1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/mtd/nand/raw/nand_util.c
4 *
5 * Copyright (C) 2006 by Weiss-Electronic GmbH.
6 * All rights reserved.
7 *
8 * @author: Guido Classen <clagix@gmail.com>
9 * @descr: NAND Flash support
10 * @references: borrowed heavily from Linux mtd-utils code:
11 * flash_eraseall.c by Arcom Control System Ltd
12 * nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
13 * and Thomas Gleixner (tglx@linutronix.de)
14 *
15 * Copyright (C) 2008 Nokia Corporation: drop_ffs() function by
16 * Artem Bityutskiy <dedekind1@gmail.com> from mtd-utils
17 *
18 * Copyright 2010 Freescale Semiconductor
19 */
20
21 #include <common.h>
22 #include <command.h>
23 #include <log.h>
24 #include <watchdog.h>
25 #include <malloc.h>
26 #include <memalign.h>
27 #include <div64.h>
28 #include <asm/cache.h>
29 #include <dm/devres.h>
30
31 #include <linux/errno.h>
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/rawnand.h>
34 #include <nand.h>
35 #include <jffs2/jffs2.h>
36
37 typedef struct erase_info erase_info_t;
38 typedef struct mtd_info mtd_info_t;
39
40 /* support only for native endian JFFS2 */
41 #define cpu_to_je16(x) (x)
42 #define cpu_to_je32(x) (x)
43
44 /**
45 * nand_erase_opts: - erase NAND flash with support for various options
46 * (jffs2 formatting)
47 *
48 * @param mtd nand mtd instance to erase
49 * @param opts options, @see struct nand_erase_options
50 * Return: 0 in case of success
51 *
52 * This code is ported from flash_eraseall.c from Linux mtd utils by
53 * Arcom Control System Ltd.
54 */
nand_erase_opts(struct mtd_info * mtd,const nand_erase_options_t * opts)55 int nand_erase_opts(struct mtd_info *mtd,
56 const nand_erase_options_t *opts)
57 {
58 struct jffs2_unknown_node cleanmarker;
59 erase_info_t erase;
60 unsigned long erase_length, erased_length; /* in blocks */
61 int result;
62 int percent_complete = -1;
63 const char *mtd_device = mtd->name;
64 struct mtd_oob_ops oob_opts;
65 struct nand_chip *chip = mtd_to_nand(mtd);
66
67 if ((opts->offset & (mtd->erasesize - 1)) != 0) {
68 printf("Attempt to erase non block-aligned data\n");
69 return -1;
70 }
71
72 memset(&erase, 0, sizeof(erase));
73 memset(&oob_opts, 0, sizeof(oob_opts));
74
75 erase.mtd = mtd;
76 erase.len = mtd->erasesize;
77 erase.addr = opts->offset;
78 erase_length = lldiv(opts->length + mtd->erasesize - 1,
79 mtd->erasesize);
80
81 cleanmarker.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
82 cleanmarker.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
83 cleanmarker.totlen = cpu_to_je32(8);
84
85 /* scrub option allows to erase badblock. To prevent internal
86 * check from erase() method, set block check method to dummy
87 * and disable bad block table while erasing.
88 */
89 if (opts->scrub) {
90 erase.scrub = opts->scrub;
91 /*
92 * We don't need the bad block table anymore...
93 * after scrub, there are no bad blocks left!
94 */
95 if (chip->bbt) {
96 kfree(chip->bbt);
97 }
98 chip->bbt = NULL;
99 chip->options &= ~NAND_BBT_SCANNED;
100 }
101
102 for (erased_length = 0;
103 erased_length < erase_length;
104 erase.addr += mtd->erasesize) {
105
106 schedule();
107
108 if (opts->lim && (erase.addr >= (opts->offset + opts->lim))) {
109 puts("Size of erase exceeds limit\n");
110 return -EFBIG;
111 }
112 if (!opts->scrub) {
113 int ret = mtd_block_isbad(mtd, erase.addr);
114 if (ret > 0) {
115 if (!opts->quiet)
116 printf("\rSkipping %s at "
117 "0x%08llx "
118 " \n",
119 ret == 1 ? "bad block" : "bbt reserved",
120 erase.addr);
121
122 if (!opts->spread)
123 erased_length++;
124
125 continue;
126
127 } else if (ret < 0) {
128 printf("\n%s: MTD get bad block failed: %d\n",
129 mtd_device,
130 ret);
131 return -1;
132 }
133 }
134
135 erased_length++;
136
137 result = mtd_erase(mtd, &erase);
138 if (result != 0) {
139 printf("\n%s: MTD Erase failure: %d\n",
140 mtd_device, result);
141 continue;
142 }
143
144 /* format for JFFS2 ? */
145 if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) {
146 struct mtd_oob_ops ops;
147 ops.ooblen = 8;
148 ops.datbuf = NULL;
149 ops.oobbuf = (uint8_t *)&cleanmarker;
150 ops.ooboffs = 0;
151 ops.mode = MTD_OPS_AUTO_OOB;
152
153 result = mtd_write_oob(mtd, erase.addr, &ops);
154 if (result != 0) {
155 printf("\n%s: MTD writeoob failure: %d\n",
156 mtd_device, result);
157 continue;
158 }
159 }
160
161 if (!opts->quiet) {
162 unsigned long long n = erased_length * 100ULL;
163 int percent;
164
165 do_div(n, erase_length);
166 percent = (int)n;
167
168 /* output progress message only at whole percent
169 * steps to reduce the number of messages printed
170 * on (slow) serial consoles
171 */
172 if (percent != percent_complete) {
173 percent_complete = percent;
174
175 printf("\rErasing at 0x%llx -- %3d%% complete.",
176 erase.addr, percent);
177
178 if (opts->jffs2 && result == 0)
179 printf(" Cleanmarker written at 0x%llx.",
180 erase.addr);
181 }
182 }
183 }
184 if (!opts->quiet)
185 printf("\n");
186
187 return 0;
188 }
189
190 #ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
191
192 #define NAND_CMD_LOCK_TIGHT 0x2c
193 #define NAND_CMD_LOCK_STATUS 0x7a
194
195 /******************************************************************************
196 * Support for locking / unlocking operations of some NAND devices
197 *****************************************************************************/
198
199 /**
200 * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
201 * state
202 *
203 * @param mtd nand mtd instance
204 * @param tight bring device in lock tight mode
205 *
206 * Return: 0 on success, -1 in case of error
207 *
208 * The lock / lock-tight command only applies to the whole chip. To get some
209 * parts of the chip lock and others unlocked use the following sequence:
210 *
211 * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
212 * - Call nand_unlock() once for each consecutive area to be unlocked
213 * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
214 *
215 * If the device is in lock-tight state software can't change the
216 * current active lock/unlock state of all pages. nand_lock() / nand_unlock()
217 * calls will fail. It is only posible to leave lock-tight state by
218 * an hardware signal (low pulse on _WP pin) or by power down.
219 */
nand_lock(struct mtd_info * mtd,int tight)220 int nand_lock(struct mtd_info *mtd, int tight)
221 {
222 int ret = 0;
223 int status;
224 struct nand_chip *chip = mtd_to_nand(mtd);
225
226 /* select the NAND device */
227 chip->select_chip(mtd, 0);
228
229 /* check the Lock Tight Status */
230 chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, 0);
231 if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) {
232 printf("nand_lock: Device is locked tight!\n");
233 ret = -1;
234 goto out;
235 }
236
237 chip->cmdfunc(mtd,
238 (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
239 -1, -1);
240
241 /* call wait ready function */
242 status = chip->waitfunc(mtd, chip);
243
244 /* see if device thinks it succeeded */
245 if (status & 0x01) {
246 ret = -1;
247 }
248
249 out:
250 /* de-select the NAND device */
251 chip->select_chip(mtd, -1);
252 return ret;
253 }
254
255 /**
256 * nand_get_lock_status: - query current lock state from one page of NAND
257 * flash
258 *
259 * @param mtd nand mtd instance
260 * @param offset page address to query (must be page-aligned!)
261 *
262 * Return: -1 in case of error
263 * >0 lock status:
264 * bitfield with the following combinations:
265 * NAND_LOCK_STATUS_TIGHT: page in tight state
266 * NAND_LOCK_STATUS_UNLOCK: page unlocked
267 *
268 */
nand_get_lock_status(struct mtd_info * mtd,loff_t offset)269 int nand_get_lock_status(struct mtd_info *mtd, loff_t offset)
270 {
271 int ret = 0;
272 int chipnr;
273 int page;
274 struct nand_chip *chip = mtd_to_nand(mtd);
275
276 /* select the NAND device */
277 chipnr = (int)(offset >> chip->chip_shift);
278 chip->select_chip(mtd, chipnr);
279
280
281 if ((offset & (mtd->writesize - 1)) != 0) {
282 printf("nand_get_lock_status: "
283 "Start address must be beginning of "
284 "nand page!\n");
285 ret = -1;
286 goto out;
287 }
288
289 /* check the Lock Status */
290 page = (int)(offset >> chip->page_shift);
291 chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
292
293 ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT
294 | NAND_LOCK_STATUS_UNLOCK);
295
296 out:
297 /* de-select the NAND device */
298 chip->select_chip(mtd, -1);
299 return ret;
300 }
301
302 /**
303 * nand_unlock: - Unlock area of NAND pages
304 * only one consecutive area can be unlocked at one time!
305 *
306 * @param mtd nand mtd instance
307 * @param start start byte address
308 * @param length number of bytes to unlock (must be a multiple of
309 * page size mtd->writesize)
310 * @param allexcept if set, unlock everything not selected
311 *
312 * Return: 0 on success, -1 in case of error
313 */
nand_unlock(struct mtd_info * mtd,loff_t start,size_t length,int allexcept)314 int nand_unlock(struct mtd_info *mtd, loff_t start, size_t length,
315 int allexcept)
316 {
317 int ret = 0;
318 int chipnr;
319 int status;
320 int page;
321 struct nand_chip *chip = mtd_to_nand(mtd);
322
323 debug("nand_unlock%s: start: %08llx, length: %zd!\n",
324 allexcept ? " (allexcept)" : "", start, length);
325
326 /* select the NAND device */
327 chipnr = (int)(start >> chip->chip_shift);
328 chip->select_chip(mtd, chipnr);
329
330 /* check the WP bit */
331 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
332 if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) {
333 printf("nand_unlock: Device is write protected!\n");
334 ret = -1;
335 goto out;
336 }
337
338 /* check the Lock Tight Status */
339 page = (int)(start >> chip->page_shift);
340 chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
341 if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) {
342 printf("nand_unlock: Device is locked tight!\n");
343 ret = -1;
344 goto out;
345 }
346
347 if ((start & (mtd->erasesize - 1)) != 0) {
348 printf("nand_unlock: Start address must be beginning of "
349 "nand block!\n");
350 ret = -1;
351 goto out;
352 }
353
354 if (length == 0 || (length & (mtd->erasesize - 1)) != 0) {
355 printf("nand_unlock: Length must be a multiple of nand block "
356 "size %08x!\n", mtd->erasesize);
357 ret = -1;
358 goto out;
359 }
360
361 /*
362 * Set length so that the last address is set to the
363 * starting address of the last block
364 */
365 length -= mtd->erasesize;
366
367 /* submit address of first page to unlock */
368 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
369
370 /* submit ADDRESS of LAST page to unlock */
371 page += (int)(length >> chip->page_shift);
372
373 /*
374 * Page addresses for unlocking are supposed to be block-aligned.
375 * At least some NAND chips use the low bit to indicate that the
376 * page range should be inverted.
377 */
378 if (allexcept)
379 page |= 1;
380
381 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask);
382
383 /* call wait ready function */
384 status = chip->waitfunc(mtd, chip);
385 /* see if device thinks it succeeded */
386 if (status & 0x01) {
387 /* there was an error */
388 ret = -1;
389 goto out;
390 }
391
392 out:
393 /* de-select the NAND device */
394 chip->select_chip(mtd, -1);
395 return ret;
396 }
397 #endif
398
399 /**
400 * check_skip_len
401 *
402 * Check if there are any bad blocks, and whether length including bad
403 * blocks fits into device
404 *
405 * @param mtd nand mtd instance
406 * @param offset offset in flash
407 * @param length image length
408 * @param used length of flash needed for the requested length
409 * Return: 0 if the image fits and there are no bad blocks
410 * 1 if the image fits, but there are bad blocks
411 * -1 if the image does not fit
412 */
check_skip_len(struct mtd_info * mtd,loff_t offset,size_t length,size_t * used)413 static int check_skip_len(struct mtd_info *mtd, loff_t offset, size_t length,
414 size_t *used)
415 {
416 size_t len_excl_bad = 0;
417 int ret = 0;
418
419 while (len_excl_bad < length) {
420 size_t block_len, block_off;
421 loff_t block_start;
422
423 if (offset >= mtd->size)
424 return -1;
425
426 block_start = offset & ~(loff_t)(mtd->erasesize - 1);
427 block_off = offset & (mtd->erasesize - 1);
428 block_len = mtd->erasesize - block_off;
429
430 if (!nand_block_isbad(mtd, block_start))
431 len_excl_bad += block_len;
432 else
433 ret = 1;
434
435 offset += block_len;
436 *used += block_len;
437 }
438
439 /* If the length is not a multiple of block_len, adjust. */
440 if (len_excl_bad > length)
441 *used -= (len_excl_bad - length);
442
443 return ret;
444 }
445
446 #ifdef CONFIG_CMD_NAND_TRIMFFS
drop_ffs(const struct mtd_info * mtd,const u_char * buf,const size_t * len)447 static size_t drop_ffs(const struct mtd_info *mtd, const u_char *buf,
448 const size_t *len)
449 {
450 size_t l = *len;
451 ssize_t i;
452
453 for (i = l - 1; i >= 0; i--)
454 if (buf[i] != 0xFF)
455 break;
456
457 /* The resulting length must be aligned to the minimum flash I/O size */
458 l = i + 1;
459 l = (l + mtd->writesize - 1) / mtd->writesize;
460 l *= mtd->writesize;
461
462 /*
463 * since the input length may be unaligned, prevent access past the end
464 * of the buffer
465 */
466 return min(l, *len);
467 }
468 #endif
469
470 /**
471 * nand_verify_page_oob:
472 *
473 * Verify a page of NAND flash, including the OOB.
474 * Reads page of NAND and verifies the contents and OOB against the
475 * values in ops.
476 *
477 * @param mtd nand mtd instance
478 * @param ops MTD operations, including data to verify
479 * @param ofs offset in flash
480 * Return: 0 in case of success
481 */
nand_verify_page_oob(struct mtd_info * mtd,struct mtd_oob_ops * ops,loff_t ofs)482 int nand_verify_page_oob(struct mtd_info *mtd, struct mtd_oob_ops *ops,
483 loff_t ofs)
484 {
485 int rval;
486 struct mtd_oob_ops vops;
487 size_t verlen = mtd->writesize + mtd->oobsize;
488
489 memcpy(&vops, ops, sizeof(vops));
490
491 vops.datbuf = memalign(ARCH_DMA_MINALIGN, verlen);
492
493 if (!vops.datbuf)
494 return -ENOMEM;
495
496 vops.oobbuf = vops.datbuf + mtd->writesize;
497
498 rval = mtd_read_oob(mtd, ofs, &vops);
499 if (!rval)
500 rval = memcmp(ops->datbuf, vops.datbuf, vops.len);
501 if (!rval)
502 rval = memcmp(ops->oobbuf, vops.oobbuf, vops.ooblen);
503
504 free(vops.datbuf);
505
506 return rval ? -EIO : 0;
507 }
508
509 /**
510 * nand_verify:
511 *
512 * Verify a region of NAND flash.
513 * Reads NAND in page-sized chunks and verifies the contents against
514 * the contents of a buffer. The offset into the NAND must be
515 * page-aligned, and the function doesn't handle skipping bad blocks.
516 *
517 * @param mtd nand mtd instance
518 * @param ofs offset in flash
519 * @param len buffer length
520 * @param buf buffer to read from
521 * Return: 0 in case of success
522 */
nand_verify(struct mtd_info * mtd,loff_t ofs,size_t len,u_char * buf)523 int nand_verify(struct mtd_info *mtd, loff_t ofs, size_t len, u_char *buf)
524 {
525 int rval = 0;
526 size_t verofs;
527 size_t verlen = mtd->writesize;
528 uint8_t *verbuf = memalign(ARCH_DMA_MINALIGN, verlen);
529
530 if (!verbuf)
531 return -ENOMEM;
532
533 /* Read the NAND back in page-size groups to limit malloc size */
534 for (verofs = ofs; verofs < ofs + len;
535 verofs += verlen, buf += verlen) {
536 verlen = min(mtd->writesize, (uint32_t)(ofs + len - verofs));
537 rval = nand_read(mtd, verofs, &verlen, verbuf);
538 if (!rval || (rval == -EUCLEAN))
539 rval = memcmp(buf, verbuf, verlen);
540
541 if (rval)
542 break;
543 }
544
545 free(verbuf);
546
547 return rval ? -EIO : 0;
548 }
549
550 /**
551 * nand_write_skip_bad:
552 *
553 * Write image to NAND flash.
554 * Blocks that are marked bad are skipped and the is written to the next
555 * block instead as long as the image is short enough to fit even after
556 * skipping the bad blocks. Due to bad blocks we may not be able to
557 * perform the requested write. In the case where the write would
558 * extend beyond the end of the NAND device, both length and actual (if
559 * not NULL) are set to 0. In the case where the write would extend
560 * beyond the limit we are passed, length is set to 0 and actual is set
561 * to the required length.
562 *
563 * @param mtd nand mtd instance
564 * @param offset offset in flash
565 * @param length buffer length
566 * @param actual set to size required to write length worth of
567 * buffer or 0 on error, if not NULL
568 * @param lim maximum size that actual may be in order to not
569 * exceed the buffer
570 * @param buffer buffer to read from
571 * @param flags flags modifying the behaviour of the write to NAND
572 * Return: 0 in case of success
573 */
nand_write_skip_bad(struct mtd_info * mtd,loff_t offset,size_t * length,size_t * actual,loff_t lim,u_char * buffer,int flags)574 int nand_write_skip_bad(struct mtd_info *mtd, loff_t offset, size_t *length,
575 size_t *actual, loff_t lim, u_char *buffer, int flags)
576 {
577 int rval = 0, blocksize;
578 size_t left_to_write = *length;
579 size_t used_for_write = 0;
580 u_char *p_buffer = buffer;
581 int need_skip;
582
583 if (actual)
584 *actual = 0;
585
586 blocksize = mtd->erasesize;
587
588 /*
589 * nand_write() handles unaligned, partial page writes.
590 *
591 * We allow length to be unaligned, for convenience in
592 * using the $filesize variable.
593 *
594 * However, starting at an unaligned offset makes the
595 * semantics of bad block skipping ambiguous (really,
596 * you should only start a block skipping access at a
597 * partition boundary). So don't try to handle that.
598 */
599 if ((offset & (mtd->writesize - 1)) != 0) {
600 printf("Attempt to write non page-aligned data\n");
601 *length = 0;
602 return -EINVAL;
603 }
604
605 need_skip = check_skip_len(mtd, offset, *length, &used_for_write);
606
607 if (actual)
608 *actual = used_for_write;
609
610 if (need_skip < 0) {
611 printf("Attempt to write outside the flash area\n");
612 *length = 0;
613 return -EINVAL;
614 }
615
616 if (used_for_write > lim) {
617 puts("Size of write exceeds partition or device limit\n");
618 *length = 0;
619 return -EFBIG;
620 }
621
622 if (!need_skip && !(flags & WITH_DROP_FFS)) {
623 rval = nand_write(mtd, offset, length, buffer);
624
625 if ((flags & WITH_WR_VERIFY) && !rval)
626 rval = nand_verify(mtd, offset, *length, buffer);
627
628 if (rval == 0)
629 return 0;
630
631 *length = 0;
632 printf("NAND write to offset %llx failed %d\n",
633 offset, rval);
634 return rval;
635 }
636
637 while (left_to_write > 0) {
638 loff_t block_start = offset & ~(loff_t)(mtd->erasesize - 1);
639 size_t block_offset = offset & (mtd->erasesize - 1);
640 size_t write_size, truncated_write_size;
641
642 schedule();
643
644 if (nand_block_isbad(mtd, block_start)) {
645 printf("Skip bad block 0x%08llx\n", block_start);
646 offset += mtd->erasesize - block_offset;
647 continue;
648 }
649
650 if (left_to_write < (blocksize - block_offset))
651 write_size = left_to_write;
652 else
653 write_size = blocksize - block_offset;
654
655 truncated_write_size = write_size;
656 #ifdef CONFIG_CMD_NAND_TRIMFFS
657 if (flags & WITH_DROP_FFS)
658 truncated_write_size = drop_ffs(mtd, p_buffer,
659 &write_size);
660 #endif
661
662 rval = nand_write(mtd, offset, &truncated_write_size,
663 p_buffer);
664
665 if ((flags & WITH_WR_VERIFY) && !rval)
666 rval = nand_verify(mtd, offset,
667 truncated_write_size, p_buffer);
668
669 offset += write_size;
670 p_buffer += write_size;
671
672 if (rval != 0) {
673 printf("NAND write to offset %llx failed %d\n",
674 offset, rval);
675 *length -= left_to_write;
676 return rval;
677 }
678
679 left_to_write -= write_size;
680 }
681
682 return 0;
683 }
684
685 /**
686 * nand_read_skip_bad:
687 *
688 * Read image from NAND flash.
689 * Blocks that are marked bad are skipped and the next block is read
690 * instead as long as the image is short enough to fit even after
691 * skipping the bad blocks. Due to bad blocks we may not be able to
692 * perform the requested read. In the case where the read would extend
693 * beyond the end of the NAND device, both length and actual (if not
694 * NULL) are set to 0. In the case where the read would extend beyond
695 * the limit we are passed, length is set to 0 and actual is set to the
696 * required length.
697 *
698 * @param mtd nand mtd instance
699 * @param offset offset in flash
700 * @param length buffer length, on return holds number of read bytes
701 * @param actual set to size required to read length worth of buffer or 0
702 * on error, if not NULL
703 * @param lim maximum size that actual may be in order to not exceed the
704 * buffer
705 * @param buffer buffer to write to
706 * Return: 0 in case of success
707 */
nand_read_skip_bad(struct mtd_info * mtd,loff_t offset,size_t * length,size_t * actual,loff_t lim,u_char * buffer)708 int nand_read_skip_bad(struct mtd_info *mtd, loff_t offset, size_t *length,
709 size_t *actual, loff_t lim, u_char *buffer)
710 {
711 int rval;
712 size_t left_to_read = *length;
713 size_t used_for_read = 0;
714 u_char *p_buffer = buffer;
715 int need_skip;
716
717 if ((offset & (mtd->writesize - 1)) != 0) {
718 printf("Attempt to read non page-aligned data\n");
719 *length = 0;
720 if (actual)
721 *actual = 0;
722 return -EINVAL;
723 }
724
725 need_skip = check_skip_len(mtd, offset, *length, &used_for_read);
726
727 if (actual)
728 *actual = used_for_read;
729
730 if (need_skip < 0) {
731 printf("Attempt to read outside the flash area\n");
732 *length = 0;
733 return -EINVAL;
734 }
735
736 if (used_for_read > lim) {
737 puts("Size of read exceeds partition or device limit\n");
738 *length = 0;
739 return -EFBIG;
740 }
741
742 if (!need_skip) {
743 rval = nand_read(mtd, offset, length, buffer);
744 if (!rval || rval == -EUCLEAN)
745 return 0;
746
747 *length = 0;
748 printf("NAND read from offset %llx failed %d\n",
749 offset, rval);
750 return rval;
751 }
752
753 while (left_to_read > 0) {
754 size_t block_offset = offset & (mtd->erasesize - 1);
755 size_t read_length;
756
757 schedule();
758
759 if (nand_block_isbad(mtd, offset & ~(mtd->erasesize - 1))) {
760 printf("Skipping bad block 0x%08llx\n",
761 offset & ~(mtd->erasesize - 1));
762 offset += mtd->erasesize - block_offset;
763 continue;
764 }
765
766 if (left_to_read < (mtd->erasesize - block_offset))
767 read_length = left_to_read;
768 else
769 read_length = mtd->erasesize - block_offset;
770
771 rval = nand_read(mtd, offset, &read_length, p_buffer);
772 if (rval && rval != -EUCLEAN) {
773 printf("NAND read from offset %llx failed %d\n",
774 offset, rval);
775 *length -= left_to_read;
776 return rval;
777 }
778
779 left_to_read -= read_length;
780 offset += read_length;
781 p_buffer += read_length;
782 }
783
784 return 0;
785 }
786
787 #ifdef CONFIG_CMD_NAND_TORTURE
788
789 /**
790 * check_pattern:
791 *
792 * Check if buffer contains only a certain byte pattern.
793 *
794 * @param buf buffer to check
795 * @param patt the pattern to check
796 * @param size buffer size in bytes
797 * Return: 1 if there are only patt bytes in buf
798 * 0 if something else was found
799 */
check_pattern(const u_char * buf,u_char patt,int size)800 static int check_pattern(const u_char *buf, u_char patt, int size)
801 {
802 int i;
803
804 for (i = 0; i < size; i++)
805 if (buf[i] != patt)
806 return 0;
807 return 1;
808 }
809
810 /**
811 * nand_torture:
812 *
813 * Torture a block of NAND flash.
814 * This is useful to determine if a block that caused a write error is still
815 * good or should be marked as bad.
816 *
817 * @param mtd nand mtd instance
818 * @param offset offset in flash
819 * Return: 0 if the block is still good
820 */
nand_torture(struct mtd_info * mtd,loff_t offset)821 int nand_torture(struct mtd_info *mtd, loff_t offset)
822 {
823 u_char patterns[] = {0xa5, 0x5a, 0x00};
824 struct erase_info instr = {
825 .mtd = mtd,
826 .addr = offset,
827 .len = mtd->erasesize,
828 };
829 size_t retlen;
830 int err, ret = -1, i, patt_count;
831 u_char *buf;
832
833 if ((offset & (mtd->erasesize - 1)) != 0) {
834 puts("Attempt to torture a block at a non block-aligned offset\n");
835 return -EINVAL;
836 }
837
838 if (offset + mtd->erasesize > mtd->size) {
839 puts("Attempt to torture a block outside the flash area\n");
840 return -EINVAL;
841 }
842
843 patt_count = ARRAY_SIZE(patterns);
844
845 buf = malloc_cache_aligned(mtd->erasesize);
846 if (buf == NULL) {
847 puts("Out of memory for erase block buffer\n");
848 return -ENOMEM;
849 }
850
851 for (i = 0; i < patt_count; i++) {
852 err = mtd_erase(mtd, &instr);
853 if (err) {
854 printf("%s: erase() failed for block at 0x%llx: %d\n",
855 mtd->name, instr.addr, err);
856 goto out;
857 }
858
859 /* Make sure the block contains only 0xff bytes */
860 err = mtd_read(mtd, offset, mtd->erasesize, &retlen, buf);
861 if ((err && err != -EUCLEAN) || retlen != mtd->erasesize) {
862 printf("%s: read() failed for block at 0x%llx: %d\n",
863 mtd->name, instr.addr, err);
864 goto out;
865 }
866
867 err = check_pattern(buf, 0xff, mtd->erasesize);
868 if (!err) {
869 printf("Erased block at 0x%llx, but a non-0xff byte was found\n",
870 offset);
871 ret = -EIO;
872 goto out;
873 }
874
875 /* Write a pattern and check it */
876 memset(buf, patterns[i], mtd->erasesize);
877 err = mtd_write(mtd, offset, mtd->erasesize, &retlen, buf);
878 if (err || retlen != mtd->erasesize) {
879 printf("%s: write() failed for block at 0x%llx: %d\n",
880 mtd->name, instr.addr, err);
881 goto out;
882 }
883
884 err = mtd_read(mtd, offset, mtd->erasesize, &retlen, buf);
885 if ((err && err != -EUCLEAN) || retlen != mtd->erasesize) {
886 printf("%s: read() failed for block at 0x%llx: %d\n",
887 mtd->name, instr.addr, err);
888 goto out;
889 }
890
891 err = check_pattern(buf, patterns[i], mtd->erasesize);
892 if (!err) {
893 printf("Pattern 0x%.2x checking failed for block at "
894 "0x%llx\n", patterns[i], offset);
895 ret = -EIO;
896 goto out;
897 }
898 }
899
900 ret = 0;
901
902 out:
903 free(buf);
904 return ret;
905 }
906
907 #endif
908