1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2017 NXP Semiconductors
4  * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
5  */
6 
7 #include <common.h>
8 #include <blk.h>
9 #include <bootdev.h>
10 #include <cpu_func.h>
11 #include <dm.h>
12 #include <errno.h>
13 #include <log.h>
14 #include <malloc.h>
15 #include <memalign.h>
16 #include <time.h>
17 #include <dm/device-internal.h>
18 #include <linux/compat.h>
19 #include "nvme.h"
20 
21 #define NVME_Q_DEPTH		2
22 #define NVME_AQ_DEPTH		2
23 #define NVME_SQ_SIZE(depth)	(depth * sizeof(struct nvme_command))
24 #define NVME_CQ_SIZE(depth)	(depth * sizeof(struct nvme_completion))
25 #define NVME_CQ_ALLOCATION	ALIGN(NVME_CQ_SIZE(NVME_Q_DEPTH), \
26 				      ARCH_DMA_MINALIGN)
27 #define ADMIN_TIMEOUT		60
28 #define IO_TIMEOUT		30
29 #define MAX_PRP_POOL		512
30 
nvme_wait_csts(struct nvme_dev * dev,u32 mask,u32 val)31 static int nvme_wait_csts(struct nvme_dev *dev, u32 mask, u32 val)
32 {
33 	int timeout;
34 	ulong start;
35 
36 	/* Timeout field in the CAP register is in 500 millisecond units */
37 	timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
38 
39 	start = get_timer(0);
40 	while (get_timer(start) < timeout) {
41 		if ((readl(&dev->bar->csts) & mask) == val)
42 			return 0;
43 	}
44 
45 	return -ETIME;
46 }
47 
nvme_setup_prps(struct nvme_dev * dev,u64 * prp2,int total_len,u64 dma_addr)48 static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
49 			   int total_len, u64 dma_addr)
50 {
51 	u32 page_size = dev->page_size;
52 	int offset = dma_addr & (page_size - 1);
53 	u64 *prp_pool;
54 	int length = total_len;
55 	int i, nprps;
56 	u32 prps_per_page = page_size >> 3;
57 	u32 num_pages;
58 
59 	length -= (page_size - offset);
60 
61 	if (length <= 0) {
62 		*prp2 = 0;
63 		return 0;
64 	}
65 
66 	if (length)
67 		dma_addr += (page_size - offset);
68 
69 	if (length <= page_size) {
70 		*prp2 = dma_addr;
71 		return 0;
72 	}
73 
74 	nprps = DIV_ROUND_UP(length, page_size);
75 	num_pages = DIV_ROUND_UP(nprps - 1, prps_per_page - 1);
76 
77 	if (nprps > dev->prp_entry_num) {
78 		free(dev->prp_pool);
79 		/*
80 		 * Always increase in increments of pages.  It doesn't waste
81 		 * much memory and reduces the number of allocations.
82 		 */
83 		dev->prp_pool = memalign(page_size, num_pages * page_size);
84 		if (!dev->prp_pool) {
85 			printf("Error: malloc prp_pool fail\n");
86 			return -ENOMEM;
87 		}
88 		dev->prp_entry_num = num_pages * (prps_per_page - 1) + 1;
89 	}
90 
91 	prp_pool = dev->prp_pool;
92 	i = 0;
93 	while (nprps) {
94 		if ((i == (prps_per_page - 1)) && nprps > 1) {
95 			*(prp_pool + i) = cpu_to_le64((ulong)prp_pool +
96 					page_size);
97 			i = 0;
98 			prp_pool += page_size;
99 		}
100 		*(prp_pool + i++) = cpu_to_le64(dma_addr);
101 		dma_addr += page_size;
102 		nprps--;
103 	}
104 	*prp2 = (ulong)dev->prp_pool;
105 
106 	flush_dcache_range((ulong)dev->prp_pool, (ulong)dev->prp_pool +
107 			   num_pages * page_size);
108 
109 	return 0;
110 }
111 
nvme_get_cmd_id(void)112 static __le16 nvme_get_cmd_id(void)
113 {
114 	static unsigned short cmdid;
115 
116 	return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
117 }
118 
nvme_read_completion_status(struct nvme_queue * nvmeq,u16 index)119 static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
120 {
121 	/*
122 	 * Single CQ entries are always smaller than a cache line, so we
123 	 * can't invalidate them individually. However CQ entries are
124 	 * read only by the CPU, so it's safe to always invalidate all of them,
125 	 * as the cache line should never become dirty.
126 	 */
127 	ulong start = (ulong)&nvmeq->cqes[0];
128 	ulong stop = start + NVME_CQ_ALLOCATION;
129 
130 	invalidate_dcache_range(start, stop);
131 
132 	return readw(&(nvmeq->cqes[index].status));
133 }
134 
135 /**
136  * nvme_submit_cmd() - copy a command into a queue and ring the doorbell
137  *
138  * @nvmeq:	The queue to use
139  * @cmd:	The command to send
140  */
nvme_submit_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)141 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
142 {
143 	struct nvme_ops *ops;
144 	u16 tail = nvmeq->sq_tail;
145 
146 	memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
147 	flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
148 			   (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
149 
150 	ops = (struct nvme_ops *)nvmeq->dev->udev->driver->ops;
151 	if (ops && ops->submit_cmd) {
152 		ops->submit_cmd(nvmeq, cmd);
153 		return;
154 	}
155 
156 	if (++tail == nvmeq->q_depth)
157 		tail = 0;
158 	writel(tail, nvmeq->q_db);
159 	nvmeq->sq_tail = tail;
160 }
161 
nvme_submit_sync_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd,u32 * result,unsigned timeout)162 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
163 				struct nvme_command *cmd,
164 				u32 *result, unsigned timeout)
165 {
166 	struct nvme_ops *ops;
167 	u16 head = nvmeq->cq_head;
168 	u16 phase = nvmeq->cq_phase;
169 	u16 status;
170 	ulong start_time;
171 	ulong timeout_us = timeout * 100000;
172 
173 	cmd->common.command_id = nvme_get_cmd_id();
174 	nvme_submit_cmd(nvmeq, cmd);
175 
176 	start_time = timer_get_us();
177 
178 	for (;;) {
179 		status = nvme_read_completion_status(nvmeq, head);
180 		if ((status & 0x01) == phase)
181 			break;
182 		if (timeout_us > 0 && (timer_get_us() - start_time)
183 		    >= timeout_us)
184 			return -ETIMEDOUT;
185 	}
186 
187 	ops = (struct nvme_ops *)nvmeq->dev->udev->driver->ops;
188 	if (ops && ops->complete_cmd)
189 		ops->complete_cmd(nvmeq, cmd);
190 
191 	status >>= 1;
192 	if (status) {
193 		printf("ERROR: status = %x, phase = %d, head = %d\n",
194 		       status, phase, head);
195 		status = 0;
196 		if (++head == nvmeq->q_depth) {
197 			head = 0;
198 			phase = !phase;
199 		}
200 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
201 		nvmeq->cq_head = head;
202 		nvmeq->cq_phase = phase;
203 
204 		return -EIO;
205 	}
206 
207 	if (result)
208 		*result = readl(&(nvmeq->cqes[head].result));
209 
210 	if (++head == nvmeq->q_depth) {
211 		head = 0;
212 		phase = !phase;
213 	}
214 	writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
215 	nvmeq->cq_head = head;
216 	nvmeq->cq_phase = phase;
217 
218 	return status;
219 }
220 
nvme_submit_admin_cmd(struct nvme_dev * dev,struct nvme_command * cmd,u32 * result)221 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
222 				 u32 *result)
223 {
224 	return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd,
225 				    result, ADMIN_TIMEOUT);
226 }
227 
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)228 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
229 					   int qid, int depth)
230 {
231 	struct nvme_ops *ops;
232 	struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
233 	if (!nvmeq)
234 		return NULL;
235 	memset(nvmeq, 0, sizeof(*nvmeq));
236 
237 	nvmeq->cqes = (void *)memalign(4096, NVME_CQ_ALLOCATION);
238 	if (!nvmeq->cqes)
239 		goto free_nvmeq;
240 	memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
241 
242 	nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
243 	if (!nvmeq->sq_cmds)
244 		goto free_queue;
245 	memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
246 
247 	nvmeq->dev = dev;
248 
249 	nvmeq->cq_head = 0;
250 	nvmeq->cq_phase = 1;
251 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
252 	nvmeq->q_depth = depth;
253 	nvmeq->qid = qid;
254 	dev->queue_count++;
255 	dev->queues[qid] = nvmeq;
256 
257 	ops = (struct nvme_ops *)dev->udev->driver->ops;
258 	if (ops && ops->setup_queue)
259 		ops->setup_queue(nvmeq);
260 
261 	return nvmeq;
262 
263  free_queue:
264 	free((void *)nvmeq->cqes);
265  free_nvmeq:
266 	free(nvmeq);
267 
268 	return NULL;
269 }
270 
nvme_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)271 static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
272 {
273 	struct nvme_command c;
274 
275 	memset(&c, 0, sizeof(c));
276 	c.delete_queue.opcode = opcode;
277 	c.delete_queue.qid = cpu_to_le16(id);
278 
279 	return nvme_submit_admin_cmd(dev, &c, NULL);
280 }
281 
nvme_delete_sq(struct nvme_dev * dev,u16 sqid)282 static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
283 {
284 	return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
285 }
286 
nvme_delete_cq(struct nvme_dev * dev,u16 cqid)287 static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
288 {
289 	return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
290 }
291 
nvme_enable_ctrl(struct nvme_dev * dev)292 static int nvme_enable_ctrl(struct nvme_dev *dev)
293 {
294 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
295 	dev->ctrl_config |= NVME_CC_ENABLE;
296 	writel(dev->ctrl_config, &dev->bar->cc);
297 
298 	return nvme_wait_csts(dev, NVME_CSTS_RDY, NVME_CSTS_RDY);
299 }
300 
nvme_disable_ctrl(struct nvme_dev * dev)301 static int nvme_disable_ctrl(struct nvme_dev *dev)
302 {
303 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
304 	dev->ctrl_config &= ~NVME_CC_ENABLE;
305 	writel(dev->ctrl_config, &dev->bar->cc);
306 
307 	return nvme_wait_csts(dev, NVME_CSTS_RDY, 0);
308 }
309 
nvme_shutdown_ctrl(struct nvme_dev * dev)310 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
311 {
312 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
313 	dev->ctrl_config |= NVME_CC_SHN_NORMAL;
314 	writel(dev->ctrl_config, &dev->bar->cc);
315 
316 	return nvme_wait_csts(dev, NVME_CSTS_SHST_MASK, NVME_CSTS_SHST_CMPLT);
317 }
318 
nvme_free_queue(struct nvme_queue * nvmeq)319 static void nvme_free_queue(struct nvme_queue *nvmeq)
320 {
321 	free((void *)nvmeq->cqes);
322 	free(nvmeq->sq_cmds);
323 	free(nvmeq);
324 }
325 
nvme_free_queues(struct nvme_dev * dev,int lowest)326 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
327 {
328 	int i;
329 
330 	for (i = dev->queue_count - 1; i >= lowest; i--) {
331 		struct nvme_queue *nvmeq = dev->queues[i];
332 		dev->queue_count--;
333 		dev->queues[i] = NULL;
334 		nvme_free_queue(nvmeq);
335 	}
336 }
337 
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)338 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
339 {
340 	struct nvme_dev *dev = nvmeq->dev;
341 
342 	nvmeq->sq_tail = 0;
343 	nvmeq->cq_head = 0;
344 	nvmeq->cq_phase = 1;
345 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
346 	memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
347 	flush_dcache_range((ulong)nvmeq->cqes,
348 			   (ulong)nvmeq->cqes + NVME_CQ_ALLOCATION);
349 	dev->online_queues++;
350 }
351 
nvme_configure_admin_queue(struct nvme_dev * dev)352 static int nvme_configure_admin_queue(struct nvme_dev *dev)
353 {
354 	int result;
355 	u32 aqa;
356 	u64 cap = dev->cap;
357 	struct nvme_queue *nvmeq;
358 	/* most architectures use 4KB as the page size */
359 	unsigned page_shift = 12;
360 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
361 	unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
362 
363 	if (page_shift < dev_page_min) {
364 		debug("Device minimum page size (%u) too large for host (%u)\n",
365 		      1 << dev_page_min, 1 << page_shift);
366 		return -ENODEV;
367 	}
368 
369 	if (page_shift > dev_page_max) {
370 		debug("Device maximum page size (%u) smaller than host (%u)\n",
371 		      1 << dev_page_max, 1 << page_shift);
372 		page_shift = dev_page_max;
373 	}
374 
375 	result = nvme_disable_ctrl(dev);
376 	if (result < 0)
377 		return result;
378 
379 	nvmeq = dev->queues[NVME_ADMIN_Q];
380 	if (!nvmeq) {
381 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
382 		if (!nvmeq)
383 			return -ENOMEM;
384 	}
385 
386 	aqa = nvmeq->q_depth - 1;
387 	aqa |= aqa << 16;
388 
389 	dev->page_size = 1 << page_shift;
390 
391 	dev->ctrl_config = NVME_CC_CSS_NVM;
392 	dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
393 	dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
394 	dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
395 
396 	writel(aqa, &dev->bar->aqa);
397 	nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
398 	nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
399 
400 	result = nvme_enable_ctrl(dev);
401 	if (result)
402 		goto free_nvmeq;
403 
404 	nvmeq->cq_vector = 0;
405 
406 	nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0);
407 
408 	return result;
409 
410  free_nvmeq:
411 	nvme_free_queues(dev, 0);
412 
413 	return result;
414 }
415 
nvme_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)416 static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
417 			    struct nvme_queue *nvmeq)
418 {
419 	struct nvme_command c;
420 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
421 
422 	memset(&c, 0, sizeof(c));
423 	c.create_cq.opcode = nvme_admin_create_cq;
424 	c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
425 	c.create_cq.cqid = cpu_to_le16(qid);
426 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
427 	c.create_cq.cq_flags = cpu_to_le16(flags);
428 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
429 
430 	return nvme_submit_admin_cmd(dev, &c, NULL);
431 }
432 
nvme_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)433 static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
434 			    struct nvme_queue *nvmeq)
435 {
436 	struct nvme_command c;
437 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
438 
439 	memset(&c, 0, sizeof(c));
440 	c.create_sq.opcode = nvme_admin_create_sq;
441 	c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
442 	c.create_sq.sqid = cpu_to_le16(qid);
443 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
444 	c.create_sq.sq_flags = cpu_to_le16(flags);
445 	c.create_sq.cqid = cpu_to_le16(qid);
446 
447 	return nvme_submit_admin_cmd(dev, &c, NULL);
448 }
449 
nvme_identify(struct nvme_dev * dev,unsigned nsid,unsigned cns,dma_addr_t dma_addr)450 int nvme_identify(struct nvme_dev *dev, unsigned nsid,
451 		  unsigned cns, dma_addr_t dma_addr)
452 {
453 	struct nvme_command c;
454 	u32 page_size = dev->page_size;
455 	int offset = dma_addr & (page_size - 1);
456 	int length = sizeof(struct nvme_id_ctrl);
457 	int ret;
458 
459 	memset(&c, 0, sizeof(c));
460 	c.identify.opcode = nvme_admin_identify;
461 	c.identify.nsid = cpu_to_le32(nsid);
462 	c.identify.prp1 = cpu_to_le64(dma_addr);
463 
464 	length -= (page_size - offset);
465 	if (length <= 0) {
466 		c.identify.prp2 = 0;
467 	} else {
468 		dma_addr += (page_size - offset);
469 		c.identify.prp2 = cpu_to_le64(dma_addr);
470 	}
471 
472 	c.identify.cns = cpu_to_le32(cns);
473 
474 	invalidate_dcache_range(dma_addr,
475 				dma_addr + sizeof(struct nvme_id_ctrl));
476 
477 	ret = nvme_submit_admin_cmd(dev, &c, NULL);
478 	if (!ret)
479 		invalidate_dcache_range(dma_addr,
480 					dma_addr + sizeof(struct nvme_id_ctrl));
481 
482 	return ret;
483 }
484 
nvme_get_features(struct nvme_dev * dev,unsigned fid,unsigned nsid,dma_addr_t dma_addr,u32 * result)485 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
486 		      dma_addr_t dma_addr, u32 *result)
487 {
488 	struct nvme_command c;
489 	int ret;
490 
491 	memset(&c, 0, sizeof(c));
492 	c.features.opcode = nvme_admin_get_features;
493 	c.features.nsid = cpu_to_le32(nsid);
494 	c.features.prp1 = cpu_to_le64(dma_addr);
495 	c.features.fid = cpu_to_le32(fid);
496 
497 	ret = nvme_submit_admin_cmd(dev, &c, result);
498 
499 	/*
500 	 * TODO: Add some cache invalidation when a DMA buffer is involved
501 	 * in the request, here and before the command gets submitted. The
502 	 * buffer size varies by feature, also some features use a different
503 	 * field in the command packet to hold the buffer address.
504 	 * Section 5.21.1 (Set Features command) in the NVMe specification
505 	 * details the buffer requirements for each feature.
506 	 *
507 	 * At the moment there is no user of this function.
508 	 */
509 
510 	return ret;
511 }
512 
nvme_set_features(struct nvme_dev * dev,unsigned fid,unsigned dword11,dma_addr_t dma_addr,u32 * result)513 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
514 		      dma_addr_t dma_addr, u32 *result)
515 {
516 	struct nvme_command c;
517 
518 	memset(&c, 0, sizeof(c));
519 	c.features.opcode = nvme_admin_set_features;
520 	c.features.prp1 = cpu_to_le64(dma_addr);
521 	c.features.fid = cpu_to_le32(fid);
522 	c.features.dword11 = cpu_to_le32(dword11);
523 
524 	/*
525 	 * TODO: Add a cache clean (aka flush) operation when a DMA buffer is
526 	 * involved in the request. The buffer size varies by feature, also
527 	 * some features use a different field in the command packet to hold
528 	 * the buffer address. Section 5.21.1 (Set Features command) in the
529 	 * NVMe specification details the buffer requirements for each
530 	 * feature.
531 	 * At the moment the only user of this function is not using
532 	 * any DMA buffer at all.
533 	 */
534 
535 	return nvme_submit_admin_cmd(dev, &c, result);
536 }
537 
nvme_create_queue(struct nvme_queue * nvmeq,int qid)538 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
539 {
540 	struct nvme_dev *dev = nvmeq->dev;
541 	int result;
542 
543 	nvmeq->cq_vector = qid - 1;
544 	result = nvme_alloc_cq(dev, qid, nvmeq);
545 	if (result < 0)
546 		goto release_cq;
547 
548 	result = nvme_alloc_sq(dev, qid, nvmeq);
549 	if (result < 0)
550 		goto release_sq;
551 
552 	nvme_init_queue(nvmeq, qid);
553 
554 	return result;
555 
556  release_sq:
557 	nvme_delete_sq(dev, qid);
558  release_cq:
559 	nvme_delete_cq(dev, qid);
560 
561 	return result;
562 }
563 
nvme_set_queue_count(struct nvme_dev * dev,int count)564 static int nvme_set_queue_count(struct nvme_dev *dev, int count)
565 {
566 	int status;
567 	u32 result;
568 	u32 q_count = (count - 1) | ((count - 1) << 16);
569 
570 	status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
571 			q_count, 0, &result);
572 
573 	if (status < 0)
574 		return status;
575 	if (status > 1)
576 		return 0;
577 
578 	return min(result & 0xffff, result >> 16) + 1;
579 }
580 
nvme_create_io_queues(struct nvme_dev * dev)581 static void nvme_create_io_queues(struct nvme_dev *dev)
582 {
583 	unsigned int i;
584 
585 	for (i = dev->queue_count; i <= dev->max_qid; i++)
586 		if (!nvme_alloc_queue(dev, i, dev->q_depth))
587 			break;
588 
589 	for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
590 		if (nvme_create_queue(dev->queues[i], i))
591 			break;
592 }
593 
nvme_setup_io_queues(struct nvme_dev * dev)594 static int nvme_setup_io_queues(struct nvme_dev *dev)
595 {
596 	int nr_io_queues;
597 	int result;
598 
599 	nr_io_queues = 1;
600 	result = nvme_set_queue_count(dev, nr_io_queues);
601 	if (result <= 0)
602 		return result;
603 
604 	dev->max_qid = nr_io_queues;
605 
606 	/* Free previously allocated queues */
607 	nvme_free_queues(dev, nr_io_queues + 1);
608 	nvme_create_io_queues(dev);
609 
610 	return 0;
611 }
612 
nvme_get_info_from_identify(struct nvme_dev * dev)613 static int nvme_get_info_from_identify(struct nvme_dev *dev)
614 {
615 	struct nvme_id_ctrl *ctrl;
616 	int ret;
617 	int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
618 
619 	ctrl = memalign(dev->page_size, sizeof(struct nvme_id_ctrl));
620 	if (!ctrl)
621 		return -ENOMEM;
622 
623 	ret = nvme_identify(dev, 0, 1, (dma_addr_t)(long)ctrl);
624 	if (ret) {
625 		free(ctrl);
626 		return -EIO;
627 	}
628 
629 	dev->nn = le32_to_cpu(ctrl->nn);
630 	dev->vwc = ctrl->vwc;
631 	memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
632 	memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
633 	memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
634 	if (ctrl->mdts)
635 		dev->max_transfer_shift = (ctrl->mdts + shift);
636 	else {
637 		/*
638 		 * Maximum Data Transfer Size (MDTS) field indicates the maximum
639 		 * data transfer size between the host and the controller. The
640 		 * host should not submit a command that exceeds this transfer
641 		 * size. The value is in units of the minimum memory page size
642 		 * and is reported as a power of two (2^n).
643 		 *
644 		 * The spec also says: a value of 0h indicates no restrictions
645 		 * on transfer size. But in nvme_blk_read/write() below we have
646 		 * the following algorithm for maximum number of logic blocks
647 		 * per transfer:
648 		 *
649 		 * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
650 		 *
651 		 * In order for lbas not to overflow, the maximum number is 15
652 		 * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
653 		 * Let's use 20 which provides 1MB size.
654 		 */
655 		dev->max_transfer_shift = 20;
656 	}
657 
658 	free(ctrl);
659 	return 0;
660 }
661 
nvme_get_namespace_id(struct udevice * udev,u32 * ns_id,u8 * eui64)662 int nvme_get_namespace_id(struct udevice *udev, u32 *ns_id, u8 *eui64)
663 {
664 	struct nvme_ns *ns = dev_get_priv(udev);
665 
666 	if (ns_id)
667 		*ns_id = ns->ns_id;
668 	if (eui64)
669 		memcpy(eui64, ns->eui64, sizeof(ns->eui64));
670 
671 	return 0;
672 }
673 
nvme_scan_namespace(void)674 int nvme_scan_namespace(void)
675 {
676 	struct uclass *uc;
677 	struct udevice *dev;
678 	int ret;
679 
680 	ret = uclass_get(UCLASS_NVME, &uc);
681 	if (ret)
682 		return ret;
683 
684 	uclass_foreach_dev(dev, uc) {
685 		ret = device_probe(dev);
686 		if (ret)
687 			return ret;
688 	}
689 
690 	return 0;
691 }
692 
nvme_blk_probe(struct udevice * udev)693 static int nvme_blk_probe(struct udevice *udev)
694 {
695 	struct nvme_dev *ndev = dev_get_priv(udev->parent);
696 	struct blk_desc *desc = dev_get_uclass_plat(udev);
697 	struct nvme_ns *ns = dev_get_priv(udev);
698 	u8 flbas;
699 	struct nvme_id_ns *id;
700 
701 	id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
702 	if (!id)
703 		return -ENOMEM;
704 
705 	ns->dev = ndev;
706 	/* extract the namespace id from the block device name */
707 	ns->ns_id = trailing_strtol(udev->name);
708 	if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)(long)id)) {
709 		free(id);
710 		return -EIO;
711 	}
712 
713 	memcpy(&ns->eui64, &id->eui64, sizeof(id->eui64));
714 	flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
715 	ns->flbas = flbas;
716 	ns->lba_shift = id->lbaf[flbas].ds;
717 	list_add(&ns->list, &ndev->namespaces);
718 
719 	desc->lba = le64_to_cpu(id->nsze);
720 	desc->log2blksz = ns->lba_shift;
721 	desc->blksz = 1 << ns->lba_shift;
722 	desc->bdev = udev;
723 	memcpy(desc->vendor, ndev->vendor, sizeof(ndev->vendor));
724 	memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
725 	memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
726 
727 	free(id);
728 	return 0;
729 }
730 
nvme_blk_rw(struct udevice * udev,lbaint_t blknr,lbaint_t blkcnt,void * buffer,bool read)731 static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr,
732 			 lbaint_t blkcnt, void *buffer, bool read)
733 {
734 	struct nvme_ns *ns = dev_get_priv(udev);
735 	struct nvme_dev *dev = ns->dev;
736 	struct nvme_command c;
737 	struct blk_desc *desc = dev_get_uclass_plat(udev);
738 	int status;
739 	u64 prp2;
740 	u64 total_len = blkcnt << desc->log2blksz;
741 	u64 temp_len = total_len;
742 	uintptr_t temp_buffer = (uintptr_t)buffer;
743 
744 	u64 slba = blknr;
745 	u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
746 	u64 total_lbas = blkcnt;
747 
748 	flush_dcache_range((unsigned long)buffer,
749 			   (unsigned long)buffer + total_len);
750 
751 	c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write;
752 	c.rw.flags = 0;
753 	c.rw.nsid = cpu_to_le32(ns->ns_id);
754 	c.rw.control = 0;
755 	c.rw.dsmgmt = 0;
756 	c.rw.reftag = 0;
757 	c.rw.apptag = 0;
758 	c.rw.appmask = 0;
759 	c.rw.metadata = 0;
760 
761 	while (total_lbas) {
762 		if (total_lbas < lbas) {
763 			lbas = (u16)total_lbas;
764 			total_lbas = 0;
765 		} else {
766 			total_lbas -= lbas;
767 		}
768 
769 		if (nvme_setup_prps(dev, &prp2,
770 				    lbas << ns->lba_shift, temp_buffer))
771 			return -EIO;
772 		c.rw.slba = cpu_to_le64(slba);
773 		slba += lbas;
774 		c.rw.length = cpu_to_le16(lbas - 1);
775 		c.rw.prp1 = cpu_to_le64(temp_buffer);
776 		c.rw.prp2 = cpu_to_le64(prp2);
777 		status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q],
778 				&c, NULL, IO_TIMEOUT);
779 		if (status)
780 			break;
781 		temp_len -= (u32)lbas << ns->lba_shift;
782 		temp_buffer += lbas << ns->lba_shift;
783 	}
784 
785 	if (read)
786 		invalidate_dcache_range((unsigned long)buffer,
787 					(unsigned long)buffer + total_len);
788 
789 	return (total_len - temp_len) >> desc->log2blksz;
790 }
791 
nvme_blk_read(struct udevice * udev,lbaint_t blknr,lbaint_t blkcnt,void * buffer)792 static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
793 			   lbaint_t blkcnt, void *buffer)
794 {
795 	return nvme_blk_rw(udev, blknr, blkcnt, buffer, true);
796 }
797 
nvme_blk_write(struct udevice * udev,lbaint_t blknr,lbaint_t blkcnt,const void * buffer)798 static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
799 			    lbaint_t blkcnt, const void *buffer)
800 {
801 	return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false);
802 }
803 
804 static const struct blk_ops nvme_blk_ops = {
805 	.read	= nvme_blk_read,
806 	.write	= nvme_blk_write,
807 };
808 
809 U_BOOT_DRIVER(nvme_blk) = {
810 	.name	= "nvme-blk",
811 	.id	= UCLASS_BLK,
812 	.probe	= nvme_blk_probe,
813 	.ops	= &nvme_blk_ops,
814 	.priv_auto	= sizeof(struct nvme_ns),
815 };
816 
nvme_init(struct udevice * udev)817 int nvme_init(struct udevice *udev)
818 {
819 	struct nvme_dev *ndev = dev_get_priv(udev);
820 	struct nvme_id_ns *id;
821 	int ret;
822 
823 	ndev->udev = udev;
824 	INIT_LIST_HEAD(&ndev->namespaces);
825 	if (readl(&ndev->bar->csts) == -1) {
826 		ret = -ENODEV;
827 		printf("Error: %s: Out of memory!\n", udev->name);
828 		goto free_nvme;
829 	}
830 
831 	ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *));
832 	if (!ndev->queues) {
833 		ret = -ENOMEM;
834 		printf("Error: %s: Out of memory!\n", udev->name);
835 		goto free_nvme;
836 	}
837 	memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
838 
839 	ndev->cap = nvme_readq(&ndev->bar->cap);
840 	ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
841 	ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
842 	ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
843 
844 	ret = nvme_configure_admin_queue(ndev);
845 	if (ret)
846 		goto free_queue;
847 
848 	/* Allocate after the page size is known */
849 	ndev->prp_pool = memalign(ndev->page_size, MAX_PRP_POOL);
850 	if (!ndev->prp_pool) {
851 		ret = -ENOMEM;
852 		printf("Error: %s: Out of memory!\n", udev->name);
853 		goto free_nvme;
854 	}
855 	ndev->prp_entry_num = MAX_PRP_POOL >> 3;
856 
857 	ret = nvme_setup_io_queues(ndev);
858 	if (ret)
859 		goto free_queue;
860 
861 	nvme_get_info_from_identify(ndev);
862 
863 	/* Create a blk device for each namespace */
864 
865 	id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
866 	if (!id) {
867 		ret = -ENOMEM;
868 		goto free_queue;
869 	}
870 
871 	for (int i = 1; i <= ndev->nn; i++) {
872 		struct udevice *ns_udev;
873 		char name[20];
874 
875 		memset(id, 0, sizeof(*id));
876 		if (nvme_identify(ndev, i, 0, (dma_addr_t)(long)id)) {
877 			ret = -EIO;
878 			goto free_id;
879 		}
880 
881 		/* skip inactive namespace */
882 		if (!id->nsze)
883 			continue;
884 
885 		/*
886 		 * Encode the namespace id to the device name so that
887 		 * we can extract it when doing the probe.
888 		 */
889 		sprintf(name, "blk#%d", i);
890 
891 		/* The real blksz and size will be set by nvme_blk_probe() */
892 		ret = blk_create_devicef(udev, "nvme-blk", name, UCLASS_NVME,
893 					 -1, 512, 0, &ns_udev);
894 		if (ret)
895 			goto free_id;
896 
897 		ret = bootdev_setup_sibling_blk(ns_udev, "nvme_bootdev");
898 		if (ret)
899 			return log_msg_ret("bootdev", ret);
900 
901 		ret = blk_probe_or_unbind(ns_udev);
902 		if (ret)
903 			goto free_id;
904 	}
905 
906 	free(id);
907 	return 0;
908 
909 free_id:
910 	free(id);
911 free_queue:
912 	free((void *)ndev->queues);
913 free_nvme:
914 	return ret;
915 }
916 
nvme_shutdown(struct udevice * udev)917 int nvme_shutdown(struct udevice *udev)
918 {
919 	struct nvme_dev *ndev = dev_get_priv(udev);
920 	int ret;
921 
922 	ret = nvme_shutdown_ctrl(ndev);
923 	if (ret < 0) {
924 		printf("Error: %s: Shutdown timed out!\n", udev->name);
925 		return ret;
926 	}
927 
928 	return nvme_disable_ctrl(ndev);
929 }
930