1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2010-2019, NVIDIA CORPORATION.  All rights reserved.
4  */
5 
6 #include <common.h>
7 #include <log.h>
8 #include <asm/io.h>
9 #include <asm/arch/clock.h>
10 #include <asm/arch/gp_padctrl.h>
11 #include <asm/arch/pinmux.h>
12 #include <asm/arch/tegra.h>
13 #include <asm/arch-tegra/clk_rst.h>
14 #include <asm/arch-tegra/pmc.h>
15 #include <asm/arch-tegra/scu.h>
16 #include <linux/delay.h>
17 #include "cpu.h"
18 
get_num_cpus(void)19 int get_num_cpus(void)
20 {
21 	struct apb_misc_gp_ctlr *gp;
22 	uint rev;
23 	debug("%s entry\n", __func__);
24 
25 	gp = (struct apb_misc_gp_ctlr *)NV_PA_APB_MISC_GP_BASE;
26 	rev = (readl(&gp->hidrev) & HIDREV_CHIPID_MASK) >> HIDREV_CHIPID_SHIFT;
27 
28 	switch (rev) {
29 	case CHIPID_TEGRA20:
30 		return 2;
31 		break;
32 	case CHIPID_TEGRA30:
33 	case CHIPID_TEGRA114:
34 	case CHIPID_TEGRA124:
35 	case CHIPID_TEGRA210:
36 	default:
37 		return 4;
38 		break;
39 	}
40 }
41 
42 /*
43  * Timing tables for each SOC for all four oscillator options.
44  */
45 struct clk_pll_table tegra_pll_x_table[TEGRA_SOC_CNT][CLOCK_OSC_FREQ_COUNT] = {
46 	/*
47 	 * T20: 1 GHz
48 	 *
49 	 * Register   Field  Bits   Width
50 	 * ------------------------------
51 	 * PLLX_BASE  p      22:20    3
52 	 * PLLX_BASE  n      17: 8   10
53 	 * PLLX_BASE  m       4: 0    5
54 	 * PLLX_MISC  cpcon  11: 8    4
55 	 */
56 	{
57 		{ .n = 1000, .m = 13, .p = 0, .cpcon = 12 }, /* OSC: 13.0 MHz */
58 		{ .n =    0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
59 		{ .n =    0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
60 		{ .n =    0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
61 		{ .n =  625, .m = 12, .p = 0, .cpcon =  8 }, /* OSC: 19.2 MHz */
62 		{ .n =    0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
63 		{ .n =    0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
64 		{ .n =    0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
65 		{ .n = 1000, .m = 12, .p = 0, .cpcon = 12 }, /* OSC: 12.0 MHz */
66 		{ .n =    0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
67 		{ .n =    0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
68 		{ .n =    0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
69 		{ .n = 1000, .m = 26, .p = 0, .cpcon = 12 }, /* OSC: 26.0 MHz */
70 	},
71 	/*
72 	 * T25: 1.2 GHz
73 	 *
74 	 * Register   Field  Bits   Width
75 	 * ------------------------------
76 	 * PLLX_BASE  p      22:20    3
77 	 * PLLX_BASE  n      17: 8   10
78 	 * PLLX_BASE  m       4: 0    5
79 	 * PLLX_MISC  cpcon  11: 8    4
80 	 */
81 	{
82 		{ .n = 923, .m = 10, .p = 0, .cpcon = 12 }, /* OSC: 13.0 MHz */
83 		{ .n =   0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
84 		{ .n =   0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
85 		{ .n =   0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
86 		{ .n = 750, .m = 12, .p = 0, .cpcon =  8 }, /* OSC: 19.2 MHz */
87 		{ .n =   0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
88 		{ .n =   0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
89 		{ .n =   0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
90 		{ .n = 600, .m =  6, .p = 0, .cpcon = 12 }, /* OSC: 12.0 MHz */
91 		{ .n =   0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
92 		{ .n =   0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
93 		{ .n =   0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
94 		{ .n = 600, .m = 13, .p = 0, .cpcon = 12 }, /* OSC: 26.0 MHz */
95 	},
96 	/*
97 	 * T30: 600 MHz
98 	 *
99 	 * Register   Field  Bits   Width
100 	 * ------------------------------
101 	 * PLLX_BASE  p      22:20    3
102 	 * PLLX_BASE  n      17: 8   10
103 	 * PLLX_BASE  m       4: 0    5
104 	 * PLLX_MISC  cpcon  11: 8    4
105 	 */
106 	{
107 		{ .n = 600, .m = 13, .p = 0, .cpcon = 8 }, /* OSC: 13.0 MHz */
108 		{ .n = 600, .m = 13, .p = 0, .cpcon = 8 }, /* OSC: 16.8 MHz */
109 		{ .n =   0, .m =  0, .p = 0, .cpcon = 0 }, /* N/A */
110 		{ .n =   0, .m =  0, .p = 0, .cpcon = 0 }, /* N/A */
111 		{ .n = 500, .m = 16, .p = 0, .cpcon = 8 }, /* OSC: 19.2 MHz */
112 		{ .n = 500, .m = 16, .p = 0, .cpcon = 8 }, /* OSC: 38.4 MHz */
113 		{ .n =   0, .m =  0, .p = 0, .cpcon = 0 }, /* N/A */
114 		{ .n =   0, .m =  0, .p = 0, .cpcon = 0 }, /* N/A */
115 		{ .n = 600, .m = 12, .p = 0, .cpcon = 8 }, /* OSC: 12.0 MHz */
116 		{ .n = 600, .m = 12, .p = 0, .cpcon = 8 }, /* OSC: 48.0 MHz */
117 		{ .n =   0, .m =  0, .p = 0, .cpcon = 0 }, /* N/A */
118 		{ .n =   0, .m =  0, .p = 0, .cpcon = 0 }, /* N/A */
119 		{ .n = 600, .m = 26, .p = 0, .cpcon = 8 }, /* OSC: 26.0 MHz */
120 	},
121 	/*
122 	 * T114: 700 MHz
123 	 *
124 	 * Register   Field  Bits   Width
125 	 * ------------------------------
126 	 * PLLX_BASE  p      23:20    4
127 	 * PLLX_BASE  n      15: 8    8
128 	 * PLLX_BASE  m       7: 0    8
129 	 */
130 	{
131 		{ .n = 108, .m = 1, .p = 1 }, /* OSC: 13.0 MHz */
132 		{ .n = 108, .m = 1, .p = 1 }, /* OSC: 16.8 MHz */
133 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
134 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
135 		{ .n =  73, .m = 1, .p = 1 }, /* OSC: 19.2 MHz */
136 		{ .n =  73, .m = 1, .p = 1 }, /* OSC: 38.4 MHz */
137 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
138 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
139 		{ .n = 116, .m = 1, .p = 1 }, /* OSC: 12.0 MHz */
140 		{ .n = 116, .m = 1, .p = 1 }, /* OSC: 48.0 MHz */
141 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
142 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
143 		{ .n = 108, .m = 2, .p = 1 }, /* OSC: 26.0 MHz */
144 	},
145 
146 	/*
147 	 * T124: 700 MHz
148 	 *
149 	 * Register   Field  Bits   Width
150 	 * ------------------------------
151 	 * PLLX_BASE  p      23:20    4
152 	 * PLLX_BASE  n      15: 8    8
153 	 * PLLX_BASE  m       7: 0    8
154 	 */
155 	{
156 		{ .n = 108, .m = 1, .p = 1 }, /* OSC: 13.0 MHz */
157 		{ .n = 108, .m = 1, .p = 1 }, /* OSC: 16.8 MHz */
158 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
159 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
160 		{ .n =  73, .m = 1, .p = 1 }, /* OSC: 19.2 MHz */
161 		{ .n =  73, .m = 1, .p = 1 }, /* OSC: 38.4 MHz */
162 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
163 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
164 		{ .n = 116, .m = 1, .p = 1 }, /* OSC: 12.0 MHz */
165 		{ .n = 116, .m = 1, .p = 1 }, /* OSC: 48.0 MHz */
166 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
167 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
168 		{ .n = 108, .m = 2, .p = 1 }, /* OSC: 26.0 MHz */
169 	},
170 
171 	/*
172 	 * T210: 700 MHz
173 	 *
174 	 * Register   Field  Bits   Width
175 	 * ------------------------------
176 	 * PLLX_BASE  p      24:20    5
177 	 * PLLX_BASE  n      15: 8    8
178 	 * PLLX_BASE  m       7: 0    8
179 	 */
180 	{
181 		{ .n = 108, .m = 1, .p = 1 }, /* OSC: 13.0 MHz = 702   MHz */
182 		{ .n = 108, .m = 1, .p = 1 }, /* OSC: 16.0 MHz = 702   MHz */
183 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
184 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
185 		{ .n =  73, .m = 1, .p = 1 }, /* OSC: 19.2 MHz = 700.8 MHz */
186 		{ .n =  36, .m = 1, .p = 1 }, /* OSC: 38.4 MHz = 691.2 MHz */
187 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
188 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
189 		{ .n = 116, .m = 1, .p = 1 }, /* OSC: 12.0 MHz = 696   MHz */
190 		{ .n =  58, .m = 2, .p = 1 }, /* OSC: 48.0 MHz = 696   MHz */
191 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
192 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
193 		{ .n = 108, .m = 2, .p = 1 }, /* OSC: 26.0 MHz = 702   MHz */
194 	},
195 };
196 
pllx_set_iddq(void)197 static inline void pllx_set_iddq(void)
198 {
199 #if defined(CONFIG_TEGRA124) || defined(CONFIG_TEGRA210)
200 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
201 	u32 reg;
202 	debug("%s entry\n", __func__);
203 
204 	/* Disable IDDQ */
205 	reg = readl(&clkrst->crc_pllx_misc3);
206 	reg &= ~PLLX_IDDQ_MASK;
207 	writel(reg, &clkrst->crc_pllx_misc3);
208 	udelay(2);
209 	debug("%s: IDDQ: PLLX IDDQ = 0x%08X\n", __func__,
210 	      readl(&clkrst->crc_pllx_misc3));
211 #endif
212 }
213 
pllx_set_rate(struct clk_pll_simple * pll,u32 divn,u32 divm,u32 divp,u32 cpcon)214 int pllx_set_rate(struct clk_pll_simple *pll , u32 divn, u32 divm,
215 		u32 divp, u32 cpcon)
216 {
217 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[CLOCK_ID_XCPU];
218 	int chip = tegra_get_chip();
219 	u32 reg;
220 	debug("%s entry\n", __func__);
221 
222 	/* If PLLX is already enabled, just return */
223 	if (readl(&pll->pll_base) & PLL_ENABLE_MASK) {
224 		debug("%s: PLLX already enabled, returning\n", __func__);
225 		return 0;
226 	}
227 
228 	pllx_set_iddq();
229 
230 	/* Set BYPASS, m, n and p to PLLX_BASE */
231 	reg = PLL_BYPASS_MASK | (divm << pllinfo->m_shift);
232 	reg |= (divn << pllinfo->n_shift) | (divp << pllinfo->p_shift);
233 	writel(reg, &pll->pll_base);
234 
235 	/* Set cpcon to PLLX_MISC */
236 	if (chip == CHIPID_TEGRA20 || chip == CHIPID_TEGRA30)
237 		reg = (cpcon << pllinfo->kcp_shift);
238 	else
239 		reg = 0;
240 
241 	/*
242 	 * TODO(twarren@nvidia.com) Check which SoCs use DCCON
243 	 * and add to pllinfo table if needed!
244 	 */
245 	 /* Set dccon to PLLX_MISC if freq > 600MHz */
246 	if (divn > 600)
247 		reg |= (1 << PLL_DCCON_SHIFT);
248 	writel(reg, &pll->pll_misc);
249 
250 	/* Disable BYPASS */
251 	reg = readl(&pll->pll_base);
252 	reg &= ~PLL_BYPASS_MASK;
253 	writel(reg, &pll->pll_base);
254 	debug("%s: base = 0x%08X\n", __func__, reg);
255 
256 	/* Set lock_enable to PLLX_MISC if lock_ena is valid (i.e. 0-31) */
257 	reg = readl(&pll->pll_misc);
258 	if (pllinfo->lock_ena < 32)
259 		reg |= (1 << pllinfo->lock_ena);
260 	writel(reg, &pll->pll_misc);
261 	debug("%s: misc = 0x%08X\n", __func__, reg);
262 
263 	/* Enable PLLX last, once it's all configured */
264 	reg = readl(&pll->pll_base);
265 	reg |= PLL_ENABLE_MASK;
266 	writel(reg, &pll->pll_base);
267 	debug("%s: base final = 0x%08X\n", __func__, reg);
268 
269 	return 0;
270 }
271 
init_pllx(void)272 void init_pllx(void)
273 {
274 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
275 	struct clk_pll_simple *pll = &clkrst->crc_pll_simple[SIMPLE_PLLX];
276 	int soc_type, sku_info, chip_sku;
277 	enum clock_osc_freq osc;
278 	struct clk_pll_table *sel;
279 	debug("%s entry\n", __func__);
280 
281 	/* get SOC (chip) type */
282 	soc_type = tegra_get_chip();
283 	debug("%s: SoC = 0x%02X\n", __func__, soc_type);
284 
285 	/* get SKU info */
286 	sku_info = tegra_get_sku_info();
287 	debug("%s: SKU info byte = 0x%02X\n", __func__, sku_info);
288 
289 	/* get chip SKU, combo of the above info */
290 	chip_sku = tegra_get_chip_sku();
291 	debug("%s: Chip SKU = %d\n", __func__, chip_sku);
292 
293 	/* get osc freq */
294 	osc = clock_get_osc_freq();
295 	debug("%s: osc = %d\n", __func__, osc);
296 
297 	/* set pllx */
298 	sel = &tegra_pll_x_table[chip_sku][osc];
299 	pllx_set_rate(pll, sel->n, sel->m, sel->p, sel->cpcon);
300 }
301 
enable_cpu_clock(int enable)302 void enable_cpu_clock(int enable)
303 {
304 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
305 	u32 clk;
306 	debug("%s entry\n", __func__);
307 
308 	/*
309 	 * NOTE:
310 	 * Regardless of whether the request is to enable or disable the CPU
311 	 * clock, every processor in the CPU complex except the master (CPU 0)
312 	 * will have it's clock stopped because the AVP only talks to the
313 	 * master.
314 	 */
315 
316 	if (enable) {
317 		/* Initialize PLLX */
318 		init_pllx();
319 
320 		/* Wait until all clocks are stable */
321 		udelay(PLL_STABILIZATION_DELAY);
322 
323 		writel(CCLK_BURST_POLICY, &clkrst->crc_cclk_brst_pol);
324 		writel(SUPER_CCLK_DIVIDER, &clkrst->crc_super_cclk_div);
325 	}
326 
327 	/*
328 	 * Read the register containing the individual CPU clock enables and
329 	 * always stop the clocks to CPUs > 0.
330 	 */
331 	clk = readl(&clkrst->crc_clk_cpu_cmplx);
332 	clk |= 1 << CPU1_CLK_STP_SHIFT;
333 	if (get_num_cpus() == 4)
334 		clk |= (1 << CPU2_CLK_STP_SHIFT) + (1 << CPU3_CLK_STP_SHIFT);
335 
336 	/* Stop/Unstop the CPU clock */
337 	clk &= ~CPU0_CLK_STP_MASK;
338 	clk |= !enable << CPU0_CLK_STP_SHIFT;
339 	writel(clk, &clkrst->crc_clk_cpu_cmplx);
340 
341 	clock_enable(PERIPH_ID_CPU);
342 }
343 
is_cpu_powered(void)344 static int is_cpu_powered(void)
345 {
346 	return (tegra_pmc_readl(offsetof(struct pmc_ctlr,
347 				pmc_pwrgate_status)) & CPU_PWRED) ? 1 : 0;
348 }
349 
remove_cpu_io_clamps(void)350 static void remove_cpu_io_clamps(void)
351 {
352 	u32 reg;
353 	debug("%s entry\n", __func__);
354 
355 	/* Remove the clamps on the CPU I/O signals */
356 	reg = tegra_pmc_readl(offsetof(struct pmc_ctlr, pmc_remove_clamping));
357 	reg |= CPU_CLMP;
358 	tegra_pmc_writel(reg, offsetof(struct pmc_ctlr, pmc_remove_clamping));
359 
360 	/* Give I/O signals time to stabilize */
361 	udelay(IO_STABILIZATION_DELAY);
362 }
363 
powerup_cpu(void)364 void powerup_cpu(void)
365 {
366 	u32 reg;
367 	int timeout = IO_STABILIZATION_DELAY;
368 	debug("%s entry\n", __func__);
369 
370 	if (!is_cpu_powered()) {
371 		/* Toggle the CPU power state (OFF -> ON) */
372 		reg = tegra_pmc_readl(offsetof(struct pmc_ctlr,
373 				      pmc_pwrgate_toggle));
374 		reg &= PARTID_CP;
375 		reg |= START_CP;
376 		tegra_pmc_writel(reg,
377 				 offsetof(struct pmc_ctlr,
378 				 pmc_pwrgate_toggle));
379 
380 		/* Wait for the power to come up */
381 		while (!is_cpu_powered()) {
382 			if (timeout-- == 0)
383 				printf("CPU failed to power up!\n");
384 			else
385 				udelay(10);
386 		}
387 
388 		/*
389 		 * Remove the I/O clamps from CPU power partition.
390 		 * Recommended only on a Warm boot, if the CPU partition gets
391 		 * power gated. Shouldn't cause any harm when called after a
392 		 * cold boot according to HW, probably just redundant.
393 		 */
394 		remove_cpu_io_clamps();
395 	}
396 }
397 
reset_A9_cpu(int reset)398 void reset_A9_cpu(int reset)
399 {
400 	/*
401 	* NOTE:  Regardless of whether the request is to hold the CPU in reset
402 	*        or take it out of reset, every processor in the CPU complex
403 	*        except the master (CPU 0) will be held in reset because the
404 	*        AVP only talks to the master. The AVP does not know that there
405 	*        are multiple processors in the CPU complex.
406 	*/
407 	int mask = crc_rst_cpu | crc_rst_de | crc_rst_debug;
408 	int num_cpus = get_num_cpus();
409 	int cpu;
410 
411 	debug("%s entry\n", __func__);
412 	/* Hold CPUs 1 onwards in reset, and CPU 0 if asked */
413 	for (cpu = 1; cpu < num_cpus; cpu++)
414 		reset_cmplx_set_enable(cpu, mask, 1);
415 	reset_cmplx_set_enable(0, mask, reset);
416 
417 	/* Enable/Disable master CPU reset */
418 	reset_set_enable(PERIPH_ID_CPU, reset);
419 }
420 
clock_enable_coresight(int enable)421 void clock_enable_coresight(int enable)
422 {
423 	u32 rst, src = 2;
424 
425 	debug("%s entry\n", __func__);
426 	clock_set_enable(PERIPH_ID_CORESIGHT, enable);
427 	reset_set_enable(PERIPH_ID_CORESIGHT, !enable);
428 
429 	if (enable) {
430 		/*
431 		 * Put CoreSight on PLLP_OUT0 and divide it down as per
432 		 * PLLP base frequency based on SoC type (T20/T30+).
433 		 * Clock divider request would setup CSITE clock as 144MHz
434 		 * for PLLP base 216MHz and 204MHz for PLLP base 408MHz
435 		 */
436 		src = CLK_DIVIDER(NVBL_PLLP_KHZ, CSITE_KHZ);
437 		clock_ll_set_source_divisor(PERIPH_ID_CSI, 0, src);
438 
439 		/* Unlock the CPU CoreSight interfaces */
440 		rst = CORESIGHT_UNLOCK;
441 		writel(rst, CSITE_CPU_DBG0_LAR);
442 		writel(rst, CSITE_CPU_DBG1_LAR);
443 		if (get_num_cpus() == 4) {
444 			writel(rst, CSITE_CPU_DBG2_LAR);
445 			writel(rst, CSITE_CPU_DBG3_LAR);
446 		}
447 	}
448 }
449 
halt_avp(void)450 void halt_avp(void)
451 {
452 	debug("%s entry\n", __func__);
453 
454 	for (;;) {
455 		writel(HALT_COP_EVENT_JTAG | (FLOW_MODE_STOP << 29),
456 		       FLOW_CTLR_HALT_COP_EVENTS);
457 	}
458 }
459