return -1;
517 
518 		if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) {
519 			debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__);
520 			return -EC_RES_TIMEOUT;
521 		}
522 	}
523 	return 0;
524 }
525 
cros_ec_read_hash(struct udevice * dev,uint hash_offset,struct ec_response_vboot_hash * hash)526 int cros_ec_read_hash(struct udevice *dev, uint hash_offset,
527 		      struct ec_response_vboot_hash *hash)
528 {
529 	struct ec_params_vboot_hash p;
530 	int rv;
531 
532 	p.cmd = EC_VBOOT_HASH_GET;
533 	p.offset = hash_offset;
534 	if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
535 		       hash, sizeof(*hash)) < 0)
536 		return -1;
537 
538 	/* If the EC is busy calculating the hash, fidget until it's done. */
539 	rv = cros_ec_wait_on_hash_done(dev, &p, hash);
540 	if (rv)
541 		return rv;
542 
543 	/* If the hash is valid, we're done. Otherwise, we have to kick it off
544 	 * again and wait for it to complete. Note that we explicitly assume
545 	 * that hashing zero bytes is always wrong, even though that would
546 	 * produce a valid hash value. */
547 	if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size)
548 		return 0;
549 
550 	debug("%s: No valid hash (status=%d size=%d). Compute one...\n",
551 	      __func__, hash->status, hash->size);
552 
553 	p.cmd = EC_VBOOT_HASH_START;
554 	p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
555 	p.nonce_size = 0;
556 	p.offset = hash_offset;
557 
558 	if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
559 		       hash, sizeof(*hash)) < 0)
560 		return -1;
561 
562 	rv = cros_ec_wait_on_hash_done(dev, &p, hash);
563 	if (rv)
564 		return rv;
565 	if (hash->status != EC_VBOOT_HASH_STATUS_DONE) {
566 		log_err("Hash did not complete, status=%d\n", hash->status);
567 		return -EIO;
568 	}
569 
570 	debug("%s: hash done\n", __func__);
571 
572 	return 0;
573 }
574 
cros_ec_invalidate_hash(struct udevice * dev)575 static int cros_ec_invalidate_hash(struct udevice *dev)
576 {
577 	struct ec_params_vboot_hash p;
578 	struct ec_response_vboot_hash *hash;
579 
580 	/* We don't have an explict command for the EC to discard its current
581 	 * hash value, so we'll just tell it to calculate one that we know is
582 	 * wrong (we claim that hashing zero bytes is always invalid).
583 	 */
584 	p.cmd = EC_VBOOT_HASH_RECALC;
585 	p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
586 	p.nonce_size = 0;
587 	p.offset = 0;
588 	p.size = 0;
589 
590 	debug("%s:\n", __func__);
591 
592 	if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
593 		       (uint8_t **)&hash, sizeof(*hash)) < 0)
594 		return -1;
595 
596 	/* No need to wait for it to finish */
597 	return 0;
598 }
599 
cros_ec_hello(struct udevice * dev,uint * handshakep)600 int cros_ec_hello(struct udevice *dev, uint *handshakep)
601 {
602 	struct ec_params_hello req;
603 	struct ec_response_hello *resp;
604 
605 	req.in_data = 0x12345678;
606 	if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
607 			     (uint8_t **)&resp, sizeof(*resp)) < 0)
608 		return -EIO;
609 	if (resp->out_data != req.in_data + 0x01020304) {
610 		printf("Received invalid handshake %x\n", resp->out_data);
611 		if (handshakep)
612 			*handshakep = req.in_data;
613 		return -ENOTSYNC;
614 	}
615 
616 	return 0;
617 }
618 
cros_ec_reboot(struct udevice * dev,enum ec_reboot_cmd cmd,uint8_t flags)619 int cros_ec_reboot(struct udevice *dev, enum ec_reboot_cmd cmd, uint8_t flags)
620 {
621 	struct ec_params_reboot_ec p;
622 
623 	p.cmd = cmd;
624 	p.flags = flags;
625 
626 	if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0)
627 			< 0)
628 		return -1;
629 
630 	if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) {
631 		ulong start;
632 
633 		/*
634 		 * EC reboot will take place immediately so delay to allow it
635 		 * to complete.  Note that some reboot types (EC_REBOOT_COLD)
636 		 * will reboot the AP as well, in which case we won't actually
637 		 * get to this point.
638 		 */
639 		mdelay(50);
640 		start = get_timer(0);
641 		while (cros_ec_hello(dev, NULL)) {
642 			if (get_timer(start) > 3000) {
643 				log_err("EC did not return from reboot\n");
644 				return -ETIMEDOUT;
645 			}
646 			mdelay(5);
647 		}
648 	}
649 
650 	return 0;
651 }
652 
cros_ec_interrupt_pending(struct udevice * dev)653 int cros_ec_interrupt_pending(struct udevice *dev)
654 {
655 	struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
656 
657 	/* no interrupt support : always poll */
658 	if (!dm_gpio_is_valid(&cdev->ec_int))
659 		return -ENOENT;
660 
661 	return dm_gpio_get_value(&cdev->ec_int);
662 }
663 
cros_ec_info(struct udevice * dev,struct ec_response_mkbp_info * info)664 int cros_ec_info(struct udevice *dev, struct ec_response_mkbp_info *info)
665 {
666 	if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info,
667 		       sizeof(*info)) != sizeof(*info))
668 		return -1;
669 
670 	return 0;
671 }
672 
cros_ec_get_event_mask(struct udevice * dev,uint type,uint32_t * mask)673 int cros_ec_get_event_mask(struct udevice *dev, uint type, uint32_t *mask)
674 {
675 	struct ec_response_host_event_mask rsp;
676 	int ret;
677 
678 	ret = ec_command(dev, type, 0, NULL, 0, &rsp, sizeof(rsp));
679 	if (ret < 0)
680 		return ret;
681 	else if (ret != sizeof(rsp))
682 		return -EINVAL;
683 
684 	*mask = rsp.mask;
685 
686 	return 0;
687 }
688 
cros_ec_set_event_mask(struct udevice * dev,uint type,uint32_t mask)689 int cros_ec_set_event_mask(struct udevice *dev, uint type, uint32_t mask)
690 {
691 	struct ec_params_host_event_mask req;
692 	int ret;
693 
694 	req.mask = mask;
695 
696 	ret = ec_command(dev, type, 0, &req, sizeof(req), NULL, 0);
697 	if (ret < 0)
698 		return ret;
699 
700 	return 0;
701 }
702 
cros_ec_get_host_events(struct udevice * dev,uint32_t * events_ptr)703 int cros_ec_get_host_events(struct udevice *dev, uint32_t *events_ptr)
704 {
705 	struct ec_response_host_event_mask *resp;
706 
707 	/*
708 	 * Use the B copy of the event flags, because the main copy is already
709 	 * used by ACPI/SMI.
710 	 */
711 	if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0,
712 		       (uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp))
713 		return -1;
714 
715 	if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID))
716 		return -1;
717 
718 	*events_ptr = resp->mask;
719 	return 0;
720 }
721 
cros_ec_clear_host_events(struct udevice * dev,uint32_t events)722 int cros_ec_clear_host_events(struct udevice *dev, uint32_t events)
723 {
724 	struct ec_params_host_event_mask params;
725 
726 	params.mask = events;
727 
728 	/*
729 	 * Use the B copy of the event flags, so it affects the data returned
730 	 * by cros_ec_get_host_events().
731 	 */
732 	if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0,
733 		       &params, sizeof(params), NULL, 0) < 0)
734 		return -1;
735 
736 	return 0;
737 }
738 
cros_ec_flash_protect(struct udevice * dev,uint32_t set_mask,uint32_t set_flags,struct ec_response_flash_protect * resp)739 int cros_ec_flash_protect(struct udevice *dev, uint32_t set_mask,
740 			  uint32_t set_flags,
741 			  struct ec_response_flash_protect *resp)
742 {
743 	struct ec_params_flash_protect params;
744 
745 	params.mask = set_mask;
746 	params.flags = set_flags;
747 
748 	if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT,
749 		       &params, sizeof(params),
750 		       resp, sizeof(*resp)) != sizeof(*resp))
751 		return -1;
752 
753 	return 0;
754 }
755 
cros_ec_check_version(struct udevice * dev)756 static int cros_ec_check_version(struct udevice *dev)
757 {
758 	struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
759 	struct ec_params_hello req;
760 
761 	struct dm_cros_ec_ops *ops;
762 	int ret;
763 
764 	ops = dm_cros_ec_get_ops(dev);
765 	if (ops->check_version) {
766 		ret = ops->check_version(dev);
767 		if (ret)
768 			return ret;
769 	}
770 
771 	/*
772 	 * TODO(sjg@chromium.org).
773 	 * There is a strange oddity here with the EC. We could just ignore
774 	 * the response, i.e. pass the last two parameters as NULL and 0.
775 	 * In this case we won't read back very many bytes from the EC.
776 	 * On the I2C bus the EC gets upset about this and will try to send
777 	 * the bytes anyway. This means that we will have to wait for that
778 	 * to complete before continuing with a new EC command.
779 	 *
780 	 * This problem is probably unique to the I2C bus.
781 	 *
782 	 * So for now, just read all the data anyway.
783 	 */
784 
785 	/* Try sending a version 3 packet */
786 	cdev->protocol_version = 3;
787 	req.in_data = 0;
788 	ret = cros_ec_hello(dev, NULL);
789 	if (!ret || ret == -ENOTSYNC)
790 		return 0;
791 
792 	/* Try sending a version 2 packet */
793 	cdev->protocol_version = 2;
794 	ret = cros_ec_hello(dev, NULL);
795 	if (!ret || ret == -ENOTSYNC)
796 		return 0;
797 
798 	/*
799 	 * Fail if we're still here, since the EC doesn't understand any
800 	 * protcol version we speak.  Version 1 interface without command
801 	 * version is no longer supported, and we don't know about any new
802 	 * protocol versions.
803 	 */
804 	cdev->protocol_version = 0;
805 	printf("%s: ERROR: old EC interface not supported\n", __func__);
806 	return -1;
807 }
808 
cros_ec_test(struct udevice * dev)809 int cros_ec_test(struct udevice *dev)
810 {
811 	uint out_data;
812 	int ret;
813 
814 	ret = cros_ec_hello(dev, &out_data);
815 	if (ret == -ENOTSYNC) {
816 		printf("Received invalid handshake %x\n", out_data);
817 		return ret;
818 	} else if (ret) {
819 		printf("ec_command_inptr() returned error\n");
820 		return ret;
821 	}
822 
823 	return 0;
824 }
825 
cros_ec_flash_offset(struct udevice * dev,enum ec_flash_region region,uint32_t * offset,uint32_t * size)826 int cros_ec_flash_offset(struct udevice *dev, enum ec_flash_region region,
827 		      uint32_t *offset, uint32_t *size)
828 {
829 	struct ec_params_flash_region_info p;
830 	struct ec_response_flash_region_info *r;
831 	int ret;
832 
833 	p.region = region;
834 	ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO,
835 			 EC_VER_FLASH_REGION_INFO,
836 			 &p, sizeof(p), (uint8_t **)&r, sizeof(*r));
837 	if (ret != sizeof(*r))
838 		return -1;
839 
840 	if (offset)
841 		*offset = r->offset;
842 	if (size)
843 		*size = r->size;
844 
845 	return 0;
846 }
847 
cros_ec_flash_erase(struct udevice * dev,uint32_t offset,uint32_t size)848 int cros_ec_flash_erase(struct udevice *dev, uint32_t offset, uint32_t size)
849 {
850 	struct ec_params_flash_erase p;
851 
852 	p.offset = offset;
853 	p.size = size;
854 	return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p),
855 			NULL, 0);
856 }
857 
858 /**
859  * Write a single block to the flash
860  *
861  * Write a block of data to the EC flash. The size must not exceed the flash
862  * write block size which you can obtain from cros_ec_flash_write_burst_size().
863  *
864  * The offset starts at 0. You can obtain the region information from
865  * cros_ec_flash_offset() to find out where to write for a particular region.
866  *
867  * Attempting to write to the region where the EC is currently running from
868  * will result in an error.
869  *
870  * @param dev		CROS-EC device
871  * @param data		Pointer to data buffer to write
872  * @param offset	Offset within flash to write to.
873  * @param size		Number of bytes to write
874  * Return: 0 if ok, -1 on error
875  */
cros_ec_flash_write_block(struct udevice * dev,const uint8_t * data,uint32_t offset,uint32_t size)876 static int cros_ec_flash_write_block(struct udevice *dev, const uint8_t *data,
877 				     uint32_t offset, uint32_t size)
878 {
879 	struct ec_params_flash_write *p;
880 	int ret;
881 
882 	p = malloc(sizeof(*p) + size);
883 	if (!p)
884 		return -ENOMEM;
885 
886 	p->offset = offset;
887 	p->size = size;
888 	assert(data && p->size <= EC_FLASH_WRITE_VER0_SIZE);
889 	memcpy(p + 1, data, p->size);
890 
891 	ret = ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0,
892 			  p, sizeof(*p) + size, NULL, 0) >= 0 ? 0 : -1;
893 
894 	free(p);
895 
896 	return ret;
897 }
898 
899 /**
900  * Return optimal flash write burst size
901  */
cros_ec_flash_write_burst_size(struct udevice * dev)902 static int cros_ec_flash_write_burst_size(struct udevice *dev)
903 {
904 	return EC_FLASH_WRITE_VER0_SIZE;
905 }
906 
907 /**
908  * Check if a block of data is erased (all 0xff)
909  *
910  * This function is useful when dealing with flash, for checking whether a
911  * data block is erased and thus does not need to be programmed.
912  *
913  * @param data		Pointer to data to check (must be word-aligned)
914  * @param size		Number of bytes to check (must be word-aligned)
915  * Return: 0 if erased, non-zero if any word is not erased
916  */
cros_ec_data_is_erased(const uint32_t * data,int size)917 static int cros_ec_data_is_erased(const uint32_t *data, int size)
918 {
919 	assert(!(size & 3));
920 	size /= sizeof(uint32_t);
921 	for (; size > 0; size -= 4, data++)
922 		if (*data != -1U)
923 			return 0;
924 
925 	return 1;
926 }
927 
928 /**
929  * Read back flash parameters
930  *
931  * This function reads back parameters of the flash as reported by the EC
932  *
933  * @param dev  Pointer to device
934  * @param info Pointer to output flash info struct
935  */
cros_ec_read_flashinfo(struct udevice * dev,struct ec_response_flash_info * info)936 int cros_ec_read_flashinfo(struct udevice *dev,
937 			   struct ec_response_flash_info *info)
938 {
939 	int ret;
940 
941 	ret = ec_command(dev, EC_CMD_FLASH_INFO, 0,
942 			 NULL, 0, info, sizeof(*info));
943 	if (ret < 0)
944 		return ret;
945 
946 	return ret < sizeof(*info) ? -1 : 0;
947 }
948 
cros_ec_flash_write(struct udevice * dev,const uint8_t * data,uint32_t offset,uint32_t size)949 int cros_ec_flash_write(struct udevice *dev, const uint8_t *data,
950 			uint32_t offset, uint32_t size)
951 {
952 	struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
953 	uint32_t burst = cros_ec_flash_write_burst_size(dev);
954 	uint32_t end, off;
955 	int ret;
956 
957 	if (!burst)
958 		return -EINVAL;
959 
960 	/*
961 	 * TODO: round up to the nearest multiple of write size.  Can get away
962 	 * without that on link right now because its write size is 4 bytes.
963 	 */
964 	end = offset + size;
965 	for (off = offset; off < end; off += burst, data += burst) {
966 		uint32_t todo;
967 
968 		/* If the data is empty, there is no point in programming it */
969 		todo = min(end - off, burst);
970 		if (cdev->optimise_flash_write &&
971 		    cros_ec_data_is_erased((uint32_t *)data, todo))
972 			continue;
973 
974 		ret = cros_ec_flash_write_block(dev, data, off, todo);
975 		if (ret)
976 			return ret;
977 	}
978 
979 	return 0;
980 }
981 
982 /**
983  * Run verification on a slot
984  *
985  * @param me     CrosEc instance
986  * @param region Region to run verification on
987  * Return: 0 if success or not applicable. Non-zero if verification failed.
988  */
cros_ec_efs_verify(struct udevice * dev,enum ec_flash_region region)989 int cros_ec_efs_verify(struct udevice *dev, enum ec_flash_region region)
990 {
991 	struct ec_params_efs_verify p;
992 	int rv;
993 
994 	log_info("EFS: EC is verifying updated image...\n");
995 	p.region = region;
996 
997 	rv = ec_command(dev, EC_CMD_EFS_VERIFY, 0, &p, sizeof(p), NULL, 0);
998 	if (rv >= 0) {
999 		log_info("EFS: Verification success\n");
1000 		return 0;
1001 	}
1002 	if (rv == -EC_RES_INVALID_COMMAND) {
1003 		log_info("EFS: EC doesn't support EFS_VERIFY command\n");
1004 		return 0;
1005 	}
1006 	log_info("EFS: Verification failed\n");
1007 
1008 	return rv;
1009 }
1010 
1011 /**
1012  * Read a single block from the flash
1013  *
1014  * Read a block of data from the EC flash. The size must not exceed the flash
1015  * write block size which you can obtain from cros_ec_flash_write_burst_size().
1016  *
1017  * The offset starts at 0. You can obtain the region information from
1018  * cros_ec_flash_offset() to find out where to read for a particular region.
1019  *
1020  * @param dev		CROS-EC device
1021  * @param data		Pointer to data buffer to read into
1022  * @param offset	Offset within flash to read from
1023  * @param size		Number of bytes to read
1024  * Return: 0 if ok, -1 on error
1025  */
cros_ec_flash_read_block(struct udevice * dev,uint8_t * data,uint32_t offset,uint32_t size)1026 static int cros_ec_flash_read_block(struct udevice *dev, uint8_t *data,
1027 				    uint32_t offset, uint32_t size)
1028 {
1029 	struct ec_params_flash_read p;
1030 
1031 	p.offset = offset;
1032 	p.size = size;
1033 
1034 	return ec_command(dev, EC_CMD_FLASH_READ, 0,
1035 			  &p, sizeof(p), data, size) >= 0 ? 0 : -1;
1036 }
1037 
cros_ec_flash_read(struct udevice * dev,uint8_t * data,uint32_t offset,uint32_t size)1038 int cros_ec_flash_read(struct udevice *dev, uint8_t *data, uint32_t offset,
1039 		       uint32_t size)
1040 {
1041 	uint32_t burst = cros_ec_flash_write_burst_size(dev);
1042 	uint32_t end, off;
1043 	int ret;
1044 
1045 	end = offset + size;
1046 	for (off = offset; off < end; off += burst, data += burst) {
1047 		ret = cros_ec_flash_read_block(dev, data, off,
1048 					    min(end - off, burst));
1049 		if (ret)
1050 			return ret;
1051 	}
1052 
1053 	return 0;
1054 }
1055 
cros_ec_flash_update_rw(struct udevice * dev,const uint8_t * image,int image_size)1056 int cros_ec_flash_update_rw(struct udevice *dev, const uint8_t *image,
1057 			    int image_size)
1058 {
1059 	uint32_t rw_offset, rw_size;
1060 	int ret;
1061 
1062 	if (cros_ec_flash_offset(dev, EC_FLASH_REGION_ACTIVE, &rw_offset,
1063 		&rw_size))
1064 		return -1;
1065 	if (image_size > (int)rw_size)
1066 		return -1;
1067 
1068 	/* Invalidate the existing hash, just in case the AP reboots
1069 	 * unexpectedly during the update. If that happened, the EC RW firmware
1070 	 * would be invalid, but the EC would still have the original hash.
1071 	 */
1072 	ret = cros_ec_invalidate_hash(dev);
1073 	if (ret)
1074 		return ret;
1075 
1076 	/*
1077 	 * Erase the entire RW section, so that the EC doesn't see any garbage
1078 	 * past the new image if it's smaller than the current image.
1079 	 *
1080 	 * TODO: could optimize this to erase just the current image, since
1081 	 * presumably everything past that is 0xff's.  But would still need to
1082 	 * round up to the nearest multiple of erase size.
1083 	 */
1084 	ret = cros_ec_flash_erase(dev, rw_offset, rw_size);
1085 	if (ret)
1086 		return ret;
1087 
1088 	/* Write the image */
1089 	ret = cros_ec_flash_write(dev, image, rw_offset, image_size);
1090 	if (ret)
1091 		return ret;
1092 
1093 	return 0;
1094 }
1095 
cros_ec_get_sku_id(struct udevice * dev)1096 int cros_ec_get_sku_id(struct udevice *dev)
1097 {
1098 	struct ec_sku_id_info *r;
1099 	int ret;
1100 
1101 	ret = ec_command_inptr(dev, EC_CMD_GET_SKU_ID, 0, NULL, 0,
1102 			       (uint8_t **)&r, sizeof(*r));
1103 	if (ret != sizeof(*r))
1104 		return -ret;
1105 
1106 	return r->sku_id;
1107 }
1108 
cros_ec_read_nvdata(struct udevice * dev,uint8_t * block,int size)1109 int cros_ec_read_nvdata(struct udevice *dev, uint8_t *block, int size)
1110 {
1111 	struct ec_params_vbnvcontext p;
1112 	int len;
1113 
1114 	if (size != EC_VBNV_BLOCK_SIZE && size != EC_VBNV_BLOCK_SIZE_V2)
1115 		return -EINVAL;
1116 
1117 	p.op = EC_VBNV_CONTEXT_OP_READ;
1118 
1119 	len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
1120 			 &p, sizeof(uint32_t) + size, block, size);
1121 	if (len != size) {
1122 		log_err("Expected %d bytes, got %d\n", size, len);
1123 		return -EIO;
1124 	}
1125 
1126 	return 0;
1127 }
1128 
cros_ec_write_nvdata(struct udevice * dev,const uint8_t * block,int size)1129 int cros_ec_write_nvdata(struct udevice *dev, const uint8_t *block, int size)
1130 {
1131 	struct ec_params_vbnvcontext p;
1132 	int len;
1133 
1134 	if (size != EC_VBNV_BLOCK_SIZE && size != EC_VBNV_BLOCK_SIZE_V2)
1135 		return -EINVAL;
1136 	p.op = EC_VBNV_CONTEXT_OP_WRITE;
1137 	memcpy(p.block, block, size);
1138 
1139 	len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
1140 			&p, sizeof(uint32_t) + size, NULL, 0);
1141 	if (len < 0)
1142 		return -1;
1143 
1144 	return 0;
1145 }
1146 
cros_ec_battery_cutoff(struct udevice * dev,uint8_t flags)1147 int cros_ec_battery_cutoff(struct udevice *dev, uint8_t flags)
1148 {
1149 	struct ec_params_battery_cutoff p;
1150 	int len;
1151 
1152 	p.flags = flags;
1153 	len = ec_command(dev, EC_CMD_BATTERY_CUT_OFF, 1, &p, sizeof(p),
1154 			 NULL, 0);
1155 
1156 	if (len < 0)
1157 		return -1;
1158 	return 0;
1159 }
1160 
cros_ec_set_pwm_duty(struct udevice * dev,uint8_t index,uint16_t duty)1161 int cros_ec_set_pwm_duty(struct udevice *dev, uint8_t index, uint16_t duty)
1162 {
1163 	struct ec_params_pwm_set_duty p;
1164 	int ret;
1165 
1166 	p.duty = duty;
1167 	p.pwm_type = EC_PWM_TYPE_GENERIC;
1168 	p.index = index;
1169 
1170 	ret = ec_command(dev, EC_CMD_PWM_SET_DUTY, 0, &p, sizeof(p),
1171 			 NULL, 0);
1172 	if (ret < 0)
1173 		return ret;
1174 
1175 	return 0;
1176 }
1177 
cros_ec_set_ldo(struct udevice * dev,uint8_t index,uint8_t state)1178 int cros_ec_set_ldo(struct udevice *dev, uint8_t index, uint8_t state)
1179 {
1180 	struct ec_params_ldo_set params;
1181 
1182 	params.index = index;
1183 	params.state = state;
1184 
1185 	if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0, &params, sizeof(params),
1186 			     NULL, 0))
1187 		return -1;
1188 
1189 	return 0;
1190 }
1191 
cros_ec_get_ldo(struct udevice * dev,uint8_t index,uint8_t * state)1192 int cros_ec_get_ldo(struct udevice *dev, uint8_t index, uint8_t *state)
1193 {
1194 	struct ec_params_ldo_get params;
1195 	struct ec_response_ldo_get *resp;
1196 
1197 	params.index = index;
1198 
1199 	if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0, &params, sizeof(params),
1200 			     (uint8_t **)&resp, sizeof(*resp)) !=
1201 			     sizeof(*resp))
1202 		return -1;
1203 
1204 	*state = resp->state;
1205 
1206 	return 0;
1207 }
1208 
cros_ec_register(struct udevice * dev)1209 int cros_ec_register(struct udevice *dev)
1210 {
1211 	struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
1212 	char id[MSG_BYTES];
1213 
1214 	cdev->dev = dev;
1215 	gpio_request_by_name(dev, "ec-interrupt", 0, &cdev->ec_int,
1216 			     GPIOD_IS_IN);
1217 	cdev->optimise_flash_write = dev_read_bool(dev, "optimise-flash-write");
1218 
1219 	if (cros_ec_check_version(dev)) {
1220 		debug("%s: Could not detect CROS-EC version\n", __func__);
1221 		return -CROS_EC_ERR_CHECK_VERSION;
1222 	}
1223 
1224 	if (cros_ec_read_id(dev, id, sizeof(id))) {
1225 		debug("%s: Could not read KBC ID\n", __func__);
1226 		return -CROS_EC_ERR_READ_ID;
1227 	}
1228 
1229 	/* Remember this device for use by the cros_ec command */
1230 	debug("Google Chrome EC v%d CROS-EC driver ready, id '%s'\n",
1231 	      cdev->protocol_version, id);
1232 
1233 	return 0;
1234 }
1235 
cros_ec_decode_ec_flash(struct udevice * dev,struct fdt_cros_ec * config)1236 int cros_ec_decode_ec_flash(struct udevice *dev, struct fdt_cros_ec *config)
1237 {
1238 	ofnode flash_node, node;
1239 
1240 	flash_node = dev_read_subnode(dev, "flash");
1241 	if (!ofnode_valid(flash_node)) {
1242 		debug("Failed to find flash node\n");
1243 		return -1;
1244 	}
1245 
1246 	if (ofnode_read_fmap_entry(flash_node,  &config->flash)) {
1247 		debug("Failed to decode flash node in chrome-ec\n");
1248 		return -1;
1249 	}
1250 
1251 	config->flash_erase_value = ofnode_read_s32_default(flash_node,
1252 							    "erase-value", -1);
1253 	ofnode_for_each_subnode(node, flash_node) {
1254 		const char *name = ofnode_get_name(node);
1255 		enum ec_flash_region region;
1256 
1257 		if (0 == strcmp(name, "ro")) {
1258 			region = EC_FLASH_REGION_RO;
1259 		} else if (0 == strcmp(name, "rw")) {
1260 			region = EC_FLASH_REGION_ACTIVE;
1261 		} else if (0 == strcmp(name, "wp-ro")) {
1262 			region = EC_FLASH_REGION_WP_RO;
1263 		} else {
1264 			debug("Unknown EC flash region name '%s'\n", name);
1265 			return -1;
1266 		}
1267 
1268 		if (ofnode_read_fmap_entry(node, &config->region[region])) {
1269 			debug("Failed to decode flash region in chrome-ec'\n");
1270 			return -1;
1271 		}
1272 	}
1273 
1274 	return 0;
1275 }
1276 
cros_ec_i2c_tunnel(struct udevice * dev,int port,struct i2c_msg * in,int nmsgs)1277 int cros_ec_i2c_tunnel(struct udevice *dev, int port, struct i2c_msg *in,
1278 		       int nmsgs)
1279 {
1280 	union {
1281 		struct ec_params_i2c_passthru p;
1282 		uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE];
1283 	} params;
1284 	union {
1285 		struct ec_response_i2c_passthru r;
1286 		uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE];
1287 	} response;
1288 	struct ec_params_i2c_passthru *p = &params.p;
1289 	struct ec_response_i2c_passthru *r = &response.r;
1290 	struct ec_params_i2c_passthru_msg *msg;
1291 	uint8_t *pdata, *read_ptr = NULL;
1292 	int read_len;
1293 	int size;
1294 	int rv;
1295 	int i;
1296 
1297 	p->port = port;
1298 
1299 	p->num_msgs = nmsgs;
1300 	size = sizeof(*p) + p->num_msgs * sizeof(*msg);
1301 
1302 	/* Create a message to write the register address and optional data */
1303 	pdata = (uint8_t *)p + size;
1304 
1305 	read_len = 0;
1306 	for (i = 0, msg = p->msg; i < nmsgs; i++, msg++, in++) {
1307 		bool is_read = in->flags & I2C_M_RD;
1308 
1309 		msg->addr_flags = in->addr;
1310 		msg->len = in->len;
1311 		if (is_read) {
1312 			msg->addr_flags |= EC_I2C_FLAG_READ;
1313 			read_len += in->len;
1314 			read_ptr = in->buf;
1315 			if (sizeof(*r) + read_len > sizeof(response)) {
1316 				puts("Read length too big for buffer\n");
1317 				return -1;
1318 			}
1319 		} else {
1320 			if (pdata - (uint8_t *)p + in->len > sizeof(params)) {
1321 				puts("Params too large for buffer\n");
1322 				return -1;
1323 			}
1324 			memcpy(pdata, in->buf, in->len);
1325 			pdata += in->len;
1326 		}
1327 	}
1328 
1329 	rv = ec_command(dev, EC_CMD_I2C_PASSTHRU, 0, p, pdata - (uint8_t *)p,
1330 			r, sizeof(*r) + read_len);
1331 	if (rv < 0)
1332 		return rv;
1333 
1334 	/* Parse response */
1335 	if (r->i2c_status & EC_I2C_STATUS_ERROR) {
1336 		printf("Transfer failed with status=0x%x\n", r->i2c_status);
1337 		return -1;
1338 	}
1339 
1340 	if (rv < sizeof(*r) + read_len) {
1341 		puts("Truncated read response\n");
1342 		return -1;
1343 	}
1344 
1345 	/* We only support a single read message for each transfer */
1346 	if (read_len)
1347 		memcpy(read_ptr, r->data, read_len);
1348 
1349 	return 0;
1350 }
1351 
cros_ec_get_features(struct udevice * dev,u64 * featuresp)1352 int cros_ec_get_features(struct udevice *dev, u64 *featuresp)
1353 {
1354 	struct ec_response_get_features r;
1355 	int rv;
1356 
1357 	rv = ec_command(dev, EC_CMD_GET_FEATURES, 0, NULL, 0, &r, sizeof(r));
1358 	if (rv != sizeof(r))
1359 		return -EIO;
1360 	*featuresp = r.flags[0] | (u64)r.flags[1] << 32;
1361 
1362 	return 0;
1363 }
1364 
cros_ec_check_feature(struct udevice * dev,uint feature)1365 int cros_ec_check_feature(struct udevice *dev, uint feature)
1366 {
1367 	struct ec_response_get_features r;
1368 	int rv;
1369 
1370 	rv = ec_command(dev, EC_CMD_GET_FEATURES, 0, NULL, 0, &r, sizeof(r));
1371 	if (rv != sizeof(r))
1372 		return -EIO;
1373 
1374 	if (feature >= 8 * sizeof(r.flags))
1375 		return -EINVAL;
1376 
1377 	return r.flags[feature / 32] & EC_FEATURE_MASK_0(feature) ? true :
1378 		 false;
1379 }
1380 
1381 /*
1382  * Query the EC for specified mask indicating enabled events.
1383  * The EC maintains separate event masks for SMI, SCI and WAKE.
1384  */
cros_ec_uhepi_cmd(struct udevice * dev,uint mask,uint action,uint64_t * value)1385 static int cros_ec_uhepi_cmd(struct udevice *dev, uint mask, uint action,
1386 			     uint64_t *value)
1387 {
1388 	int ret;
1389 	struct ec_params_host_event req;
1390 	struct ec_response_host_event rsp;
1391 
1392 	req.action = action;
1393 	req.mask_type = mask;
1394 	if (action != EC_HOST_EVENT_GET)
1395 		req.value = *value;
1396 	else
1397 		*value = 0;
1398 	ret = ec_command(dev, EC_CMD_HOST_EVENT, 0, &req, sizeof(req), &rsp,
1399 			 sizeof(rsp));
1400 
1401 	if (action != EC_HOST_EVENT_GET)
1402 		return ret;
1403 	if (ret == 0)
1404 		*value = rsp.value;
1405 
1406 	return ret;
1407 }
1408 
cros_ec_handle_non_uhepi_cmd(struct udevice * dev,uint hcmd,uint action,uint64_t * value)1409 static int cros_ec_handle_non_uhepi_cmd(struct udevice *dev, uint hcmd,
1410 					uint action, uint64_t *value)
1411 {
1412 	int ret = -1;
1413 	struct ec_params_host_event_mask req;
1414 	struct ec_response_host_event_mask rsp;
1415 
1416 	if (hcmd == INVALID_HCMD)
1417 		return ret;
1418 
1419 	if (action != EC_HOST_EVENT_GET)
1420 		req.mask = (uint32_t)*value;
1421 	else
1422 		*value = 0;
1423 
1424 	ret = ec_command(dev, hcmd, 0, &req, sizeof(req), &rsp, sizeof(rsp));
1425 	if (action != EC_HOST_EVENT_GET)
1426 		return ret;
1427 	if (ret == 0)
1428 		*value = rsp.mask;
1429 
1430 	return ret;
1431 }
1432 
cros_ec_is_uhepi_supported(struct udevice * dev)1433 bool cros_ec_is_uhepi_supported(struct udevice *dev)
1434 {
1435 #define UHEPI_SUPPORTED 1
1436 #define UHEPI_NOT_SUPPORTED 2
1437 	static int uhepi_support;
1438 
1439 	if (!uhepi_support) {
1440 		uhepi_support = cros_ec_check_feature(dev,
1441 			EC_FEATURE_UNIFIED_WAKE_MASKS) > 0 ? UHEPI_SUPPORTED :
1442 			UHEPI_NOT_SUPPORTED;
1443 		log_debug("Chrome EC: UHEPI %s\n",
1444 			  uhepi_support == UHEPI_SUPPORTED ? "supported" :
1445 			  "not supported");
1446 	}
1447 	return uhepi_support == UHEPI_SUPPORTED;
1448 }
1449 
cros_ec_get_mask(struct udevice * dev,uint type)1450 static int cros_ec_get_mask(struct udevice *dev, uint type)
1451 {
1452 	u64 value = 0;
1453 
1454 	if (cros_ec_is_uhepi_supported(dev)) {
1455 		cros_ec_uhepi_cmd(dev, type, EC_HOST_EVENT_GET, &value);
1456 	} else {
1457 		assert(type < ARRAY_SIZE(event_map));
1458 		cros_ec_handle_non_uhepi_cmd(dev, event_map[type].get_cmd,
1459 					     EC_HOST_EVENT_GET, &value);
1460 	}
1461 	return value;
1462 }
1463 
cros_ec_clear_mask(struct udevice * dev,uint type,u64 mask)1464 static int cros_ec_clear_mask(struct udevice *dev, uint type, u64 mask)
1465 {
1466 	if (cros_ec_is_uhepi_supported(dev))
1467 		return cros_ec_uhepi_cmd(dev, type, EC_HOST_EVENT_CLEAR, &mask);
1468 
1469 	assert(type < ARRAY_SIZE(event_map));
1470 
1471 	return cros_ec_handle_non_uhepi_cmd(dev, event_map[type].clear_cmd,
1472 					    EC_HOST_EVENT_CLEAR, &mask);
1473 }
1474 
cros_ec_get_events_b(struct udevice * dev)1475 uint64_t cros_ec_get_events_b(struct udevice *dev)
1476 {
1477 	return cros_ec_get_mask(dev, EC_HOST_EVENT_B);
1478 }
1479 
cros_ec_clear_events_b(struct udevice * dev,uint64_t mask)1480 int cros_ec_clear_events_b(struct udevice *dev, uint64_t mask)
1481 {
1482 	log_debug("Chrome EC: clear events_b mask to 0x%016llx\n", mask);
1483 
1484 	return cros_ec_clear_mask(dev, EC_HOST_EVENT_B, mask);
1485 }
1486 
cros_ec_read_limit_power(struct udevice * dev,int * limit_powerp)1487 int cros_ec_read_limit_power(struct udevice *dev, int *limit_powerp)
1488 {
1489 	struct ec_params_charge_state p;
1490 	struct ec_response_charge_state r;
1491 	int ret;
1492 
1493 	p.cmd = CHARGE_STATE_CMD_GET_PARAM;
1494 	p.get_param.param = CS_PARAM_LIMIT_POWER;
1495 	ret = ec_command(dev, EC_CMD_CHARGE_STATE, 0, &p, sizeof(p),
1496 			 &r, sizeof(r));
1497 
1498 	/*
1499 	 * If our EC doesn't support the LIMIT_POWER parameter, assume that
1500 	 * LIMIT_POWER is not requested.
1501 	 */
1502 	if (ret == -EC_RES_INVALID_PARAM || ret == -EC_RES_INVALID_COMMAND) {
1503 		log_warning("PARAM_LIMIT_POWER not supported by EC\n");
1504 		return -ENOSYS;
1505 	}
1506 
1507 	if (ret != sizeof(r.get_param))
1508 		return -EINVAL;
1509 
1510 	*limit_powerp = r.get_param.value;
1511 	return 0;
1512 }
1513 
cros_ec_config_powerbtn(struct udevice * dev,uint32_t flags)1514 int cros_ec_config_powerbtn(struct udevice *dev, uint32_t flags)
1515 {
1516 	struct ec_params_config_power_button params;
1517 	int ret;
1518 
1519 	params.flags = flags;
1520 	ret = ec_command(dev, EC_CMD_CONFIG_POWER_BUTTON, 0,
1521 			 &params, sizeof(params), NULL, 0);
1522 	if (ret < 0)
1523 		return ret;
1524 
1525 	return 0;
1526 }
1527 
cros_ec_get_lid_shutdown_mask(struct udevice * dev)1528 int cros_ec_get_lid_shutdown_mask(struct udevice *dev)
1529 {
1530 	u32 mask;
1531 	int ret;
1532 
1533 	ret = cros_ec_get_event_mask(dev, EC_CMD_HOST_EVENT_GET_SMI_MASK,
1534 				     &mask);
1535 	if (ret < 0)
1536 		return ret;
1537 
1538 	return !!(mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED));
1539 }
1540 
cros_ec_set_lid_shutdown_mask(struct udevice * dev,int enable)1541 int cros_ec_set_lid_shutdown_mask(struct udevice *dev, int enable)
1542 {
1543 	u32 mask;
1544 	int ret;
1545 
1546 	ret = cros_ec_get_event_mask(dev, EC_CMD_HOST_EVENT_GET_SMI_MASK,
1547 				     &mask);
1548 	if (ret < 0)
1549 		return ret;
1550 
1551 	/* Set lid close event state in the EC SMI event mask */
1552 	if (enable)
1553 		mask |= EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED);
1554 	else
1555 		mask &= ~EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED);
1556 
1557 	ret = cros_ec_set_event_mask(dev, EC_CMD_HOST_EVENT_SET_SMI_MASK, mask);
1558 	if (ret < 0)
1559 		return ret;
1560 
1561 	printf("EC: %sabled lid close event\n", enable ? "en" : "dis");
1562 	return 0;
1563 }
1564 
cros_ec_vstore_supported(struct udevice * dev)1565 int cros_ec_vstore_supported(struct udevice *dev)
1566 {
1567 	return cros_ec_check_feature(dev, EC_FEATURE_VSTORE);
1568 }
1569 
cros_ec_vstore_info(struct udevice * dev,u32 * lockedp)1570 int cros_ec_vstore_info(struct udevice *dev, u32 *lockedp)
1571 {
1572 	struct ec_response_vstore_info *resp;
1573 
1574 	if (ec_command_inptr(dev, EC_CMD_VSTORE_INFO, 0, NULL, 0,
1575 			     (uint8_t **)&resp, sizeof(*resp)) != sizeof(*resp))
1576 		return -EIO;
1577 
1578 	if (lockedp)
1579 		*lockedp = resp->slot_locked;
1580 
1581 	return resp->slot_count;
1582 }
1583 
1584 /*
1585  * cros_ec_vstore_read - Read data from EC vstore slot
1586  *
1587  * @slot: vstore slot to read from
1588  * @data: buffer to store read data, must be EC_VSTORE_SLOT_SIZE bytes
1589  */
cros_ec_vstore_read(struct udevice * dev,int slot,uint8_t * data)1590 int cros_ec_vstore_read(struct udevice *dev, int slot, uint8_t *data)
1591 {
1592 	struct ec_params_vstore_read req;
1593 	struct ec_response_vstore_read *resp;
1594 
1595 	req.slot = slot;
1596 	if (ec_command_inptr(dev, EC_CMD_VSTORE_READ, 0, &req, sizeof(req),
1597 			     (uint8_t **)&resp, sizeof(*resp)) != sizeof(*resp))
1598 		return -EIO;
1599 
1600 	if (!data || req.slot >= EC_VSTORE_SLOT_MAX)
1601 		return -EINVAL;
1602 
1603 	memcpy(data, resp->data, sizeof(resp->data));
1604 
1605 	return 0;
1606 }
1607 
1608 /*
1609  * cros_ec_vstore_write - Save data into EC vstore slot
1610  *
1611  * @slot: vstore slot to write into
1612  * @data: data to write
1613  * @size: size of data in bytes
1614  *
1615  * Maximum size of data is EC_VSTORE_SLOT_SIZE.  It is the callers
1616  * responsibility to check the number of implemented slots by
1617  * querying the vstore info.
1618  */
cros_ec_vstore_write(struct udevice * dev,int slot,const uint8_t * data,size_t size)1619 int cros_ec_vstore_write(struct udevice *dev, int slot, const uint8_t *data,
1620 			 size_t size)
1621 {
1622 	struct ec_params_vstore_write req;
1623 
1624 	if (slot >= EC_VSTORE_SLOT_MAX || size > EC_VSTORE_SLOT_SIZE)
1625 		return -EINVAL;
1626 
1627 	req.slot = slot;
1628 	memcpy(req.data, data, size);
1629 
1630 	if (ec_command(dev, EC_CMD_VSTORE_WRITE, 0, &req, sizeof(req), NULL, 0))
1631 		return -EIO;
1632 
1633 	return 0;
1634 }
1635 
cros_ec_get_switches(struct udevice * dev)1636 int cros_ec_get_switches(struct udevice *dev)
1637 {
1638 	struct dm_cros_ec_ops *ops;
1639 	int ret;
1640 
1641 	ops = dm_cros_ec_get_ops(dev);
1642 	if (!ops->get_switches)
1643 		return -ENOSYS;
1644 
1645 	ret = ops->get_switches(dev);
1646 	if (ret < 0)
1647 		return log_msg_ret("get", ret);
1648 
1649 	return ret;
1650 }
1651 
cros_ec_read_batt_charge(struct udevice * dev,uint * chargep)1652 int cros_ec_read_batt_charge(struct udevice *dev, uint *chargep)
1653 {
1654 	struct ec_params_charge_state req;
1655 	struct ec_response_charge_state resp;
1656 	int ret;
1657 
1658 	req.cmd = CHARGE_STATE_CMD_GET_STATE;
1659 	ret = ec_command(dev, EC_CMD_CHARGE_STATE, 0, &req, sizeof(req),
1660 			 &resp, sizeof(resp));
1661 	if (ret)
1662 		return log_msg_ret("read", ret);
1663 
1664 	*chargep = resp.get_state.batt_state_of_charge;
1665 
1666 	return 0;
1667 }
1668 
1669 UCLASS_DRIVER(cros_ec) = {
1670 	.id		= UCLASS_CROS_EC,
1671 	.name		= "cros-ec",
1672 	.per_device_auto	= sizeof(struct cros_ec_dev),
1673 #if CONFIG_IS_ENABLED(OF_REAL)
1674 	.post_bind	= dm_scan_fdt_dev,
1675 #endif
1676 	.flags		= DM_UC_FLAG_ALLOC_PRIV_DMA,
1677 };
1678