1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Function to read values from the device tree node attached to a udevice.
4 *
5 * Copyright (c) 2017 Google, Inc
6 * Written by Simon Glass <sjg@chromium.org>
7 */
8
9 #ifndef _DM_READ_H
10 #define _DM_READ_H
11
12 #include <linux/errno.h>
13
14 #include <dm/device.h>
15 #include <dm/fdtaddr.h>
16 #include <dm/ofnode.h>
17 #include <dm/uclass.h>
18
19 struct resource;
20
21 #if CONFIG_IS_ENABLED(OF_LIVE)
dev_np(const struct udevice * dev)22 static inline const struct device_node *dev_np(const struct udevice *dev)
23 {
24 return ofnode_to_np(dev_ofnode(dev));
25 }
26 #else
dev_np(const struct udevice * dev)27 static inline const struct device_node *dev_np(const struct udevice *dev)
28 {
29 return NULL;
30 }
31 #endif
32
33 #if !defined(CONFIG_DM_DEV_READ_INLINE) || CONFIG_IS_ENABLED(OF_PLATDATA)
34 /**
35 * dev_read_u8() - read a 8-bit integer from a device's DT property
36 *
37 * @dev: device to read DT property from
38 * @propname: name of the property to read from
39 * @outp: place to put value (if found)
40 * Return: 0 if OK, -ve on error
41 */
42 int dev_read_u8(const struct udevice *dev, const char *propname, u8 *outp);
43
44 /**
45 * dev_read_u8_default() - read a 8-bit integer from a device's DT property
46 *
47 * @dev: device to read DT property from
48 * @propname: name of the property to read from
49 * @def: default value to return if the property has no value
50 * Return: property value, or @def if not found
51 */
52 u8 dev_read_u8_default(const struct udevice *dev, const char *propname, u8 def);
53
54 /**
55 * dev_read_u16() - read a 16-bit integer from a device's DT property
56 *
57 * @dev: device to read DT property from
58 * @propname: name of the property to read from
59 * @outp: place to put value (if found)
60 * Return: 0 if OK, -ve on error
61 */
62 int dev_read_u16(const struct udevice *dev, const char *propname, u16 *outp);
63
64 /**
65 * dev_read_u16_default() - read a 16-bit integer from a device's DT property
66 *
67 * @dev: device to read DT property from
68 * @propname: name of the property to read from
69 * @def: default value to return if the property has no value
70 * Return: property value, or @def if not found
71 */
72 u16 dev_read_u16_default(const struct udevice *dev, const char *propname,
73 u16 def);
74
75 /**
76 * dev_read_u32() - read a 32-bit integer from a device's DT property
77 *
78 * @dev: device to read DT property from
79 * @propname: name of the property to read from
80 * @outp: place to put value (if found)
81 * Return: 0 if OK, -ve on error
82 */
83 int dev_read_u32(const struct udevice *dev, const char *propname, u32 *outp);
84
85 /**
86 * dev_read_u32_default() - read a 32-bit integer from a device's DT property
87 *
88 * @dev: device to read DT property from
89 * @propname: name of the property to read from
90 * @def: default value to return if the property has no value
91 * Return: property value, or @def if not found
92 */
93 int dev_read_u32_default(const struct udevice *dev, const char *propname,
94 int def);
95
96 /**
97 * dev_read_u32_index() - read an indexed 32-bit integer from a device's DT
98 * property
99 *
100 * @dev: device to read DT property from
101 * @propname: name of the property to read from
102 * @index: index of the integer to return
103 * @outp: place to put value (if found)
104 * Return: 0 if OK, -ve on error
105 */
106 int dev_read_u32_index(struct udevice *dev, const char *propname, int index,
107 u32 *outp);
108
109 /**
110 * dev_read_u32_index_default() - read an indexed 32-bit integer from a device's
111 * DT property
112 *
113 * @dev: device to read DT property from
114 * @propname: name of the property to read from
115 * @index: index of the integer to return
116 * @def: default value to return if the property has no value
117 * Return: property value, or @def if not found
118 */
119 u32 dev_read_u32_index_default(struct udevice *dev, const char *propname,
120 int index, u32 def);
121
122 /**
123 * dev_read_s32() - read a signed 32-bit integer from a device's DT property
124 *
125 * @dev: device to read DT property from
126 * @propname: name of the property to read from
127 * @outp: place to put value (if found)
128 * Return: 0 if OK, -ve on error
129 */
130 int dev_read_s32(const struct udevice *dev, const char *propname, s32 *outp);
131
132 /**
133 * dev_read_s32_default() - read a signed 32-bit int from a device's DT property
134 *
135 * @dev: device to read DT property from
136 * @propname: name of the property to read from
137 * @def: default value to return if the property has no value
138 * Return: property value, or @def if not found
139 */
140 int dev_read_s32_default(const struct udevice *dev, const char *propname,
141 int def);
142
143 /**
144 * dev_read_u32u() - read a 32-bit integer from a device's DT property
145 *
146 * This version uses a standard uint type.
147 *
148 * @dev: device to read DT property from
149 * @propname: name of the property to read from
150 * @outp: place to put value (if found)
151 * Return: 0 if OK, -ve on error
152 */
153 int dev_read_u32u(const struct udevice *dev, const char *propname, uint *outp);
154
155 /**
156 * dev_read_u64() - read a 64-bit integer from a device's DT property
157 *
158 * @dev: device to read DT property from
159 * @propname: name of the property to read from
160 * @outp: place to put value (if found)
161 * Return: 0 if OK, -ve on error
162 */
163 int dev_read_u64(const struct udevice *dev, const char *propname, u64 *outp);
164
165 /**
166 * dev_read_u64_default() - read a 64-bit integer from a device's DT property
167 *
168 * @dev: device to read DT property from
169 * @propname: name of the property to read from
170 * @def: default value to return if the property has no value
171 * Return: property value, or @def if not found
172 */
173 u64 dev_read_u64_default(const struct udevice *dev, const char *propname,
174 u64 def);
175
176 /**
177 * dev_read_string() - Read a string from a device's DT property
178 *
179 * @dev: device to read DT property from
180 * @propname: name of the property to read
181 * Return: string from property value, or NULL if there is no such property
182 */
183 const char *dev_read_string(const struct udevice *dev, const char *propname);
184
185 /**
186 * dev_read_bool() - read a boolean value from a device's DT property
187 *
188 * @dev: device to read DT property from
189 * @propname: name of property to read
190 * Return: true if property is present (meaning true), false if not present
191 */
192 bool dev_read_bool(const struct udevice *dev, const char *propname);
193
194 /**
195 * dev_read_subnode() - find a named subnode of a device
196 *
197 * @dev: device whose DT node contains the subnode
198 * @subnode_name: name of subnode to find
199 * Return: reference to subnode (which can be invalid if there is no such
200 * subnode)
201 */
202 ofnode dev_read_subnode(const struct udevice *dev, const char *subnode_name);
203
204 /**
205 * dev_read_size() - read the size of a property
206 *
207 * @dev: device to check
208 * @propname: property to check
209 * Return: size of property if present, or -EINVAL if not
210 */
211 int dev_read_size(const struct udevice *dev, const char *propname);
212
213 /**
214 * dev_read_addr_index() - Get the indexed reg property of a device
215 *
216 * @dev: Device to read from
217 * @index: the 'reg' property can hold a list of <addr, size> pairs
218 * and @index is used to select which one is required
219 *
220 * Return: address or FDT_ADDR_T_NONE if not found
221 */
222 fdt_addr_t dev_read_addr_index(const struct udevice *dev, int index);
223
224 /**
225 * dev_read_addr_index_ptr() - Get the indexed reg property of a device
226 * as a pointer
227 *
228 * @dev: Device to read from
229 * @index: the 'reg' property can hold a list of <addr, size> pairs
230 * and @index is used to select which one is required
231 *
232 * Return: pointer or NULL if not found
233 */
234 void *dev_read_addr_index_ptr(const struct udevice *dev, int index);
235
236 /**
237 * dev_read_addr_size_index() - Get the indexed reg property of a device
238 *
239 * @dev: Device to read from
240 * @index: the 'reg' property can hold a list of <addr, size> pairs
241 * and @index is used to select which one is required
242 * @size: place to put size value (on success)
243 *
244 * Return: address or FDT_ADDR_T_NONE if not found
245 */
246 fdt_addr_t dev_read_addr_size_index(const struct udevice *dev, int index,
247 fdt_size_t *size);
248
249 /**
250 * dev_remap_addr_index() - Get the indexed reg property of a device
251 * as a memory-mapped I/O pointer
252 *
253 * @dev: Device to read from
254 * @index: the 'reg' property can hold a list of <addr, size> pairs
255 * and @index is used to select which one is required
256 *
257 * Return: pointer or NULL if not found
258 */
259 void *dev_remap_addr_index(const struct udevice *dev, int index);
260
261 /**
262 * dev_read_addr_name() - Get the reg property of a device, indexed by name
263 *
264 * @dev: Device to read from
265 * @name: the 'reg' property can hold a list of <addr, size> pairs, with the
266 * 'reg-names' property providing named-based identification. @index
267 * indicates the value to search for in 'reg-names'.
268 *
269 * Return: address or FDT_ADDR_T_NONE if not found
270 */
271 fdt_addr_t dev_read_addr_name(const struct udevice *dev, const char *name);
272
273 /**
274 * dev_read_addr_size_name() - Get the reg property of a device, indexed by name
275 *
276 * @dev: Device to read from
277 * @name: the 'reg' property can hold a list of <addr, size> pairs, with the
278 * 'reg-names' property providing named-based identification. @index
279 * indicates the value to search for in 'reg-names'.
280 * @size: place to put size value (on success)
281 *
282 * Return: address or FDT_ADDR_T_NONE if not found
283 */
284 fdt_addr_t dev_read_addr_size_name(const struct udevice *dev, const char *name,
285 fdt_size_t *size);
286
287 /**
288 * dev_remap_addr_name() - Get the reg property of a device, indexed by name,
289 * as a memory-mapped I/O pointer
290 *
291 * @dev: Device to read from
292 * @name: the 'reg' property can hold a list of <addr, size> pairs, with the
293 * 'reg-names' property providing named-based identification. @index
294 * indicates the value to search for in 'reg-names'.
295 *
296 * Return: pointer or NULL if not found
297 */
298 void *dev_remap_addr_name(const struct udevice *dev, const char *name);
299
300 /**
301 * dev_read_addr() - Get the reg property of a device
302 *
303 * @dev: Device to read from
304 *
305 * Return: address or FDT_ADDR_T_NONE if not found
306 */
307 fdt_addr_t dev_read_addr(const struct udevice *dev);
308
309 /**
310 * dev_read_addr_ptr() - Get the reg property of a device
311 * as a pointer
312 *
313 * @dev: Device to read from
314 *
315 * Return: pointer or NULL if not found
316 */
317 void *dev_read_addr_ptr(const struct udevice *dev);
318
319 /**
320 * dev_read_addr_pci() - Read an address and handle PCI address translation
321 *
322 * At present U-Boot does not have address translation logic for PCI in the
323 * livetree implementation (of_addr.c). This special function supports this for
324 * the flat tree implementation.
325 *
326 * This function should be removed (and code should use dev_read() instead)
327 * once:
328 *
329 * 1. PCI address translation is added; and either
330 * 2. everything uses livetree where PCI translation is used (which is feasible
331 * in SPL and U-Boot proper) or PCI address translation is added to
332 * fdtdec_get_addr() and friends.
333 *
334 * @dev: Device to read from
335 * Return: address or FDT_ADDR_T_NONE if not found
336 */
337 fdt_addr_t dev_read_addr_pci(const struct udevice *dev);
338
339 /**
340 * dev_remap_addr() - Get the reg property of a device as a
341 * memory-mapped I/O pointer
342 *
343 * @dev: Device to read from
344 *
345 * Return: pointer or NULL if not found
346 */
347 void *dev_remap_addr(const struct udevice *dev);
348
349 /**
350 * dev_read_addr_size() - get address and size from a device property
351 *
352 * This does no address translation. It simply reads an property that contains
353 * an address and a size value, one after the other.
354 *
355 * @dev: Device to read from
356 * @propname: property to read
357 * @sizep: place to put size value (on success)
358 * Return: address value, or FDT_ADDR_T_NONE on error
359 */
360 fdt_addr_t dev_read_addr_size(const struct udevice *dev, const char *propname,
361 fdt_size_t *sizep);
362
363 /**
364 * dev_read_name() - get the name of a device's node
365 *
366 * @dev: Device to read from
367 * Return: name of node
368 */
369 const char *dev_read_name(const struct udevice *dev);
370
371 /**
372 * dev_read_stringlist_search() - find string in a string list and return index
373 *
374 * Note that it is possible for this function to succeed on property values
375 * that are not NUL-terminated. That's because the function will stop after
376 * finding the first occurrence of @string. This can for example happen with
377 * small-valued cell properties, such as #address-cells, when searching for
378 * the empty string.
379 *
380 * @dev: device to check
381 * @propname: name of the property containing the string list
382 * @string: string to look up in the string list
383 *
384 * Return:
385 * the index of the string in the list of strings
386 * -ENODATA if the property is not found
387 * -EINVAL on some other error
388 */
389 int dev_read_stringlist_search(const struct udevice *dev, const char *propname,
390 const char *string);
391
392 /**
393 * dev_read_string_index() - obtain an indexed string from a string list
394 *
395 * @dev: device to examine
396 * @propname: name of the property containing the string list
397 * @index: index of the string to return
398 * @outp: return location for the string
399 *
400 * Return:
401 * length of string, if found or -ve error value if not found
402 */
403 int dev_read_string_index(const struct udevice *dev, const char *propname,
404 int index, const char **outp);
405
406 /**
407 * dev_read_string_count() - find the number of strings in a string list
408 *
409 * @dev: device to examine
410 * @propname: name of the property containing the string list
411 * Return:
412 * number of strings in the list, or -ve error value if not found
413 */
414 int dev_read_string_count(const struct udevice *dev, const char *propname);
415
416 /**
417 * dev_read_string_list() - read a list of strings
418 *
419 * This produces a list of string pointers with each one pointing to a string
420 * in the string list. If the property does not exist, it returns {NULL}.
421 *
422 * The data is allocated and the caller is reponsible for freeing the return
423 * value (the list of string pointers). The strings themselves may not be
424 * changed as they point directly into the devicetree property.
425 *
426 * @dev: device to examine
427 * @propname: name of the property containing the string list
428 * @listp: returns an allocated, NULL-terminated list of strings if the return
429 * value is > 0, else is set to NULL
430 * Return:
431 * number of strings in list, 0 if none, -ENOMEM if out of memory,
432 * -ENOENT if no such property
433 */
434 int dev_read_string_list(const struct udevice *dev, const char *propname,
435 const char ***listp);
436
437 /**
438 * dev_read_phandle_with_args() - Find a node pointed by phandle in a list
439 *
440 * This function is useful to parse lists of phandles and their arguments.
441 * Returns 0 on success and fills out_args, on error returns appropriate
442 * errno value.
443 *
444 * Caller is responsible to call of_node_put() on the returned out_args->np
445 * pointer.
446 *
447 * Example:
448 *
449 * .. code-block::
450 *
451 * phandle1: node1 {
452 * #list-cells = <2>;
453 * };
454 * phandle2: node2 {
455 * #list-cells = <1>;
456 * };
457 * node3 {
458 * list = <&phandle1 1 2 &phandle2 3>;
459 * };
460 *
461 * To get a device_node of the `node2' node you may call this:
462 * dev_read_phandle_with_args(dev, "list", "#list-cells", 0, 1, &args);
463 *
464 * @dev: device whose node containing a list
465 * @list_name: property name that contains a list
466 * @cells_name: property name that specifies phandles' arguments count
467 * @cell_count: Cell count to use if @cells_name is NULL
468 * @index: index of a phandle to parse out
469 * @out_args: optional pointer to output arguments structure (will be filled)
470 * Return: 0 on success (with @out_args filled out if not NULL), -ENOENT if
471 * @list_name does not exist, -EINVAL if a phandle was not found,
472 * @cells_name could not be found, the arguments were truncated or there
473 * were too many arguments.
474 */
475 int dev_read_phandle_with_args(const struct udevice *dev, const char *list_name,
476 const char *cells_name, int cell_count,
477 int index, struct ofnode_phandle_args *out_args);
478
479 /**
480 * dev_count_phandle_with_args() - Return phandle number in a list
481 *
482 * This function is usefull to get phandle number contained in a property list.
483 * For example, this allows to allocate the right amount of memory to keep
484 * clock's reference contained into the "clocks" property.
485 *
486 * @dev: device whose node containing a list
487 * @list_name: property name that contains a list
488 * @cells_name: property name that specifies phandles' arguments count
489 * @cell_count: Cell count to use if @cells_name is NULL
490 * Return: number of phandle found on success, on error returns appropriate
491 * errno value.
492 */
493
494 int dev_count_phandle_with_args(const struct udevice *dev,
495 const char *list_name, const char *cells_name,
496 int cell_count);
497
498 /**
499 * dev_read_addr_cells() - Get the number of address cells for a device's node
500 *
501 * This walks back up the tree to find the closest #address-cells property
502 * which controls the given node.
503 *
504 * @dev: device to check
505 * Return: number of address cells this node uses
506 */
507 int dev_read_addr_cells(const struct udevice *dev);
508
509 /**
510 * dev_read_size_cells() - Get the number of size cells for a device's node
511 *
512 * This walks back up the tree to find the closest #size-cells property
513 * which controls the given node.
514 *
515 * @dev: device to check
516 * Return: number of size cells this node uses
517 */
518 int dev_read_size_cells(const struct udevice *dev);
519
520 /**
521 * dev_read_addr_cells() - Get the address cells property in a node
522 *
523 * This function matches fdt_address_cells().
524 *
525 * @dev: device to check
526 * Return: number of address cells this node uses
527 */
528 int dev_read_simple_addr_cells(const struct udevice *dev);
529
530 /**
531 * dev_read_size_cells() - Get the size cells property in a node
532 *
533 * This function matches fdt_size_cells().
534 *
535 * @dev: device to check
536 * Return: number of size cells this node uses
537 */
538 int dev_read_simple_size_cells(const struct udevice *dev);
539
540 /**
541 * dev_read_phandle() - Get the phandle from a device
542 *
543 * @dev: device to check
544 * Return: phandle (1 or greater), or 0 if no phandle or other error
545 */
546 int dev_read_phandle(const struct udevice *dev);
547
548 /**
549 * dev_read_prop()- - read a property from a device's node
550 *
551 * @dev: device to check
552 * @propname: property to read
553 * @lenp: place to put length on success
554 * Return: pointer to property, or NULL if not found
555 */
556 const void *dev_read_prop(const struct udevice *dev, const char *propname,
557 int *lenp);
558
559 /**
560 * dev_read_first_prop()- get the reference of the first property
561 *
562 * Get reference to the first property of the node, it is used to iterate
563 * and read all the property with dev_read_prop_by_prop().
564 *
565 * @dev: device to check
566 * @prop: place to put argument reference
567 * Return: 0 if OK, -ve on error. -FDT_ERR_NOTFOUND if not found
568 */
569 int dev_read_first_prop(const struct udevice *dev, struct ofprop *prop);
570
571 /**
572 * ofnode_next_property() - get the reference of the next property
573 *
574 * Get reference to the next property of the node, it is used to iterate
575 * and read all the property with dev_read_prop_by_prop().
576 *
577 * @prop: reference of current argument and place to put reference of next one
578 * Return: 0 if OK, -ve on error. -FDT_ERR_NOTFOUND if not found
579 */
580 int dev_read_next_prop(struct ofprop *prop);
581
582 /**
583 * dev_read_prop_by_prop() - get a pointer to the value of a property
584 *
585 * Get value for the property identified by the provided reference.
586 *
587 * @prop: reference on property
588 * @propname: If non-NULL, place to property name on success,
589 * @lenp: If non-NULL, place to put length on success
590 * Return: 0 if OK, -ve on error. -FDT_ERR_NOTFOUND if not found
591 */
592 const void *dev_read_prop_by_prop(struct ofprop *prop,
593 const char **propname, int *lenp);
594
595 /**
596 * dev_read_alias_seq() - Get the alias sequence number of a node
597 *
598 * This works out whether a node is pointed to by an alias, and if so, the
599 * sequence number of that alias. Aliases are of the form <base><num> where
600 * <num> is the sequence number. For example spi2 would be sequence number 2.
601 *
602 * @dev: device to look up
603 * @devnump: set to the sequence number if one is found
604 * Return: 0 if a sequence was found, -ve if not
605 */
606 int dev_read_alias_seq(const struct udevice *dev, int *devnump);
607
608 /**
609 * dev_read_u32_array() - Find and read an array of 32 bit integers
610 *
611 * Search for a property in a device node and read 32-bit value(s) from
612 * it.
613 *
614 * The out_values is modified only if a valid u32 value can be decoded.
615 *
616 * @dev: device to look up
617 * @propname: name of the property to read
618 * @out_values: pointer to return value, modified only if return value is 0
619 * @sz: number of array elements to read
620 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
621 * property does not have a value, and -EOVERFLOW if the property data isn't
622 * large enough.
623 */
624 int dev_read_u32_array(const struct udevice *dev, const char *propname,
625 u32 *out_values, size_t sz);
626
627 /**
628 * dev_read_first_subnode() - find the first subnode of a device's node
629 *
630 * @dev: device to look up
631 * Return: reference to the first subnode (which can be invalid if the device's
632 * node has no subnodes)
633 */
634 ofnode dev_read_first_subnode(const struct udevice *dev);
635
636 /**
637 * ofnode_next_subnode() - find the next sibling of a subnode
638 *
639 * @node: valid reference to previous node (sibling)
640 * Return: reference to the next subnode (which can be invalid if the node
641 * has no more siblings)
642 */
643 ofnode dev_read_next_subnode(ofnode node);
644
645 /**
646 * dev_read_u8_array_ptr() - find an 8-bit array
647 *
648 * Look up a device's node property and return a pointer to its contents as a
649 * byte array of given length. The property must have at least enough data
650 * for the array (count bytes). It may have more, but this will be ignored.
651 * The data is not copied.
652 *
653 * @dev: device to look up
654 * @propname: name of property to find
655 * @sz: number of array elements
656 * Return:
657 * pointer to byte array if found, or NULL if the property is not found or
658 * there is not enough data
659 */
660 const uint8_t *dev_read_u8_array_ptr(const struct udevice *dev,
661 const char *propname, size_t sz);
662
663 /**
664 * dev_read_enabled() - check whether a node is enabled
665 *
666 * This looks for a 'status' property. If this exists, then returns 1 if
667 * the status is 'ok' and 0 otherwise. If there is no status property,
668 * it returns 1 on the assumption that anything mentioned should be enabled
669 * by default.
670 *
671 * @dev: device to examine
672 * Return: integer value 0 (not enabled) or 1 (enabled)
673 */
674 int dev_read_enabled(const struct udevice *dev);
675
676 /**
677 * dev_read_resource() - obtain an indexed resource from a device.
678 *
679 * @dev: device to examine
680 * @index: index of the resource to retrieve (0 = first)
681 * @res: returns the resource
682 * Return: 0 if ok, negative on error
683 */
684 int dev_read_resource(const struct udevice *dev, uint index,
685 struct resource *res);
686
687 /**
688 * dev_read_resource_byname() - obtain a named resource from a device.
689 *
690 * @dev: device to examine
691 * @name: name of the resource to retrieve
692 * @res: returns the resource
693 * Return: 0 if ok, negative on error
694 */
695 int dev_read_resource_byname(const struct udevice *dev, const char *name,
696 struct resource *res);
697
698 /**
699 * dev_translate_address() - Translate a device-tree address
700 *
701 * Translate an address from the device-tree into a CPU physical address. This
702 * function walks up the tree and applies the various bus mappings along the
703 * way.
704 *
705 * @dev: device giving the context in which to translate the address
706 * @in_addr: pointer to the address to translate
707 * Return: the translated address; OF_BAD_ADDR on error
708 */
709 u64 dev_translate_address(const struct udevice *dev, const fdt32_t *in_addr);
710
711 /**
712 * dev_translate_dma_address() - Translate a device-tree DMA address
713 *
714 * Translate a DMA address from the device-tree into a CPU physical address.
715 * This function walks up the tree and applies the various bus mappings along
716 * the way.
717 *
718 * @dev: device giving the context in which to translate the DMA address
719 * @in_addr: pointer to the DMA address to translate
720 * Return: the translated DMA address; OF_BAD_ADDR on error
721 */
722 u64 dev_translate_dma_address(const struct udevice *dev,
723 const fdt32_t *in_addr);
724
725 /**
726 * dev_get_dma_range() - Get a device's DMA constraints
727 *
728 * Provide the address bases and size of the linear mapping between the CPU and
729 * a device's BUS address space.
730 *
731 * @dev: device giving the context in which to translate the DMA address
732 * @cpu: base address for CPU's view of memory
733 * @bus: base address for BUS's view of memory
734 * @size: size of the address space
735 * Return: 0 if ok, negative on error
736 */
737 int dev_get_dma_range(const struct udevice *dev, phys_addr_t *cpu,
738 dma_addr_t *bus, u64 *size);
739
740 /**
741 * dev_read_alias_highest_id - Get highest alias id for the given stem
742 * @stem: Alias stem to be examined
743 *
744 * The function travels the lookup table to get the highest alias id for the
745 * given alias stem.
746 * Return: alias ID, if found, else -1
747 */
748 int dev_read_alias_highest_id(const char *stem);
749
750 /**
751 * dev_get_child_count() - get the child count of a device
752 *
753 * @dev: device to use for interation (`struct udevice *`)
754 * Return: the count of child subnode
755 */
756 int dev_get_child_count(const struct udevice *dev);
757
758 /**
759 * dev_read_pci_bus_range - Read PCI bus-range resource
760 *
761 * Look at the bus range property of a device node and return the pci bus
762 * range for this node.
763 *
764 * @dev: device to examine
765 * @res: returns the resource
766 * Return: 0 if ok, negative on error
767 */
768 int dev_read_pci_bus_range(const struct udevice *dev, struct resource *res);
769
770 /**
771 * dev_decode_display_timing() - decode display timings
772 *
773 * Decode display timings from the supplied 'display-timings' node.
774 * See doc/device-tree-bindings/video/display-timing.txt for binding
775 * information.
776 *
777 * @dev: device to read DT display timings from. The node linked to the device
778 * contains a child node called 'display-timings' which in turn contains
779 * one or more display timing nodes.
780 * @index: index number to read (0=first timing subnode)
781 * @config: place to put timings
782 * Return: 0 if OK, -FDT_ERR_NOTFOUND if not found
783 */
784 int dev_decode_display_timing(const struct udevice *dev, int index,
785 struct display_timing *config);
786
787 /**
788 * dev_decode_panel_timing() - decode panel timings
789 *
790 * Decode display timings from the supplied 'panel-timings' node.
791 *
792 * @dev: device to read DT display timings from. The node linked to the device
793 * contains a child node called 'display-timings' which in turn contains
794 * one or more display timing nodes.
795 * @config: place to put timings
796 * Return: 0 if OK, -FDT_ERR_NOTFOUND if not found
797 */
798 int dev_decode_panel_timing(const struct udevice *dev,
799 struct display_timing *config);
800
801 /**
802 * dev_get_phy_node() - Get PHY node for a MAC (if not fixed-link)
803 *
804 * This function parses PHY handle from the Ethernet controller's ofnode
805 * (trying all possible PHY handle property names), and returns the PHY ofnode.
806 *
807 * Before this is used, ofnode_phy_is_fixed_link() should be checked first, and
808 * if the result to that is true, this function should not be called.
809 *
810 * @dev: device representing the MAC
811 * Return: ofnode of the PHY, if it exists, otherwise an invalid ofnode
812 */
813 ofnode dev_get_phy_node(const struct udevice *dev);
814
815 /**
816 * dev_read_phy_mode() - Read PHY connection type from a MAC
817 *
818 * This function parses the "phy-mode" / "phy-connection-type" property and
819 * returns the corresponding PHY interface type.
820 *
821 * @dev: device representing the MAC
822 * Return: one of PHY_INTERFACE_MODE_* constants, PHY_INTERFACE_MODE_NA on
823 * error
824 */
825 phy_interface_t dev_read_phy_mode(const struct udevice *dev);
826
827 #else /* CONFIG_DM_DEV_READ_INLINE is enabled */
828 #include <asm/global_data.h>
829
dev_read_u8(const struct udevice * dev,const char * propname,u8 * outp)830 static inline int dev_read_u8(const struct udevice *dev,
831 const char *propname, u8 *outp)
832 {
833 return ofnode_read_u8(dev_ofnode(dev), propname, outp);
834 }
835
dev_read_u8_default(const struct udevice * dev,const char * propname,u8 def)836 static inline int dev_read_u8_default(const struct udevice *dev,
837 const char *propname, u8 def)
838 {
839 return ofnode_read_u8_default(dev_ofnode(dev), propname, def);
840 }
841
dev_read_u16(const struct udevice * dev,const char * propname,u16 * outp)842 static inline int dev_read_u16(const struct udevice *dev,
843 const char *propname, u16 *outp)
844 {
845 return ofnode_read_u16(dev_ofnode(dev), propname, outp);
846 }
847
dev_read_u16_default(const struct udevice * dev,const char * propname,u16 def)848 static inline int dev_read_u16_default(const struct udevice *dev,
849 const char *propname, u16 def)
850 {
851 return ofnode_read_u16_default(dev_ofnode(dev), propname, def);
852 }
853
dev_read_u32(const struct udevice * dev,const char * propname,u32 * outp)854 static inline int dev_read_u32(const struct udevice *dev,
855 const char *propname, u32 *outp)
856 {
857 return ofnode_read_u32(dev_ofnode(dev), propname, outp);
858 }
859
dev_read_u32_default(const struct udevice * dev,const char * propname,int def)860 static inline int dev_read_u32_default(const struct udevice *dev,
861 const char *propname, int def)
862 {
863 return ofnode_read_u32_default(dev_ofnode(dev), propname, def);
864 }
865
dev_read_u32_index(struct udevice * dev,const char * propname,int index,u32 * outp)866 static inline int dev_read_u32_index(struct udevice *dev,
867 const char *propname, int index, u32 *outp)
868 {
869 return ofnode_read_u32_index(dev_ofnode(dev), propname, index, outp);
870 }
871
dev_read_u32_index_default(struct udevice * dev,const char * propname,int index,u32 def)872 static inline u32 dev_read_u32_index_default(struct udevice *dev,
873 const char *propname, int index,
874 u32 def)
875 {
876 return ofnode_read_u32_index_default(dev_ofnode(dev), propname, index,
877 def);
878 }
879
dev_read_s32(const struct udevice * dev,const char * propname,s32 * outp)880 static inline int dev_read_s32(const struct udevice *dev,
881 const char *propname, s32 *outp)
882 {
883 return ofnode_read_s32(dev_ofnode(dev), propname, outp);
884 }
885
dev_read_s32_default(const struct udevice * dev,const char * propname,int def)886 static inline int dev_read_s32_default(const struct udevice *dev,
887 const char *propname, int def)
888 {
889 return ofnode_read_s32_default(dev_ofnode(dev), propname, def);
890 }
891
dev_read_u32u(const struct udevice * dev,const char * propname,uint * outp)892 static inline int dev_read_u32u(const struct udevice *dev,
893 const char *propname, uint *outp)
894 {
895 u32 val;
896 int ret;
897
898 ret = ofnode_read_u32(dev_ofnode(dev), propname, &val);
899 if (ret)
900 return ret;
901 *outp = val;
902
903 return 0;
904 }
905
dev_read_u64(const struct udevice * dev,const char * propname,u64 * outp)906 static inline int dev_read_u64(const struct udevice *dev,
907 const char *propname, u64 *outp)
908 {
909 return ofnode_read_u64(dev_ofnode(dev), propname, outp);
910 }
911
dev_read_u64_default(const struct udevice * dev,const char * propname,u64 def)912 static inline u64 dev_read_u64_default(const struct udevice *dev,
913 const char *propname, u64 def)
914 {
915 return ofnode_read_u64_default(dev_ofnode(dev), propname, def);
916 }
917
dev_read_string(const struct udevice * dev,const char * propname)918 static inline const char *dev_read_string(const struct udevice *dev,
919 const char *propname)
920 {
921 return ofnode_read_string(dev_ofnode(dev), propname);
922 }
923
dev_read_bool(const struct udevice * dev,const char * propname)924 static inline bool dev_read_bool(const struct udevice *dev,
925 const char *propname)
926 {
927 return ofnode_read_bool(dev_ofnode(dev), propname);
928 }
929
dev_read_subnode(const struct udevice * dev,const char * subbnode_name)930 static inline ofnode dev_read_subnode(const struct udevice *dev,
931 const char *subbnode_name)
932 {
933 return ofnode_find_subnode(dev_ofnode(dev), subbnode_name);
934 }
935
dev_read_size(const struct udevice * dev,const char * propname)936 static inline int dev_read_size(const struct udevice *dev, const char *propname)
937 {
938 return ofnode_read_size(dev_ofnode(dev), propname);
939 }
940
dev_read_addr_index(const struct udevice * dev,int index)941 static inline fdt_addr_t dev_read_addr_index(const struct udevice *dev,
942 int index)
943 {
944 return devfdt_get_addr_index(dev, index);
945 }
946
dev_read_addr_index_ptr(const struct udevice * dev,int index)947 static inline void *dev_read_addr_index_ptr(const struct udevice *dev,
948 int index)
949 {
950 return devfdt_get_addr_index_ptr(dev, index);
951 }
952
dev_read_addr_size_index(const struct udevice * dev,int index,fdt_size_t * size)953 static inline fdt_addr_t dev_read_addr_size_index(const struct udevice *dev,
954 int index,
955 fdt_size_t *size)
956 {
957 return devfdt_get_addr_size_index(dev, index, size);
958 }
959
dev_read_addr_name(const struct udevice * dev,const char * name)960 static inline fdt_addr_t dev_read_addr_name(const struct udevice *dev,
961 const char *name)
962 {
963 return devfdt_get_addr_name(dev, name);
964 }
965
dev_read_addr_size_name(const struct udevice * dev,const char * name,fdt_size_t * size)966 static inline fdt_addr_t dev_read_addr_size_name(const struct udevice *dev,
967 const char *name,
968 fdt_size_t *size)
969 {
970 return devfdt_get_addr_size_name(dev, name, size);
971 }
972
dev_read_addr(const struct udevice * dev)973 static inline fdt_addr_t dev_read_addr(const struct udevice *dev)
974 {
975 return devfdt_get_addr(dev);
976 }
977
dev_read_addr_ptr(const struct udevice * dev)978 static inline void *dev_read_addr_ptr(const struct udevice *dev)
979 {
980 return devfdt_get_addr_ptr(dev);
981 }
982
dev_read_addr_pci(const struct udevice * dev)983 static inline fdt_addr_t dev_read_addr_pci(const struct udevice *dev)
984 {
985 return devfdt_get_addr_pci(dev);
986 }
987
dev_remap_addr(const struct udevice * dev)988 static inline void *dev_remap_addr(const struct udevice *dev)
989 {
990 return devfdt_remap_addr(dev);
991 }
992
dev_remap_addr_index(const struct udevice * dev,int index)993 static inline void *dev_remap_addr_index(const struct udevice *dev, int index)
994 {
995 return devfdt_remap_addr_index(dev, index);
996 }
997
dev_remap_addr_name(const struct udevice * dev,const char * name)998 static inline void *dev_remap_addr_name(const struct udevice *dev,
999 const char *name)
1000 {
1001 return devfdt_remap_addr_name(dev, name);
1002 }
1003
dev_read_addr_size(const struct udevice * dev,const char * propname,fdt_size_t * sizep)1004 static inline fdt_addr_t dev_read_addr_size(const struct udevice *dev,
1005 const char *propname,
1006 fdt_size_t *sizep)
1007 {
1008 return ofnode_get_addr_size(dev_ofnode(dev), propname, sizep);
1009 }
1010
dev_read_name(const struct udevice * dev)1011 static inline const char *dev_read_name(const struct udevice *dev)
1012 {
1013 return ofnode_get_name(dev_ofnode(dev));
1014 }
1015
dev_read_stringlist_search(const struct udevice * dev,const char * propname,const char * string)1016 static inline int dev_read_stringlist_search(const struct udevice *dev,
1017 const char *propname,
1018 const char *string)
1019 {
1020 return ofnode_stringlist_search(dev_ofnode(dev), propname, string);
1021 }
1022
dev_read_string_index(const struct udevice * dev,const char * propname,int index,const char ** outp)1023 static inline int dev_read_string_index(const struct udevice *dev,
1024 const char *propname, int index,
1025 const char **outp)
1026 {
1027 return ofnode_read_string_index(dev_ofnode(dev), propname, index, outp);
1028 }
1029
dev_read_string_count(const struct udevice * dev,const char * propname)1030 static inline int dev_read_string_count(const struct udevice *dev,
1031 const char *propname)
1032 {
1033 return ofnode_read_string_count(dev_ofnode(dev), propname);
1034 }
1035
dev_read_string_list(const struct udevice * dev,const char * propname,const char *** listp)1036 static inline int dev_read_string_list(const struct udevice *dev,
1037 const char *propname,
1038 const char ***listp)
1039 {
1040 return ofnode_read_string_list(dev_ofnode(dev), propname, listp);
1041 }
1042
dev_read_phandle_with_args(const struct udevice * dev,const char * list_name,const char * cells_name,int cell_count,int index,struct ofnode_phandle_args * out_args)1043 static inline int dev_read_phandle_with_args(const struct udevice *dev,
1044 const char *list_name, const char *cells_name, int cell_count,
1045 int index, struct ofnode_phandle_args *out_args)
1046 {
1047 return ofnode_parse_phandle_with_args(dev_ofnode(dev), list_name,
1048 cells_name, cell_count, index,
1049 out_args);
1050 }
1051
dev_count_phandle_with_args(const struct udevice * dev,const char * list_name,const char * cells_name,int cell_count)1052 static inline int dev_count_phandle_with_args(const struct udevice *dev,
1053 const char *list_name, const char *cells_name, int cell_count)
1054 {
1055 return ofnode_count_phandle_with_args(dev_ofnode(dev), list_name,
1056 cells_name, cell_count);
1057 }
1058
dev_read_addr_cells(const struct udevice * dev)1059 static inline int dev_read_addr_cells(const struct udevice *dev)
1060 {
1061 int parent = fdt_parent_offset(gd->fdt_blob, dev_of_offset(dev));
1062
1063 return fdt_address_cells(gd->fdt_blob, parent);
1064 }
1065
dev_read_size_cells(const struct udevice * dev)1066 static inline int dev_read_size_cells(const struct udevice *dev)
1067 {
1068 int parent = fdt_parent_offset(gd->fdt_blob, dev_of_offset(dev));
1069
1070 return fdt_size_cells(gd->fdt_blob, parent);
1071 }
1072
dev_read_simple_addr_cells(const struct udevice * dev)1073 static inline int dev_read_simple_addr_cells(const struct udevice *dev)
1074 {
1075 return fdt_address_cells(gd->fdt_blob, dev_of_offset(dev));
1076 }
1077
dev_read_simple_size_cells(const struct udevice * dev)1078 static inline int dev_read_simple_size_cells(const struct udevice *dev)
1079 {
1080 return fdt_size_cells(gd->fdt_blob, dev_of_offset(dev));
1081 }
1082
dev_read_phandle(const struct udevice * dev)1083 static inline int dev_read_phandle(const struct udevice *dev)
1084 {
1085 return fdt_get_phandle(gd->fdt_blob, dev_of_offset(dev));
1086 }
1087
dev_read_prop(const struct udevice * dev,const char * propname,int * lenp)1088 static inline const void *dev_read_prop(const struct udevice *dev,
1089 const char *propname, int *lenp)
1090 {
1091 return ofnode_get_property(dev_ofnode(dev), propname, lenp);
1092 }
1093
dev_read_first_prop(const struct udevice * dev,struct ofprop * prop)1094 static inline int dev_read_first_prop(const struct udevice *dev, struct ofprop *prop)
1095 {
1096 return ofnode_first_property(dev_ofnode(dev), prop);
1097 }
1098
dev_read_next_prop(struct ofprop * prop)1099 static inline int dev_read_next_prop(struct ofprop *prop)
1100 {
1101 return ofnode_next_property(prop);
1102 }
1103
dev_read_prop_by_prop(struct ofprop * prop,const char ** propname,int * lenp)1104 static inline const void *dev_read_prop_by_prop(struct ofprop *prop,
1105 const char **propname,
1106 int *lenp)
1107 {
1108 return ofprop_get_property(prop, propname, lenp);
1109 }
1110
dev_read_alias_seq(const struct udevice * dev,int * devnump)1111 static inline int dev_read_alias_seq(const struct udevice *dev, int *devnump)
1112 {
1113 #if CONFIG_IS_ENABLED(OF_CONTROL)
1114 return fdtdec_get_alias_seq(gd->fdt_blob, dev->uclass->uc_drv->name,
1115 dev_of_offset(dev), devnump);
1116 #else
1117 return -ENOTSUPP;
1118 #endif
1119 }
1120
dev_read_u32_array(const struct udevice * dev,const char * propname,u32 * out_values,size_t sz)1121 static inline int dev_read_u32_array(const struct udevice *dev,
1122 const char *propname, u32 *out_values,
1123 size_t sz)
1124 {
1125 return ofnode_read_u32_array(dev_ofnode(dev), propname, out_values, sz);
1126 }
1127
dev_read_first_subnode(const struct udevice * dev)1128 static inline ofnode dev_read_first_subnode(const struct udevice *dev)
1129 {
1130 return ofnode_first_subnode(dev_ofnode(dev));
1131 }
1132
dev_read_next_subnode(ofnode node)1133 static inline ofnode dev_read_next_subnode(ofnode node)
1134 {
1135 return ofnode_next_subnode(node);
1136 }
1137
dev_read_u8_array_ptr(const struct udevice * dev,const char * propname,size_t sz)1138 static inline const uint8_t *dev_read_u8_array_ptr(const struct udevice *dev,
1139 const char *propname,
1140 size_t sz)
1141 {
1142 return ofnode_read_u8_array_ptr(dev_ofnode(dev), propname, sz);
1143 }
1144
dev_read_enabled(const struct udevice * dev)1145 static inline int dev_read_enabled(const struct udevice *dev)
1146 {
1147 return fdtdec_get_is_enabled(gd->fdt_blob, dev_of_offset(dev));
1148 }
1149
dev_read_resource(const struct udevice * dev,uint index,struct resource * res)1150 static inline int dev_read_resource(const struct udevice *dev, uint index,
1151 struct resource *res)
1152 {
1153 return ofnode_read_resource(dev_ofnode(dev), index, res);
1154 }
1155
dev_read_resource_byname(const struct udevice * dev,const char * name,struct resource * res)1156 static inline int dev_read_resource_byname(const struct udevice *dev,
1157 const char *name,
1158 struct resource *res)
1159 {
1160 return ofnode_read_resource_byname(dev_ofnode(dev), name, res);
1161 }
1162
dev_translate_address(const struct udevice * dev,const fdt32_t * in_addr)1163 static inline u64 dev_translate_address(const struct udevice *dev,
1164 const fdt32_t *in_addr)
1165 {
1166 return ofnode_translate_address(dev_ofnode(dev), in_addr);
1167 }
1168
dev_translate_dma_address(const struct udevice * dev,const fdt32_t * in_addr)1169 static inline u64 dev_translate_dma_address(const struct udevice *dev,
1170 const fdt32_t *in_addr)
1171 {
1172 return ofnode_translate_dma_address(dev_ofnode(dev), in_addr);
1173 }
1174
dev_get_dma_range(const struct udevice * dev,phys_addr_t * cpu,dma_addr_t * bus,u64 * size)1175 static inline int dev_get_dma_range(const struct udevice *dev, phys_addr_t *cpu,
1176 dma_addr_t *bus, u64 *size)
1177 {
1178 return ofnode_get_dma_range(dev_ofnode(dev), cpu, bus, size);
1179 }
1180
dev_read_alias_highest_id(const char * stem)1181 static inline int dev_read_alias_highest_id(const char *stem)
1182 {
1183 if (!CONFIG_IS_ENABLED(OF_LIBFDT) || !gd->fdt_blob)
1184 return -1;
1185 return fdtdec_get_alias_highest_id(gd->fdt_blob, stem);
1186 }
1187
dev_get_child_count(const struct udevice * dev)1188 static inline int dev_get_child_count(const struct udevice *dev)
1189 {
1190 return ofnode_get_child_count(dev_ofnode(dev));
1191 }
1192
dev_decode_display_timing(const struct udevice * dev,int index,struct display_timing * config)1193 static inline int dev_decode_display_timing(const struct udevice *dev,
1194 int index,
1195 struct display_timing *config)
1196 {
1197 return ofnode_decode_display_timing(dev_ofnode(dev), index, config);
1198 }
1199
dev_decode_panel_timing(const struct udevice * dev,struct display_timing * config)1200 static inline int dev_decode_panel_timing(const struct udevice *dev,
1201 struct display_timing *config)
1202 {
1203 return ofnode_decode_panel_timing(dev_ofnode(dev), config);
1204 }
1205
dev_get_phy_node(const struct udevice * dev)1206 static inline ofnode dev_get_phy_node(const struct udevice *dev)
1207 {
1208 return ofnode_get_phy_node(dev_ofnode(dev));
1209 }
1210
dev_read_phy_mode(const struct udevice * dev)1211 static inline phy_interface_t dev_read_phy_mode(const struct udevice *dev)
1212 {
1213 return ofnode_read_phy_mode(dev_ofnode(dev));
1214 }
1215
1216 #endif /* CONFIG_DM_DEV_READ_INLINE */
1217
1218 /**
1219 * dev_for_each_subnode() - Helper function to iterate through subnodes
1220 *
1221 * This creates a for() loop which works through the subnodes in a device's
1222 * device-tree node.
1223 *
1224 * @subnode: ofnode holding the current subnode
1225 * @dev: device to use for interation (`struct udevice *`)
1226 */
1227 #define dev_for_each_subnode(subnode, dev) \
1228 for (subnode = dev_read_first_subnode(dev); \
1229 ofnode_valid(subnode); \
1230 subnode = ofnode_next_subnode(subnode))
1231
1232 /**
1233 * dev_for_each_property() - Helper function to iterate through property
1234 *
1235 * This creates a for() loop which works through the property in a device's
1236 * device-tree node.
1237 *
1238 * @prop: struct ofprop holding the current property
1239 * @dev: device to use for interation (`struct udevice *`)
1240 */
1241 #define dev_for_each_property(prop, dev) \
1242 for (int ret_prop = dev_read_first_prop(dev, &prop); \
1243 !ret_prop; \
1244 ret_prop = dev_read_next_prop(&prop))
1245
1246 #endif
1247