1 // SPDX-License-Identifier:    GPL-2.0
2 /*
3  * Copyright (C) 2018 Marvell International Ltd.
4  */
5 
6 #include <dm.h>
7 #include <dm/of_access.h>
8 #include <malloc.h>
9 #include <memalign.h>
10 #include <nand.h>
11 #include <pci.h>
12 #include <pci_ids.h>
13 #include <time.h>
14 #include <linux/bitfield.h>
15 #include <linux/ctype.h>
16 #include <linux/delay.h>
17 #include <linux/errno.h>
18 #include <linux/err.h>
19 #include <linux/ioport.h>
20 #include <linux/libfdt.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/nand_bch.h>
23 #include <linux/mtd/nand_ecc.h>
24 #include <asm/io.h>
25 #include <asm/types.h>
26 #include <asm/dma-mapping.h>
27 #include <asm/arch/clock.h>
28 #include "octeontx_bch.h"
29 
30 static LIST_HEAD(octeontx_bch_devices);
31 static unsigned int num_vfs = BCH_NR_VF;
32 static void *bch_pf;
33 static void *bch_vf;
34 static void *token;
35 static bool bch_pf_initialized;
36 static bool bch_vf_initialized;
37 
pci_enable_sriov(struct udevice * dev,int nr_virtfn)38 static int pci_enable_sriov(struct udevice *dev, int nr_virtfn)
39 {
40 	int ret;
41 
42 	ret = pci_sriov_init(dev, nr_virtfn);
43 	if (ret)
44 		printf("%s(%s): pci_sriov_init returned %d\n", __func__,
45 		       dev->name, ret);
46 	return ret;
47 }
48 
octeontx_bch_getv(void)49 void *octeontx_bch_getv(void)
50 {
51 	if (!bch_vf)
52 		return NULL;
53 	if (bch_vf_initialized && bch_pf_initialized)
54 		return bch_vf;
55 	else
56 		return NULL;
57 }
58 
octeontx_bch_putv(void * token)59 void octeontx_bch_putv(void *token)
60 {
61 	bch_vf_initialized = !!token;
62 	bch_vf = token;
63 }
64 
octeontx_bch_getp(void)65 void *octeontx_bch_getp(void)
66 {
67 	return token;
68 }
69 
octeontx_bch_putp(void * token)70 void octeontx_bch_putp(void *token)
71 {
72 	bch_pf = token;
73 	bch_pf_initialized = !!token;
74 }
75 
do_bch_init(struct bch_device * bch)76 static int do_bch_init(struct bch_device *bch)
77 {
78 	return 0;
79 }
80 
bch_reset(struct bch_device * bch)81 static void bch_reset(struct bch_device *bch)
82 {
83 	writeq(1, bch->reg_base + BCH_CTL);
84 	mdelay(2);
85 }
86 
bch_disable(struct bch_device * bch)87 static void bch_disable(struct bch_device *bch)
88 {
89 	writeq(~0ull, bch->reg_base + BCH_ERR_INT_ENA_W1C);
90 	writeq(~0ull, bch->reg_base + BCH_ERR_INT);
91 	bch_reset(bch);
92 }
93 
bch_check_bist_status(struct bch_device * bch)94 static u32 bch_check_bist_status(struct bch_device *bch)
95 {
96 	return readq(bch->reg_base + BCH_BIST_RESULT);
97 }
98 
bch_device_init(struct bch_device * bch)99 static int bch_device_init(struct bch_device *bch)
100 {
101 	u64 bist;
102 	int rc;
103 
104 	debug("%s: Resetting...\n", __func__);
105 	/* Reset the PF when probed first */
106 	bch_reset(bch);
107 
108 	debug("%s: Checking BIST...\n", __func__);
109 	/* Check BIST status */
110 	bist = (u64)bch_check_bist_status(bch);
111 	if (bist) {
112 		dev_err(dev, "BCH BIST failed with code 0x%llx\n", bist);
113 		return -ENODEV;
114 	}
115 
116 	/* Get max VQs/VFs supported by the device */
117 
118 	bch->max_vfs = pci_sriov_get_totalvfs(bch->dev);
119 	debug("%s: %d vfs\n", __func__, bch->max_vfs);
120 	if (num_vfs > bch->max_vfs) {
121 		dev_warn(dev, "Num of VFs to enable %d is greater than max available.  Enabling %d VFs.\n",
122 			 num_vfs, bch->max_vfs);
123 		num_vfs = bch->max_vfs;
124 	}
125 	bch->vfs_enabled = bch->max_vfs;
126 	/* Get number of VQs/VFs to be enabled */
127 	/* TODO: Get CLK frequency */
128 	/* Reset device parameters */
129 
130 	debug("%s: Doing initialization\n", __func__);
131 	rc = do_bch_init(bch);
132 
133 	return rc;
134 }
135 
bch_sriov_configure(struct udevice * dev,int numvfs)136 static int bch_sriov_configure(struct udevice *dev, int numvfs)
137 {
138 	struct bch_device *bch = dev_get_priv(dev);
139 	int ret = -EBUSY;
140 
141 	debug("%s(%s, %d), bch: %p, vfs_in_use: %d, enabled: %d\n", __func__,
142 	      dev->name, numvfs, bch, bch->vfs_in_use, bch->vfs_enabled);
143 	if (bch->vfs_in_use)
144 		goto exit;
145 
146 	ret = 0;
147 
148 	if (numvfs > 0) {
149 		debug("%s: Enabling sriov\n", __func__);
150 		ret = pci_enable_sriov(dev, numvfs);
151 		if (ret == 0) {
152 			bch->flags |= BCH_FLAG_SRIOV_ENABLED;
153 			ret = numvfs;
154 			bch->vfs_enabled = numvfs;
155 		}
156 	}
157 
158 	debug("VFs enabled: %d\n", ret);
159 exit:
160 	debug("%s: Returning %d\n", __func__, ret);
161 	return ret;
162 }
163 
octeontx_pci_bchpf_probe(struct udevice * dev)164 static int octeontx_pci_bchpf_probe(struct udevice *dev)
165 {
166 	struct bch_device *bch;
167 	int ret;
168 
169 	debug("%s(%s)\n", __func__, dev->name);
170 	bch = dev_get_priv(dev);
171 	if (!bch)
172 		return -ENOMEM;
173 
174 	bch->reg_base = dm_pci_map_bar(dev, PCI_BASE_ADDRESS_0, 0, 0,
175 				       PCI_REGION_TYPE, PCI_REGION_MEM);
176 	bch->dev = dev;
177 
178 	debug("%s: base address: %p\n", __func__, bch->reg_base);
179 	ret = bch_device_init(bch);
180 	if (ret) {
181 		printf("%s(%s): init returned %d\n", __func__, dev->name, ret);
182 		return ret;
183 	}
184 	INIT_LIST_HEAD(&bch->list);
185 	list_add(&bch->list, &octeontx_bch_devices);
186 	token = (void *)dev;
187 
188 	debug("%s: Configuring SRIOV\n", __func__);
189 	bch_sriov_configure(dev, num_vfs);
190 	debug("%s: Done.\n", __func__);
191 	octeontx_bch_putp(bch);
192 
193 	return 0;
194 }
195 
196 static const struct pci_device_id octeontx_bchpf_pci_id_table[] = {
197 	{ PCI_VDEVICE(CAVIUM, PCI_DEVICE_ID_CAVIUM_BCH) },
198 	{},
199 };
200 
201 static const struct pci_device_id octeontx_bchvf_pci_id_table[] = {
202 	{ PCI_VDEVICE(CAVIUM, PCI_DEVICE_ID_CAVIUM_BCHVF)},
203 	{},
204 };
205 
206 /**
207  * Given a data block calculate the ecc data and fill in the response
208  *
209  * @param[in] block	8-byte aligned pointer to data block to calculate ECC
210  * @param block_size	Size of block in bytes, must be a multiple of two.
211  * @param bch_level	Number of errors that must be corrected.  The number of
212  *			parity bytes is equal to ((15 * bch_level) + 7) / 8.
213  *			Must be 4, 8, 16, 24, 32, 40, 48, 56, 60 or 64.
214  * @param[out] ecc	8-byte aligned pointer to where ecc data should go
215  * @param[in] resp	pointer to where responses will be written.
216  *
217  * Return: Zero on success, negative on failure.
218  */
octeontx_bch_encode(struct bch_vf * vf,dma_addr_t block,u16 block_size,u8 bch_level,dma_addr_t ecc,dma_addr_t resp)219 int octeontx_bch_encode(struct bch_vf *vf, dma_addr_t block, u16 block_size,
220 			u8 bch_level, dma_addr_t ecc, dma_addr_t resp)
221 {
222 	union bch_cmd cmd;
223 	int rc;
224 
225 	memset(&cmd, 0, sizeof(cmd));
226 	cmd.s.cword.ecc_gen = eg_gen;
227 	cmd.s.cword.ecc_level = bch_level;
228 	cmd.s.cword.size = block_size;
229 
230 	cmd.s.oword.ptr = ecc;
231 	cmd.s.iword.ptr = block;
232 	cmd.s.rword.ptr = resp;
233 	rc = octeontx_cmd_queue_write(QID_BCH, 1,
234 				      sizeof(cmd) / sizeof(uint64_t), cmd.u);
235 	if (rc)
236 		return -1;
237 
238 	octeontx_bch_write_doorbell(1, vf);
239 
240 	return 0;
241 }
242 
243 /**
244  * Given a data block and ecc data correct the data block
245  *
246  * @param[in] block_ecc_in	8-byte aligned pointer to data block with ECC
247  *				data concatenated to the end to correct
248  * @param block_size		Size of block in bytes, must be a multiple of
249  *				two.
250  * @param bch_level		Number of errors that must be corrected.  The
251  *				number of parity bytes is equal to
252  *				((15 * bch_level) + 7) / 8.
253  *				Must be 4, 8, 16, 24, 32, 40, 48, 56, 60 or 64.
254  * @param[out] block_out	8-byte aligned pointer to corrected data buffer.
255  *				This should not be the same as block_ecc_in.
256  * @param[in] resp		pointer to where responses will be written.
257  *
258  * Return: Zero on success, negative on failure.
259  */
260 
octeontx_bch_decode(struct bch_vf * vf,dma_addr_t block_ecc_in,u16 block_size,u8 bch_level,dma_addr_t block_out,dma_addr_t resp)261 int octeontx_bch_decode(struct bch_vf *vf, dma_addr_t block_ecc_in,
262 			u16 block_size, u8 bch_level,
263 			dma_addr_t block_out, dma_addr_t resp)
264 {
265 	union bch_cmd cmd;
266 	int rc;
267 
268 	memset(&cmd, 0, sizeof(cmd));
269 	cmd.s.cword.ecc_gen = eg_correct;
270 	cmd.s.cword.ecc_level = bch_level;
271 	cmd.s.cword.size = block_size;
272 
273 	cmd.s.oword.ptr = block_out;
274 	cmd.s.iword.ptr = block_ecc_in;
275 	cmd.s.rword.ptr = resp;
276 	rc = octeontx_cmd_queue_write(QID_BCH, 1,
277 				      sizeof(cmd) / sizeof(uint64_t), cmd.u);
278 	if (rc)
279 		return -1;
280 
281 	octeontx_bch_write_doorbell(1, vf);
282 	return 0;
283 }
284 EXPORT_SYMBOL(octeontx_bch_decode);
285 
octeontx_bch_wait(struct bch_vf * vf,union bch_resp * resp,dma_addr_t handle)286 int octeontx_bch_wait(struct bch_vf *vf, union bch_resp *resp,
287 		      dma_addr_t handle)
288 {
289 	ulong start = get_timer(0);
290 
291 	__iormb(); /* HW is updating *resp */
292 	while (!resp->s.done && get_timer(start) < 10)
293 		__iormb(); /* HW is updating *resp */
294 
295 	if (resp->s.done)
296 		return 0;
297 
298 	return -ETIMEDOUT;
299 }
300 
301 struct bch_q octeontx_bch_q[QID_MAX];
302 
octeontx_cmd_queue_initialize(struct udevice * dev,int queue_id,int max_depth,int fpa_pool,int pool_size)303 static int octeontx_cmd_queue_initialize(struct udevice *dev, int queue_id,
304 					 int max_depth, int fpa_pool,
305 					 int pool_size)
306 {
307 	/* some params are for later merge with CPT or cn83xx */
308 	struct bch_q *q = &octeontx_bch_q[queue_id];
309 	unsigned long paddr;
310 	u64 *chunk_buffer;
311 	int chunk = max_depth + 1;
312 	int i, size;
313 
314 	if ((unsigned int)queue_id >= QID_MAX)
315 		return -EINVAL;
316 	if (max_depth & chunk) /* must be 2^N - 1 */
317 		return -EINVAL;
318 
319 	size = NQS * chunk * sizeof(u64);
320 	chunk_buffer = dma_alloc_coherent(size, &paddr);
321 	if (!chunk_buffer)
322 		return -ENOMEM;
323 
324 	q->base_paddr = paddr;
325 	q->dev = dev;
326 	q->index = 0;
327 	q->max_depth = max_depth;
328 	q->pool_size_m1 = pool_size;
329 	q->base_vaddr = chunk_buffer;
330 
331 	for (i = 0; i < NQS; i++) {
332 		u64 *ixp;
333 		int inext = (i + 1) * chunk - 1;
334 		int j = (i + 1) % NQS;
335 		int jnext = j * chunk;
336 		dma_addr_t jbase = q->base_paddr + jnext * sizeof(u64);
337 
338 		ixp = &chunk_buffer[inext];
339 		*ixp = jbase;
340 	}
341 
342 	return 0;
343 }
344 
octeontx_pci_bchvf_probe(struct udevice * dev)345 static int octeontx_pci_bchvf_probe(struct udevice *dev)
346 {
347 	struct bch_vf *vf;
348 	union bch_vqx_ctl ctl;
349 	union bch_vqx_cmd_buf cbuf;
350 	int err;
351 
352 	debug("%s(%s)\n", __func__, dev->name);
353 	vf = dev_get_priv(dev);
354 	if (!vf)
355 		return -ENOMEM;
356 
357 	vf->dev = dev;
358 
359 	/* Map PF's configuration registers */
360 	vf->reg_base = dm_pci_map_bar(dev, PCI_BASE_ADDRESS_0, 0, 0,
361 				      PCI_REGION_TYPE, PCI_REGION_MEM);
362 	debug("%s: reg base: %p\n", __func__, vf->reg_base);
363 
364 	err = octeontx_cmd_queue_initialize(dev, QID_BCH, QDEPTH - 1, 0,
365 					    sizeof(union bch_cmd) * QDEPTH);
366 	if (err) {
367 		dev_err(dev, "octeontx_cmd_queue_initialize() failed\n");
368 		goto release;
369 	}
370 
371 	ctl.u = readq(vf->reg_base + BCH_VQX_CTL(0));
372 
373 	cbuf.u = 0;
374 	cbuf.s.ldwb = 1;
375 	cbuf.s.dfb = 1;
376 	cbuf.s.size = QDEPTH;
377 	writeq(cbuf.u, vf->reg_base + BCH_VQX_CMD_BUF(0));
378 
379 	writeq(ctl.u, vf->reg_base + BCH_VQX_CTL(0));
380 
381 	writeq(octeontx_bch_q[QID_BCH].base_paddr,
382 	       vf->reg_base + BCH_VQX_CMD_PTR(0));
383 
384 	octeontx_bch_putv(vf);
385 
386 	debug("%s: bch vf initialization complete\n", __func__);
387 
388 	if (octeontx_bch_getv())
389 		return octeontx_pci_nand_deferred_probe();
390 
391 	return -1;
392 
393 release:
394 	return err;
395 }
396 
octeontx_pci_bchpf_remove(struct udevice * dev)397 static int octeontx_pci_bchpf_remove(struct udevice *dev)
398 {
399 	struct bch_device *bch = dev_get_priv(dev);
400 
401 	bch_disable(bch);
402 	return 0;
403 }
404 
405 U_BOOT_DRIVER(octeontx_pci_bchpf) = {
406 	.name	= BCHPF_DRIVER_NAME,
407 	.id	= UCLASS_MISC,
408 	.probe	= octeontx_pci_bchpf_probe,
409 	.remove = octeontx_pci_bchpf_remove,
410 	.priv_auto	= sizeof(struct bch_device),
411 	.flags = DM_FLAG_OS_PREPARE,
412 };
413 
414 U_BOOT_DRIVER(octeontx_pci_bchvf) = {
415 	.name	= BCHVF_DRIVER_NAME,
416 	.id	= UCLASS_MISC,
417 	.probe = octeontx_pci_bchvf_probe,
418 	.priv_auto	= sizeof(struct bch_vf),
419 };
420 
421 U_BOOT_PCI_DEVICE(octeontx_pci_bchpf, octeontx_bchpf_pci_id_table);
422 U_BOOT_PCI_DEVICE(octeontx_pci_bchvf, octeontx_bchvf_pci_id_table);
423