1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3  * Copyright (C) 2020, STMicroelectronics - All Rights Reserved
4  */
5 
6 #include <command.h>
7 #include <console.h>
8 #include <dfu.h>
9 #include <image.h>
10 #include <malloc.h>
11 #include <misc.h>
12 #include <mmc.h>
13 #include <part.h>
14 #include <tee.h>
15 #include <asm/arch/stm32mp1_smc.h>
16 #include <asm/global_data.h>
17 #include <dm/device_compat.h>
18 #include <dm/uclass.h>
19 #include <jffs2/load_kernel.h>
20 #include <linux/list.h>
21 #include <linux/list_sort.h>
22 #include <linux/mtd/mtd.h>
23 #include <linux/sizes.h>
24 
25 #include "stm32prog.h"
26 
27 /* Primary GPT header size for 128 entries : 17kB = 34 LBA of 512B */
28 #define GPT_HEADER_SZ	34
29 
30 #define OPT_SELECT	BIT(0)
31 #define OPT_EMPTY	BIT(1)
32 #define OPT_DELETE	BIT(2)
33 
34 #define IS_SELECT(part)	((part)->option & OPT_SELECT)
35 #define IS_EMPTY(part)	((part)->option & OPT_EMPTY)
36 #define IS_DELETE(part)	((part)->option & OPT_DELETE)
37 
38 #define ALT_BUF_LEN			SZ_1K
39 
40 #define ROOTFS_MMC0_UUID \
41 	EFI_GUID(0xE91C4E10, 0x16E6, 0x4C0E, \
42 		 0xBD, 0x0E, 0x77, 0xBE, 0xCF, 0x4A, 0x35, 0x82)
43 
44 #define ROOTFS_MMC1_UUID \
45 	EFI_GUID(0x491F6117, 0x415D, 0x4F53, \
46 		 0x88, 0xC9, 0x6E, 0x0D, 0xE5, 0x4D, 0xEA, 0xC6)
47 
48 #define ROOTFS_MMC2_UUID \
49 	EFI_GUID(0xFD58F1C7, 0xBE0D, 0x4338, \
50 		 0x88, 0xE9, 0xAD, 0x8F, 0x05, 0x0A, 0xEB, 0x18)
51 
52 /* RAW partition (binary / bootloader) used Linux - reserved UUID */
53 #define LINUX_RESERVED_UUID "8DA63339-0007-60C0-C436-083AC8230908"
54 
55 /*
56  * unique partition guid (uuid) for partition named "rootfs"
57  * on each MMC instance = SD Card or eMMC
58  * allow fixed kernel bootcmd: "rootf=PARTUID=e91c4e10-..."
59  */
60 static const efi_guid_t uuid_mmc[3] = {
61 	ROOTFS_MMC0_UUID,
62 	ROOTFS_MMC1_UUID,
63 	ROOTFS_MMC2_UUID
64 };
65 
66 /* FIP type partition UUID used by TF-A*/
67 #define FIP_TYPE_UUID "19D5DF83-11B0-457B-BE2C-7559C13142A5"
68 
69 /* unique partition guid (uuid) for FIP partitions A/B */
70 #define FIP_A_UUID \
71 	EFI_GUID(0x4FD84C93, 0x54EF, 0x463F, \
72 		 0xA7, 0xEF, 0xAE, 0x25, 0xFF, 0x88, 0x70, 0x87)
73 
74 #define FIP_B_UUID \
75 	EFI_GUID(0x09C54952, 0xD5BF, 0x45AF, \
76 		 0xAC, 0xEE, 0x33, 0x53, 0x03, 0x76, 0x6F, 0xB3)
77 
78 static const char * const fip_part_name[] = {
79 	"fip-a",
80 	"fip-b"
81 };
82 
83 static const efi_guid_t fip_part_uuid[] = {
84 	FIP_A_UUID,
85 	FIP_B_UUID
86 };
87 
88 /* order of column in flash layout file */
89 enum stm32prog_col_t {
90 	COL_OPTION,
91 	COL_ID,
92 	COL_NAME,
93 	COL_TYPE,
94 	COL_IP,
95 	COL_OFFSET,
96 	COL_NB_STM32
97 };
98 
99 #define FIP_TOC_HEADER_NAME	0xAA640001
100 
101 struct fip_toc_header {
102 	u32	name;
103 	u32	serial_number;
104 	u64	flags;
105 };
106 
107 #define TA_NVMEM_UUID { 0x1a8342cc, 0x81a5, 0x4512, \
108 		{ 0x99, 0xfe, 0x9e, 0x2b, 0x3e, 0x37, 0xd6, 0x26 } }
109 
110 /*
111  * Read NVMEM memory for STM32CubeProgrammer
112  *
113  * [in]		value[0].a:		Type (0 for OTP access)
114  * [out]	memref[1].buffer	Output buffer to return all read values
115  * [out]	memref[1].size		Size of buffer to be read
116  *
117  * Return codes:
118  * TEE_SUCCESS - Invoke command success
119  * TEE_ERROR_BAD_PARAMETERS - Incorrect input param
120  */
121 #define TA_NVMEM_READ		0x0
122 
123 /*
124  * Write NVMEM memory for STM32CubeProgrammer
125  *
126  * [in]	     value[0].a		Type (0 for OTP access)
127  * [in]      memref[1].buffer	Input buffer with the values to write
128  * [in]      memref[1].size	Size of buffer to be written
129  *
130  * Return codes:
131  * TEE_SUCCESS - Invoke command success
132  * TEE_ERROR_BAD_PARAMETERS - Incorrect input param
133  */
134 #define TA_NVMEM_WRITE		0x1
135 
136 /* value of TA_NVMEM type = value[in] a */
137 #define NVMEM_OTP		0
138 
139 DECLARE_GLOBAL_DATA_PTR;
140 
141 /* OPTEE TA NVMEM open helper */
optee_ta_open(struct stm32prog_data * data)142 static int optee_ta_open(struct stm32prog_data *data)
143 {
144 	const struct tee_optee_ta_uuid uuid = TA_NVMEM_UUID;
145 	struct tee_open_session_arg arg;
146 	struct udevice *tee = NULL;
147 	int rc;
148 
149 	if (data->tee)
150 		return 0;
151 
152 	tee = tee_find_device(NULL, NULL, NULL, NULL);
153 	if (!tee)
154 		return -ENODEV;
155 
156 	memset(&arg, 0, sizeof(arg));
157 	tee_optee_ta_uuid_to_octets(arg.uuid, &uuid);
158 	rc = tee_open_session(tee, &arg, 0, NULL);
159 	if (rc < 0)
160 		return -ENODEV;
161 
162 	data->tee = tee;
163 	data->tee_session = arg.session;
164 
165 	return 0;
166 }
167 
168 /* OPTEE TA NVMEM invoke helper */
optee_ta_invoke(struct stm32prog_data * data,int cmd,int type,void * buff,ulong size)169 static int optee_ta_invoke(struct stm32prog_data *data, int cmd, int type,
170 			   void *buff, ulong size)
171 {
172 	struct tee_invoke_arg arg;
173 	struct tee_param param[2];
174 	struct tee_shm *buff_shm;
175 	int rc;
176 
177 	rc = tee_shm_register(data->tee, buff, size, 0, &buff_shm);
178 	if (rc)
179 		return rc;
180 
181 	memset(&arg, 0, sizeof(arg));
182 	arg.func = cmd;
183 	arg.session = data->tee_session;
184 
185 	memset(param, 0, sizeof(param));
186 	param[0].attr = TEE_PARAM_ATTR_TYPE_VALUE_INPUT;
187 	param[0].u.value.a = type;
188 
189 	if (cmd == TA_NVMEM_WRITE)
190 		param[1].attr = TEE_PARAM_ATTR_TYPE_MEMREF_INPUT;
191 	else
192 		param[1].attr = TEE_PARAM_ATTR_TYPE_MEMREF_OUTPUT;
193 
194 	param[1].u.memref.shm = buff_shm;
195 	param[1].u.memref.size = size;
196 
197 	rc = tee_invoke_func(data->tee, &arg, 2, param);
198 	if (rc < 0 || arg.ret != 0) {
199 		dev_err(data->tee,
200 			"TA_NVMEM invoke failed TEE err: %x, err:%x\n",
201 			arg.ret, rc);
202 		if (!rc)
203 			rc = -EIO;
204 	}
205 
206 	tee_shm_free(buff_shm);
207 
208 	return rc;
209 }
210 
211 /* partition handling routines : CONFIG_CMD_MTDPARTS */
212 int mtdparts_init(void);
213 int find_dev_and_part(const char *id, struct mtd_device **dev,
214 		      u8 *part_num, struct part_info **part);
215 
stm32prog_get_error(struct stm32prog_data * data)216 char *stm32prog_get_error(struct stm32prog_data *data)
217 {
218 	static const char error_msg[] = "Unspecified";
219 
220 	if (strlen(data->error) == 0)
221 		strcpy(data->error, error_msg);
222 
223 	return data->error;
224 }
225 
stm32prog_is_fip_header(struct fip_toc_header * header)226 static bool stm32prog_is_fip_header(struct fip_toc_header *header)
227 {
228 	return (header->name == FIP_TOC_HEADER_NAME) && header->serial_number;
229 }
230 
stm32prog_is_stm32_header_v1(struct stm32_header_v1 * header)231 static bool stm32prog_is_stm32_header_v1(struct stm32_header_v1 *header)
232 {
233 	unsigned int i;
234 
235 	if (header->magic_number !=
236 		(('S' << 0) | ('T' << 8) | ('M' << 16) | (0x32 << 24))) {
237 		log_debug("%s:invalid magic number : 0x%x\n",
238 			  __func__, header->magic_number);
239 		return false;
240 	}
241 	if (header->header_version != 0x00010000) {
242 		log_debug("%s:invalid header version : 0x%x\n",
243 			  __func__, header->header_version);
244 		return false;
245 	}
246 
247 	if (header->reserved1 || header->reserved2) {
248 		log_debug("%s:invalid reserved field\n", __func__);
249 		return false;
250 	}
251 	for (i = 0; i < sizeof(header->padding); i++) {
252 		if (header->padding[i] != 0) {
253 			log_debug("%s:invalid padding field\n", __func__);
254 			return false;
255 		}
256 	}
257 
258 	return true;
259 }
260 
stm32prog_is_stm32_header_v2(struct stm32_header_v2 * header)261 static bool stm32prog_is_stm32_header_v2(struct stm32_header_v2 *header)
262 {
263 	unsigned int i;
264 
265 	if (header->magic_number !=
266 		(('S' << 0) | ('T' << 8) | ('M' << 16) | (0x32 << 24))) {
267 		log_debug("%s:invalid magic number : 0x%x\n",
268 			  __func__, header->magic_number);
269 		return false;
270 	}
271 	if (header->header_version != 0x00020000) {
272 		log_debug("%s:invalid header version : 0x%x\n",
273 			  __func__, header->header_version);
274 		return false;
275 	}
276 	if (header->reserved1 || header->reserved2)
277 		return false;
278 
279 	for (i = 0; i < sizeof(header->padding); i++) {
280 		if (header->padding[i] != 0) {
281 			log_debug("%s:invalid padding field\n", __func__);
282 			return false;
283 		}
284 	}
285 
286 	return true;
287 }
288 
stm32prog_header_check(uintptr_t raw_header,struct image_header_s * header)289 void stm32prog_header_check(uintptr_t raw_header, struct image_header_s *header)
290 {
291 	struct stm32_header_v1 *v1_header = (struct stm32_header_v1 *)raw_header;
292 	struct stm32_header_v2 *v2_header = (struct stm32_header_v2 *)raw_header;
293 
294 	if (!raw_header || !header) {
295 		log_debug("%s:no header data\n", __func__);
296 		return;
297 	}
298 
299 	if (stm32prog_is_fip_header((struct fip_toc_header *)raw_header)) {
300 		header->type = HEADER_FIP;
301 		header->length = 0;
302 		return;
303 	}
304 	if (stm32prog_is_stm32_header_v1(v1_header)) {
305 		header->type = HEADER_STM32IMAGE;
306 		header->image_checksum = le32_to_cpu(v1_header->image_checksum);
307 		header->image_length = le32_to_cpu(v1_header->image_length);
308 		header->length = sizeof(struct stm32_header_v1);
309 		return;
310 	}
311 	if (stm32prog_is_stm32_header_v2(v2_header)) {
312 		header->type = HEADER_STM32IMAGE_V2;
313 		header->image_checksum = le32_to_cpu(v2_header->image_checksum);
314 		header->image_length = le32_to_cpu(v2_header->image_length);
315 		header->length = sizeof(struct stm32_header_v1) +
316 				 v2_header->extension_headers_length;
317 		return;
318 	}
319 
320 	header->type = HEADER_NONE;
321 	header->image_checksum = 0x0;
322 	header->image_length = 0x0;
323 }
324 
stm32prog_header_checksum(uintptr_t addr,struct image_header_s * header)325 static u32 stm32prog_header_checksum(uintptr_t addr, struct image_header_s *header)
326 {
327 	u32 i, checksum;
328 	u8 *payload;
329 
330 	/* compute checksum on payload */
331 	payload = (u8 *)addr;
332 	checksum = 0;
333 	for (i = header->image_length; i > 0; i--)
334 		checksum += *(payload++);
335 
336 	return checksum;
337 }
338 
339 /* FLASHLAYOUT PARSING *****************************************/
parse_option(struct stm32prog_data * data,int i,char * p,struct stm32prog_part_t * part)340 static int parse_option(struct stm32prog_data *data,
341 			int i, char *p, struct stm32prog_part_t *part)
342 {
343 	int result = 0;
344 	char *c = p;
345 
346 	part->option = 0;
347 	if (!strcmp(p, "-"))
348 		return 0;
349 
350 	while (*c) {
351 		switch (*c) {
352 		case 'P':
353 			part->option |= OPT_SELECT;
354 			break;
355 		case 'E':
356 			part->option |= OPT_EMPTY;
357 			break;
358 		case 'D':
359 			part->option |= OPT_DELETE;
360 			break;
361 		default:
362 			result = -EINVAL;
363 			stm32prog_err("Layout line %d: invalid option '%c' in %s)",
364 				      i, *c, p);
365 			return -EINVAL;
366 		}
367 		c++;
368 	}
369 	if (!(part->option & OPT_SELECT)) {
370 		stm32prog_err("Layout line %d: missing 'P' in option %s", i, p);
371 		return -EINVAL;
372 	}
373 
374 	return result;
375 }
376 
parse_id(struct stm32prog_data * data,int i,char * p,struct stm32prog_part_t * part)377 static int parse_id(struct stm32prog_data *data,
378 		    int i, char *p, struct stm32prog_part_t *part)
379 {
380 	int result = 0;
381 	unsigned long value;
382 
383 	result = strict_strtoul(p, 0, &value);
384 	part->id = value;
385 	if (result || value > PHASE_LAST_USER) {
386 		stm32prog_err("Layout line %d: invalid phase value = %s", i, p);
387 		result = -EINVAL;
388 	}
389 
390 	return result;
391 }
392 
parse_name(struct stm32prog_data * data,int i,char * p,struct stm32prog_part_t * part)393 static int parse_name(struct stm32prog_data *data,
394 		      int i, char *p, struct stm32prog_part_t *part)
395 {
396 	int result = 0;
397 
398 	if (strlen(p) < sizeof(part->name)) {
399 		strcpy(part->name, p);
400 	} else {
401 		stm32prog_err("Layout line %d: partition name too long [%zd]: %s",
402 			      i, strlen(p), p);
403 		result = -EINVAL;
404 	}
405 
406 	return result;
407 }
408 
parse_type(struct stm32prog_data * data,int i,char * p,struct stm32prog_part_t * part)409 static int parse_type(struct stm32prog_data *data,
410 		      int i, char *p, struct stm32prog_part_t *part)
411 {
412 	int result = 0;
413 	int len = 0;
414 
415 	part->bin_nb = 0;
416 	if (!strncmp(p, "Binary", 6)) {
417 		part->part_type = PART_BINARY;
418 
419 		/* search for Binary(X) case */
420 		len = strlen(p);
421 		part->bin_nb = 1;
422 		if (len > 6) {
423 			if (len < 8 ||
424 			    (p[6] != '(') ||
425 			    (p[len - 1] != ')'))
426 				result = -EINVAL;
427 			else
428 				part->bin_nb =
429 					dectoul(&p[7], NULL);
430 		}
431 	} else if (!strcmp(p, "FIP")) {
432 		part->part_type = PART_FIP;
433 	} else if (!strcmp(p, "System")) {
434 		part->part_type = PART_SYSTEM;
435 	} else if (!strcmp(p, "FileSystem")) {
436 		part->part_type = PART_FILESYSTEM;
437 	} else if (!strcmp(p, "RawImage")) {
438 		part->part_type = RAW_IMAGE;
439 	} else {
440 		result = -EINVAL;
441 	}
442 	if (result)
443 		stm32prog_err("Layout line %d: type parsing error : '%s'",
444 			      i, p);
445 
446 	return result;
447 }
448 
parse_ip(struct stm32prog_data * data,int i,char * p,struct stm32prog_part_t * part)449 static int parse_ip(struct stm32prog_data *data,
450 		    int i, char *p, struct stm32prog_part_t *part)
451 {
452 	int result = 0;
453 	unsigned int len = 0;
454 
455 	part->dev_id = 0;
456 	if (!strcmp(p, "none")) {
457 		part->target = STM32PROG_NONE;
458 	} else if (!strncmp(p, "mmc", 3)) {
459 		part->target = STM32PROG_MMC;
460 		len = 3;
461 	} else if (!strncmp(p, "nor", 3)) {
462 		part->target = STM32PROG_NOR;
463 		len = 3;
464 	} else if (!strncmp(p, "nand", 4)) {
465 		part->target = STM32PROG_NAND;
466 		len = 4;
467 	} else if (!strncmp(p, "spi-nand", 8)) {
468 		part->target = STM32PROG_SPI_NAND;
469 		len = 8;
470 	} else if (!strncmp(p, "ram", 3)) {
471 		part->target = STM32PROG_RAM;
472 		len = 0;
473 	} else {
474 		result = -EINVAL;
475 	}
476 	if (len) {
477 		/* only one digit allowed for device id */
478 		if (strlen(p) != len + 1) {
479 			result = -EINVAL;
480 		} else {
481 			part->dev_id = p[len] - '0';
482 			if (part->dev_id > 9)
483 				result = -EINVAL;
484 		}
485 	}
486 	if (result)
487 		stm32prog_err("Layout line %d: ip parsing error: '%s'", i, p);
488 
489 	return result;
490 }
491 
parse_offset(struct stm32prog_data * data,int i,char * p,struct stm32prog_part_t * part)492 static int parse_offset(struct stm32prog_data *data,
493 			int i, char *p, struct stm32prog_part_t *part)
494 {
495 	int result = 0;
496 	char *tail;
497 
498 	part->part_id = 0;
499 	part->addr = 0;
500 	part->size = 0;
501 	/* eMMC boot parttion */
502 	if (!strncmp(p, "boot", 4)) {
503 		if (strlen(p) != 5) {
504 			result = -EINVAL;
505 		} else {
506 			if (p[4] == '1')
507 				part->part_id = -1;
508 			else if (p[4] == '2')
509 				part->part_id = -2;
510 			else
511 				result = -EINVAL;
512 		}
513 		if (result)
514 			stm32prog_err("Layout line %d: invalid part '%s'",
515 				      i, p);
516 	} else {
517 		part->addr = simple_strtoull(p, &tail, 0);
518 		if (tail == p || *tail != '\0') {
519 			stm32prog_err("Layout line %d: invalid offset '%s'",
520 				      i, p);
521 			result = -EINVAL;
522 		}
523 	}
524 
525 	return result;
526 }
527 
528 static
529 int (* const parse[COL_NB_STM32])(struct stm32prog_data *data, int i, char *p,
530 				  struct stm32prog_part_t *part) = {
531 	[COL_OPTION] = parse_option,
532 	[COL_ID] = parse_id,
533 	[COL_NAME] =  parse_name,
534 	[COL_TYPE] = parse_type,
535 	[COL_IP] = parse_ip,
536 	[COL_OFFSET] = parse_offset,
537 };
538 
parse_flash_layout(struct stm32prog_data * data,uintptr_t addr,ulong size)539 static int parse_flash_layout(struct stm32prog_data *data,
540 			      uintptr_t addr,
541 			      ulong size)
542 {
543 	int column = 0, part_nb = 0, ret;
544 	bool end_of_line, eof;
545 	char *p, *start, *last, *col;
546 	struct stm32prog_part_t *part;
547 	struct image_header_s header;
548 	int part_list_size;
549 	int i;
550 
551 	data->part_nb = 0;
552 
553 	/* check if STM32image is detected */
554 	stm32prog_header_check(addr, &header);
555 	if (header.type == HEADER_STM32IMAGE) {
556 		u32 checksum;
557 
558 		addr = addr + header.length;
559 		size = header.image_length;
560 
561 		checksum = stm32prog_header_checksum(addr, &header);
562 		if (checksum != header.image_checksum) {
563 			stm32prog_err("Layout: invalid checksum : 0x%x expected 0x%x",
564 				      checksum, header.image_checksum);
565 			return -EIO;
566 		}
567 	}
568 	if (!size)
569 		return -EINVAL;
570 
571 	start = (char *)addr;
572 	last = start + size;
573 
574 	*last = 0x0; /* force null terminated string */
575 	log_debug("flash layout =\n%s\n", start);
576 
577 	/* calculate expected number of partitions */
578 	part_list_size = 1;
579 	p = start;
580 	while (*p && (p < last)) {
581 		if (*p++ == '\n') {
582 			part_list_size++;
583 			if (p < last && *p == '#')
584 				part_list_size--;
585 		}
586 	}
587 	if (part_list_size > PHASE_LAST_USER) {
588 		stm32prog_err("Layout: too many partition (%d)",
589 			      part_list_size);
590 		return -1;
591 	}
592 	part = calloc(sizeof(struct stm32prog_part_t), part_list_size);
593 	if (!part) {
594 		stm32prog_err("Layout: alloc failed");
595 		return -ENOMEM;
596 	}
597 	data->part_array = part;
598 
599 	/* main parsing loop */
600 	i = 1;
601 	eof = false;
602 	p = start;
603 	col = start; /* 1st column */
604 	end_of_line = false;
605 	while (!eof) {
606 		switch (*p) {
607 		/* CR is ignored and replaced by NULL character */
608 		case '\r':
609 			*p = '\0';
610 			p++;
611 			continue;
612 		case '\0':
613 			end_of_line = true;
614 			eof = true;
615 			break;
616 		case '\n':
617 			end_of_line = true;
618 			break;
619 		case '\t':
620 			break;
621 		case '#':
622 			/* comment line is skipped */
623 			if (column == 0 && p == col) {
624 				while ((p < last) && *p)
625 					if (*p++ == '\n')
626 						break;
627 				col = p;
628 				i++;
629 				if (p >= last || !*p) {
630 					eof = true;
631 					end_of_line = true;
632 				}
633 				continue;
634 			}
635 			/* fall through */
636 		/* by default continue with the next character */
637 		default:
638 			p++;
639 			continue;
640 		}
641 
642 		/* replace by \0: allow string parsing for each column */
643 		*p = '\0';
644 		p++;
645 		if (p >= last) {
646 			eof = true;
647 			end_of_line = true;
648 		}
649 
650 		/* skip empty line and multiple TAB in tsv file */
651 		if (strlen(col) == 0) {
652 			col = p;
653 			/* skip empty line */
654 			if (column == 0 && end_of_line) {
655 				end_of_line = false;
656 				i++;
657 			}
658 			continue;
659 		}
660 
661 		if (column < COL_NB_STM32) {
662 			ret = parse[column](data, i, col, part);
663 			if (ret)
664 				return ret;
665 		}
666 
667 		/* save the beginning of the next column */
668 		column++;
669 		col = p;
670 
671 		if (!end_of_line)
672 			continue;
673 
674 		/* end of the line detected */
675 		end_of_line = false;
676 
677 		if (column < COL_NB_STM32) {
678 			stm32prog_err("Layout line %d: no enought column", i);
679 			return -EINVAL;
680 		}
681 		column = 0;
682 		part_nb++;
683 		part++;
684 		i++;
685 		if (part_nb >= part_list_size) {
686 			part = NULL;
687 			if (!eof) {
688 				stm32prog_err("Layout: no enought memory for %d part",
689 					      part_nb);
690 				return -EINVAL;
691 			}
692 		}
693 	}
694 	data->part_nb = part_nb;
695 	if (data->part_nb == 0) {
696 		stm32prog_err("Layout: no partition found");
697 		return -ENODEV;
698 	}
699 
700 	return 0;
701 }
702 
part_cmp(void * priv,struct list_head * a,struct list_head * b)703 static int __init part_cmp(void *priv, struct list_head *a, struct list_head *b)
704 {
705 	struct stm32prog_part_t *parta, *partb;
706 
707 	parta = container_of(a, struct stm32prog_part_t, list);
708 	partb = container_of(b, struct stm32prog_part_t, list);
709 
710 	if (parta->part_id != partb->part_id)
711 		return parta->part_id - partb->part_id;
712 	else
713 		return parta->addr > partb->addr ? 1 : -1;
714 }
715 
get_mtd_by_target(char * string,enum stm32prog_target target,int dev_id)716 static void get_mtd_by_target(char *string, enum stm32prog_target target,
717 			      int dev_id)
718 {
719 	const char *dev_str;
720 
721 	switch (target) {
722 	case STM32PROG_NOR:
723 		dev_str = "nor";
724 		break;
725 	case STM32PROG_NAND:
726 		dev_str = "nand";
727 		break;
728 	case STM32PROG_SPI_NAND:
729 		dev_str = "spi-nand";
730 		break;
731 	default:
732 		dev_str = "invalid";
733 		break;
734 	}
735 	sprintf(string, "%s%d", dev_str, dev_id);
736 }
737 
init_device(struct stm32prog_data * data,struct stm32prog_dev_t * dev)738 static int init_device(struct stm32prog_data *data,
739 		       struct stm32prog_dev_t *dev)
740 {
741 	struct mmc *mmc = NULL;
742 	struct blk_desc *block_dev = NULL;
743 	struct mtd_info *mtd = NULL;
744 	char mtd_id[16];
745 	int part_id;
746 	int ret;
747 	u64 first_addr = 0, last_addr = 0;
748 	struct stm32prog_part_t *part, *next_part;
749 	u64 part_addr, part_size;
750 	bool part_found;
751 	const char *part_name;
752 
753 	switch (dev->target) {
754 	case STM32PROG_MMC:
755 		if (!IS_ENABLED(CONFIG_MMC)) {
756 			stm32prog_err("unknown device type = %d", dev->target);
757 			return -ENODEV;
758 		}
759 		mmc = find_mmc_device(dev->dev_id);
760 		if (!mmc || mmc_init(mmc)) {
761 			stm32prog_err("mmc device %d not found", dev->dev_id);
762 			return -ENODEV;
763 		}
764 		block_dev = mmc_get_blk_desc(mmc);
765 		if (!block_dev) {
766 			stm32prog_err("mmc device %d not probed", dev->dev_id);
767 			return -ENODEV;
768 		}
769 		dev->erase_size = mmc->erase_grp_size * block_dev->blksz;
770 		dev->mmc = mmc;
771 
772 		/* reserve a full erase group for each GTP headers */
773 		if (mmc->erase_grp_size > GPT_HEADER_SZ) {
774 			first_addr = dev->erase_size;
775 			last_addr = (u64)(block_dev->lba -
776 					  mmc->erase_grp_size) *
777 				    block_dev->blksz;
778 		} else {
779 			first_addr = (u64)GPT_HEADER_SZ * block_dev->blksz;
780 			last_addr = (u64)(block_dev->lba - GPT_HEADER_SZ - 1) *
781 				    block_dev->blksz;
782 		}
783 		log_debug("MMC %d: lba=%ld blksz=%ld\n", dev->dev_id,
784 			  block_dev->lba, block_dev->blksz);
785 		log_debug(" available address = 0x%llx..0x%llx\n",
786 			  first_addr, last_addr);
787 		log_debug(" full_update = %d\n", dev->full_update);
788 		break;
789 	case STM32PROG_NOR:
790 	case STM32PROG_NAND:
791 	case STM32PROG_SPI_NAND:
792 		if (!IS_ENABLED(CONFIG_MTD)) {
793 			stm32prog_err("unknown device type = %d", dev->target);
794 			return -ENODEV;
795 		}
796 		get_mtd_by_target(mtd_id, dev->target, dev->dev_id);
797 		log_debug("%s\n", mtd_id);
798 
799 		mtdparts_init();
800 		mtd = get_mtd_device_nm(mtd_id);
801 		if (IS_ERR(mtd)) {
802 			stm32prog_err("MTD device %s not found", mtd_id);
803 			return -ENODEV;
804 		}
805 		first_addr = 0;
806 		last_addr = mtd->size;
807 		dev->erase_size = mtd->erasesize;
808 		log_debug("MTD device %s: size=%lld erasesize=%d\n",
809 			  mtd_id, mtd->size, mtd->erasesize);
810 		log_debug(" available address = 0x%llx..0x%llx\n",
811 			  first_addr, last_addr);
812 		dev->mtd = mtd;
813 		break;
814 	case STM32PROG_RAM:
815 		first_addr = gd->bd->bi_dram[0].start;
816 		last_addr = first_addr + gd->bd->bi_dram[0].size;
817 		dev->erase_size = 1;
818 		break;
819 	default:
820 		stm32prog_err("unknown device type = %d", dev->target);
821 		return -ENODEV;
822 	}
823 	log_debug(" erase size = 0x%x\n", dev->erase_size);
824 	log_debug(" full_update = %d\n", dev->full_update);
825 
826 	/* order partition list in offset order */
827 	list_sort(NULL, &dev->part_list, &part_cmp);
828 	part_id = 1;
829 	log_debug("id : Opt Phase     Name target.n dev.n addr     size     part_off part_size\n");
830 	list_for_each_entry(part, &dev->part_list, list) {
831 		if (part->bin_nb > 1) {
832 			if ((dev->target != STM32PROG_NAND &&
833 			     dev->target != STM32PROG_SPI_NAND) ||
834 			    part->id >= PHASE_FIRST_USER ||
835 			    strncmp(part->name, "fsbl", 4)) {
836 				stm32prog_err("%s (0x%x): multiple binary %d not supported",
837 					      part->name, part->id,
838 					      part->bin_nb);
839 				return -EINVAL;
840 			}
841 		}
842 		if (part->part_type == RAW_IMAGE) {
843 			part->part_id = 0x0;
844 			part->addr = 0x0;
845 			if (block_dev)
846 				part->size = block_dev->lba * block_dev->blksz;
847 			else
848 				part->size = last_addr;
849 			log_debug("-- : %1d %02x %14s %02d.%d %02d.%02d %08llx %08llx\n",
850 				  part->option, part->id, part->name,
851 				  part->part_type, part->bin_nb, part->target,
852 				  part->dev_id, part->addr, part->size);
853 			continue;
854 		}
855 		if (part->part_id < 0) { /* boot hw partition for eMMC */
856 			if (mmc) {
857 				part->size = mmc->capacity_boot;
858 			} else {
859 				stm32prog_err("%s (0x%x): hw partition not expected : %d",
860 					      part->name, part->id,
861 					      part->part_id);
862 				return -ENODEV;
863 			}
864 		} else {
865 			part->part_id = part_id++;
866 
867 			/* last partition : size to the end of the device */
868 			if (part->list.next != &dev->part_list) {
869 				next_part =
870 					container_of(part->list.next,
871 						     struct stm32prog_part_t,
872 						     list);
873 				if (part->addr < next_part->addr) {
874 					part->size = next_part->addr -
875 						     part->addr;
876 				} else {
877 					stm32prog_err("%s (0x%x): same address : 0x%llx == %s (0x%x): 0x%llx",
878 						      part->name, part->id,
879 						      part->addr,
880 						      next_part->name,
881 						      next_part->id,
882 						      next_part->addr);
883 					return -EINVAL;
884 				}
885 			} else {
886 				if (part->addr <= last_addr) {
887 					part->size = last_addr - part->addr;
888 				} else {
889 					stm32prog_err("%s (0x%x): invalid address 0x%llx (max=0x%llx)",
890 						      part->name, part->id,
891 						      part->addr, last_addr);
892 					return -EINVAL;
893 				}
894 			}
895 			if (part->addr < first_addr) {
896 				stm32prog_err("%s (0x%x): invalid address 0x%llx (min=0x%llx)",
897 					      part->name, part->id,
898 					      part->addr, first_addr);
899 				return -EINVAL;
900 			}
901 		}
902 		if ((part->addr & ((u64)part->dev->erase_size - 1)) != 0) {
903 			stm32prog_err("%s (0x%x): not aligned address : 0x%llx on erase size 0x%x",
904 				      part->name, part->id, part->addr,
905 				      part->dev->erase_size);
906 			return -EINVAL;
907 		}
908 		log_debug("%02d : %1d %02x %14s %02d.%d %02d.%02d %08llx %08llx",
909 			  part->part_id, part->option, part->id, part->name,
910 			  part->part_type, part->bin_nb, part->target,
911 			  part->dev_id, part->addr, part->size);
912 
913 		part_addr = 0;
914 		part_size = 0;
915 		part_found = false;
916 
917 		/* check coherency with existing partition */
918 		if (block_dev) {
919 			/*
920 			 * block devices with GPT: check user partition size
921 			 * only for partial update, the GPT partions are be
922 			 * created for full update
923 			 */
924 			if (dev->full_update || part->part_id < 0) {
925 				log_debug("\n");
926 				continue;
927 			}
928 			struct disk_partition partinfo;
929 
930 			ret = part_get_info(block_dev, part->part_id,
931 					    &partinfo);
932 
933 			if (ret) {
934 				stm32prog_err("%s (0x%x):Couldn't find part %d on device mmc %d",
935 					      part->name, part->id,
936 					      part_id, part->dev_id);
937 				return -ENODEV;
938 			}
939 			part_addr = (u64)partinfo.start * partinfo.blksz;
940 			part_size = (u64)partinfo.size * partinfo.blksz;
941 			part_name = (char *)partinfo.name;
942 			part_found = true;
943 		}
944 
945 		if (IS_ENABLED(CONFIG_MTD) && mtd) {
946 			char mtd_part_id[32];
947 			struct part_info *mtd_part;
948 			struct mtd_device *mtd_dev;
949 			u8 part_num;
950 
951 			sprintf(mtd_part_id, "%s,%d", mtd_id,
952 				part->part_id - 1);
953 			ret = find_dev_and_part(mtd_part_id, &mtd_dev,
954 						&part_num, &mtd_part);
955 			if (ret != 0) {
956 				stm32prog_err("%s (0x%x): Invalid MTD partition %s",
957 					      part->name, part->id,
958 					      mtd_part_id);
959 				return -ENODEV;
960 			}
961 			part_addr = mtd_part->offset;
962 			part_size = mtd_part->size;
963 			part_name = mtd_part->name;
964 			part_found = true;
965 		}
966 
967 		/* no partition for this device */
968 		if (!part_found) {
969 			log_debug("\n");
970 			continue;
971 		}
972 
973 		log_debug(" %08llx %08llx\n", part_addr, part_size);
974 
975 		if (part->addr != part_addr) {
976 			stm32prog_err("%s (0x%x): Bad address for partition %d (%s) = 0x%llx <> 0x%llx expected",
977 				      part->name, part->id, part->part_id,
978 				      part_name, part->addr, part_addr);
979 			return -ENODEV;
980 		}
981 		if (part->size != part_size) {
982 			stm32prog_err("%s (0x%x): Bad size for partition %d (%s) at 0x%llx = 0x%llx <> 0x%llx expected",
983 				      part->name, part->id, part->part_id,
984 				      part_name, part->addr, part->size,
985 				      part_size);
986 			return -ENODEV;
987 		}
988 	}
989 	return 0;
990 }
991 
treat_partition_list(struct stm32prog_data * data)992 static int treat_partition_list(struct stm32prog_data *data)
993 {
994 	int i, j;
995 	struct stm32prog_part_t *part;
996 
997 	for (j = 0; j < STM32PROG_MAX_DEV; j++) {
998 		data->dev[j].target = STM32PROG_NONE;
999 		INIT_LIST_HEAD(&data->dev[j].part_list);
1000 	}
1001 
1002 #ifdef CONFIG_STM32MP15x_STM32IMAGE
1003 	data->tee_detected = false;
1004 #endif
1005 	data->fsbl_nor_detected = false;
1006 	for (i = 0; i < data->part_nb; i++) {
1007 		part = &data->part_array[i];
1008 		part->alt_id = -1;
1009 
1010 		/* skip partition with IP="none" */
1011 		if (part->target == STM32PROG_NONE) {
1012 			if (IS_SELECT(part)) {
1013 				stm32prog_err("Layout: selected none phase = 0x%x for part %s",
1014 					      part->id, part->name);
1015 				return -EINVAL;
1016 			}
1017 			continue;
1018 		}
1019 
1020 		if (part->id == PHASE_FLASHLAYOUT ||
1021 		    part->id > PHASE_LAST_USER) {
1022 			stm32prog_err("Layout: invalid phase = 0x%x for part %s",
1023 				      part->id, part->name);
1024 			return -EINVAL;
1025 		}
1026 		for (j = i + 1; j < data->part_nb; j++) {
1027 			if (part->id == data->part_array[j].id) {
1028 				stm32prog_err("Layout: duplicated phase 0x%x for part %s and %s",
1029 					      part->id, part->name, data->part_array[j].name);
1030 				return -EINVAL;
1031 			}
1032 		}
1033 		for (j = 0; j < STM32PROG_MAX_DEV; j++) {
1034 			if (data->dev[j].target == STM32PROG_NONE) {
1035 				/* new device found */
1036 				data->dev[j].target = part->target;
1037 				data->dev[j].dev_id = part->dev_id;
1038 				data->dev[j].full_update = true;
1039 				data->dev_nb++;
1040 				break;
1041 			} else if ((part->target == data->dev[j].target) &&
1042 				   (part->dev_id == data->dev[j].dev_id)) {
1043 				break;
1044 			}
1045 		}
1046 		if (j == STM32PROG_MAX_DEV) {
1047 			stm32prog_err("Layout: too many device");
1048 			return -EINVAL;
1049 		}
1050 		switch (part->target)  {
1051 		case STM32PROG_NOR:
1052 			if (!data->fsbl_nor_detected &&
1053 			    !strncmp(part->name, "fsbl", 4))
1054 				data->fsbl_nor_detected = true;
1055 			/* fallthrough */
1056 		case STM32PROG_NAND:
1057 		case STM32PROG_SPI_NAND:
1058 #ifdef CONFIG_STM32MP15x_STM32IMAGE
1059 			if (!data->tee_detected &&
1060 			    !strncmp(part->name, "tee", 3))
1061 				data->tee_detected = true;
1062 			break;
1063 #endif
1064 		default:
1065 			break;
1066 		}
1067 		part->dev = &data->dev[j];
1068 		if (!IS_SELECT(part))
1069 			part->dev->full_update = false;
1070 		list_add_tail(&part->list, &data->dev[j].part_list);
1071 	}
1072 
1073 	return 0;
1074 }
1075 
create_gpt_partitions(struct stm32prog_data * data)1076 static int create_gpt_partitions(struct stm32prog_data *data)
1077 {
1078 	int offset = 0;
1079 	const int buflen = SZ_8K;
1080 	char *buf;
1081 	char uuid[UUID_STR_LEN + 1];
1082 	unsigned char *uuid_bin;
1083 	unsigned int mmc_id;
1084 	int i, j;
1085 	bool rootfs_found;
1086 	struct stm32prog_part_t *part;
1087 	const char *type_str;
1088 
1089 	buf = malloc(buflen);
1090 	if (!buf)
1091 		return -ENOMEM;
1092 
1093 	/* initialize the selected device */
1094 	for (i = 0; i < data->dev_nb; i++) {
1095 		/* create gpt partition support only for full update on MMC */
1096 		if (data->dev[i].target != STM32PROG_MMC ||
1097 		    !data->dev[i].full_update)
1098 			continue;
1099 
1100 		printf("partitions on mmc%d: ", data->dev[i].dev_id);
1101 		offset = 0;
1102 		rootfs_found = false;
1103 		memset(buf, 0, buflen);
1104 
1105 		list_for_each_entry(part, &data->dev[i].part_list, list) {
1106 			/* skip eMMC boot partitions */
1107 			if (part->part_id < 0)
1108 				continue;
1109 			/* skip Raw Image */
1110 			if (part->part_type == RAW_IMAGE)
1111 				continue;
1112 
1113 			if (offset + 100 > buflen) {
1114 				log_debug("\n%s: buffer too small, %s skippped",
1115 					  __func__, part->name);
1116 				continue;
1117 			}
1118 
1119 			if (!offset)
1120 				offset += sprintf(buf, "gpt write mmc %d \"",
1121 						  data->dev[i].dev_id);
1122 
1123 			offset += snprintf(buf + offset, buflen - offset,
1124 					   "name=%s,start=0x%llx,size=0x%llx",
1125 					   part->name,
1126 					   part->addr,
1127 					   part->size);
1128 
1129 			switch (part->part_type) {
1130 			case PART_BINARY:
1131 				type_str = LINUX_RESERVED_UUID;
1132 				break;
1133 			case PART_FIP:
1134 				type_str = FIP_TYPE_UUID;
1135 				break;
1136 			default:
1137 				type_str = "linux";
1138 				break;
1139 			}
1140 			offset += snprintf(buf + offset,
1141 					   buflen - offset,
1142 					   ",type=%s", type_str);
1143 
1144 			if (part->part_type == PART_SYSTEM)
1145 				offset += snprintf(buf + offset,
1146 						   buflen - offset,
1147 						   ",bootable");
1148 
1149 			/* partition UUID */
1150 			uuid_bin = NULL;
1151 			if (!rootfs_found && !strcmp(part->name, "rootfs")) {
1152 				mmc_id = part->dev_id;
1153 				rootfs_found = true;
1154 				if (mmc_id < ARRAY_SIZE(uuid_mmc))
1155 					uuid_bin = (unsigned char *)uuid_mmc[mmc_id].b;
1156 			}
1157 			if (part->part_type == PART_FIP) {
1158 				for (j = 0; j < ARRAY_SIZE(fip_part_name); j++)
1159 					if (!strcmp(part->name, fip_part_name[j])) {
1160 						uuid_bin = (unsigned char *)fip_part_uuid[j].b;
1161 						break;
1162 					}
1163 			}
1164 			if (uuid_bin) {
1165 				uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
1166 				offset += snprintf(buf + offset,
1167 						   buflen - offset,
1168 						   ",uuid=%s", uuid);
1169 			}
1170 
1171 			offset += snprintf(buf + offset, buflen - offset, ";");
1172 		}
1173 
1174 		if (offset) {
1175 			offset += snprintf(buf + offset, buflen - offset, "\"");
1176 			log_debug("\ncmd: %s\n", buf);
1177 			if (run_command(buf, 0)) {
1178 				stm32prog_err("GPT partitionning fail: %s",
1179 					      buf);
1180 				free(buf);
1181 
1182 				return -1;
1183 			}
1184 		}
1185 
1186 		if (data->dev[i].mmc)
1187 			part_init(mmc_get_blk_desc(data->dev[i].mmc));
1188 
1189 #ifdef DEBUG
1190 		sprintf(buf, "gpt verify mmc %d", data->dev[i].dev_id);
1191 		log_debug("\ncmd: %s", buf);
1192 		if (run_command(buf, 0))
1193 			printf("fail !\n");
1194 		else
1195 			printf("OK\n");
1196 
1197 		sprintf(buf, "part list mmc %d", data->dev[i].dev_id);
1198 		run_command(buf, 0);
1199 #endif
1200 		puts("done\n");
1201 	}
1202 
1203 #ifdef DEBUG
1204 	run_command("mtd list", 0);
1205 #endif
1206 	free(buf);
1207 
1208 	return 0;
1209 }
1210 
stm32prog_alt_add(struct stm32prog_data * data,struct dfu_entity * dfu,struct stm32prog_part_t * part)1211 static int stm32prog_alt_add(struct stm32prog_data *data,
1212 			     struct dfu_entity *dfu,
1213 			     struct stm32prog_part_t *part)
1214 {
1215 	int ret = 0;
1216 	int offset = 0;
1217 	char devstr[10];
1218 	char dfustr[10];
1219 	char buf[ALT_BUF_LEN];
1220 	u32 size;
1221 	char multiplier,  type;
1222 
1223 	/* max 3 digit for sector size */
1224 	if (part->size > SZ_1M) {
1225 		size = (u32)(part->size / SZ_1M);
1226 		multiplier = 'M';
1227 	} else if (part->size > SZ_1K) {
1228 		size = (u32)(part->size / SZ_1K);
1229 		multiplier = 'K';
1230 	} else {
1231 		size = (u32)part->size;
1232 		multiplier = 'B';
1233 	}
1234 	if (IS_SELECT(part) && !IS_EMPTY(part))
1235 		type = 'e'; /*Readable and Writeable*/
1236 	else
1237 		type = 'a';/*Readable*/
1238 
1239 	memset(buf, 0, sizeof(buf));
1240 	offset = snprintf(buf, ALT_BUF_LEN - offset,
1241 			  "@%s/0x%02x/1*%d%c%c ",
1242 			  part->name, part->id,
1243 			  size, multiplier, type);
1244 
1245 	if (part->target == STM32PROG_RAM) {
1246 		offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1247 				   "ram 0x%llx 0x%llx",
1248 				   part->addr, part->size);
1249 	} else if (part->part_type == RAW_IMAGE) {
1250 		u64 dfu_size;
1251 
1252 		if (part->dev->target == STM32PROG_MMC)
1253 			dfu_size = part->size / part->dev->mmc->read_bl_len;
1254 		else
1255 			dfu_size = part->size;
1256 		offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1257 				   "raw 0x0 0x%llx", dfu_size);
1258 	} else if (part->part_id < 0) {
1259 		u64 nb_blk = part->size / part->dev->mmc->read_bl_len;
1260 
1261 		offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1262 				   "raw 0x%llx 0x%llx",
1263 				   part->addr, nb_blk);
1264 		offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1265 				   " mmcpart %d", -(part->part_id));
1266 	} else {
1267 		if (part->part_type == PART_SYSTEM &&
1268 		    (part->target == STM32PROG_NAND ||
1269 		     part->target == STM32PROG_NOR ||
1270 		     part->target == STM32PROG_SPI_NAND))
1271 			offset += snprintf(buf + offset,
1272 					   ALT_BUF_LEN - offset,
1273 					   "partubi");
1274 		else
1275 			offset += snprintf(buf + offset,
1276 					   ALT_BUF_LEN - offset,
1277 					   "part");
1278 		/* dev_id requested by DFU MMC */
1279 		if (part->target == STM32PROG_MMC)
1280 			offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1281 					   " %d", part->dev_id);
1282 		offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1283 				   " %d", part->part_id);
1284 	}
1285 	ret = -ENODEV;
1286 	switch (part->target) {
1287 	case STM32PROG_MMC:
1288 		if (IS_ENABLED(CONFIG_MMC)) {
1289 			ret = 0;
1290 			sprintf(dfustr, "mmc");
1291 			sprintf(devstr, "%d", part->dev_id);
1292 		}
1293 		break;
1294 	case STM32PROG_NAND:
1295 	case STM32PROG_NOR:
1296 	case STM32PROG_SPI_NAND:
1297 		if (IS_ENABLED(CONFIG_MTD)) {
1298 			ret = 0;
1299 			sprintf(dfustr, "mtd");
1300 			get_mtd_by_target(devstr, part->target, part->dev_id);
1301 		}
1302 		break;
1303 	case STM32PROG_RAM:
1304 		ret = 0;
1305 		sprintf(dfustr, "ram");
1306 		sprintf(devstr, "0");
1307 		break;
1308 	default:
1309 		break;
1310 	}
1311 	if (ret) {
1312 		stm32prog_err("invalid target: %d", part->target);
1313 		return ret;
1314 	}
1315 	log_debug("dfu_alt_add(%s,%s,%s)\n", dfustr, devstr, buf);
1316 	ret = dfu_alt_add(dfu, dfustr, devstr, buf);
1317 	log_debug("dfu_alt_add(%s,%s,%s) result %d\n",
1318 		  dfustr, devstr, buf, ret);
1319 
1320 	return ret;
1321 }
1322 
stm32prog_alt_add_virt(struct dfu_entity * dfu,char * name,int phase,int size)1323 static int stm32prog_alt_add_virt(struct dfu_entity *dfu,
1324 				  char *name, int phase, int size)
1325 {
1326 	int ret = 0;
1327 	char devstr[4];
1328 	char buf[ALT_BUF_LEN];
1329 
1330 	sprintf(devstr, "%d", phase);
1331 	sprintf(buf, "@%s/0x%02x/1*%dBe", name, phase, size);
1332 	ret = dfu_alt_add(dfu, "virt", devstr, buf);
1333 	log_debug("dfu_alt_add(virt,%s,%s) result %d\n", devstr, buf, ret);
1334 
1335 	return ret;
1336 }
1337 
dfu_init_entities(struct stm32prog_data * data)1338 static int dfu_init_entities(struct stm32prog_data *data)
1339 {
1340 	int ret = 0;
1341 	int phase, i, alt_id;
1342 	struct stm32prog_part_t *part;
1343 	struct dfu_entity *dfu;
1344 	int alt_nb;
1345 	u32 otp_size = 0;
1346 
1347 	alt_nb = 1; /* number of virtual = CMD*/
1348 
1349 	if (IS_ENABLED(CONFIG_CMD_STM32PROG_OTP)) {
1350 		/* OTP_SIZE_SMC = 0 if SMC is not supported */
1351 		otp_size = OTP_SIZE_SMC;
1352 		/* check if PTA BSEC is supported */
1353 		ret = optee_ta_open(data);
1354 		log_debug("optee_ta_open(PTA_NVMEM) result %d\n", ret);
1355 		if (!ret && data->tee)
1356 			otp_size = OTP_SIZE_TA;
1357 		if (otp_size)
1358 			alt_nb++; /* OTP*/
1359 	}
1360 
1361 	if (CONFIG_IS_ENABLED(DM_PMIC))
1362 		alt_nb++; /* PMIC NVMEM*/
1363 
1364 	if (data->part_nb == 0)
1365 		alt_nb++;  /* +1 for FlashLayout */
1366 	else
1367 		for (i = 0; i < data->part_nb; i++) {
1368 			if (data->part_array[i].target != STM32PROG_NONE)
1369 				alt_nb++;
1370 		}
1371 
1372 	if (dfu_alt_init(alt_nb, &dfu))
1373 		return -ENODEV;
1374 
1375 	puts("DFU alt info setting: ");
1376 	if (data->part_nb) {
1377 		alt_id = 0;
1378 		ret = 0;
1379 		for (phase = 1;
1380 		     (phase <= PHASE_LAST_USER) &&
1381 		     (alt_id < alt_nb) && !ret;
1382 		     phase++) {
1383 			/* ordering alt setting by phase id */
1384 			part = NULL;
1385 			for (i = 0; i < data->part_nb; i++) {
1386 				if (phase == data->part_array[i].id) {
1387 					part = &data->part_array[i];
1388 					break;
1389 				}
1390 			}
1391 			if (!part)
1392 				continue;
1393 			if (part->target == STM32PROG_NONE)
1394 				continue;
1395 			part->alt_id = alt_id;
1396 			alt_id++;
1397 
1398 			ret = stm32prog_alt_add(data, dfu, part);
1399 		}
1400 	} else {
1401 		char buf[ALT_BUF_LEN];
1402 
1403 		sprintf(buf, "@FlashLayout/0x%02x/1*256Ke ram %x 40000",
1404 			PHASE_FLASHLAYOUT, CONFIG_SYS_LOAD_ADDR);
1405 		ret = dfu_alt_add(dfu, "ram", NULL, buf);
1406 		log_debug("dfu_alt_add(ram, NULL,%s) result %d\n", buf, ret);
1407 	}
1408 
1409 	if (!ret)
1410 		ret = stm32prog_alt_add_virt(dfu, "virtual", PHASE_CMD, CMD_SIZE);
1411 
1412 	if (!ret && IS_ENABLED(CONFIG_CMD_STM32PROG_OTP) && otp_size)
1413 		ret = stm32prog_alt_add_virt(dfu, "OTP", PHASE_OTP, otp_size);
1414 
1415 	if (!ret && CONFIG_IS_ENABLED(DM_PMIC))
1416 		ret = stm32prog_alt_add_virt(dfu, "PMIC", PHASE_PMIC, PMIC_SIZE);
1417 
1418 	if (ret)
1419 		stm32prog_err("dfu init failed: %d", ret);
1420 	puts("done\n");
1421 
1422 #ifdef DEBUG
1423 	dfu_show_entities();
1424 #endif
1425 	return ret;
1426 }
1427 
stm32prog_otp_write(struct stm32prog_data * data,u32 offset,u8 * buffer,long * size)1428 int stm32prog_otp_write(struct stm32prog_data *data, u32 offset, u8 *buffer,
1429 			long *size)
1430 {
1431 	u32 otp_size = data->tee ? OTP_SIZE_TA : OTP_SIZE_SMC;
1432 	log_debug("%s: %x %lx\n", __func__, offset, *size);
1433 
1434 	if (!IS_ENABLED(CONFIG_CMD_STM32PROG_OTP)) {
1435 		stm32prog_err("OTP update not supported");
1436 
1437 		return -EOPNOTSUPP;
1438 	}
1439 
1440 	if (!data->otp_part) {
1441 		data->otp_part = memalign(CONFIG_SYS_CACHELINE_SIZE, otp_size);
1442 		if (!data->otp_part)
1443 			return -ENOMEM;
1444 	}
1445 
1446 	if (!offset)
1447 		memset(data->otp_part, 0, otp_size);
1448 
1449 	if (offset + *size > otp_size)
1450 		*size = otp_size - offset;
1451 
1452 	memcpy((void *)((uintptr_t)data->otp_part + offset), buffer, *size);
1453 
1454 	return 0;
1455 }
1456 
stm32prog_otp_read(struct stm32prog_data * data,u32 offset,u8 * buffer,long * size)1457 int stm32prog_otp_read(struct stm32prog_data *data, u32 offset, u8 *buffer,
1458 		       long *size)
1459 {
1460 	u32 otp_size = data->tee ? OTP_SIZE_TA : OTP_SIZE_SMC;
1461 	int result = 0;
1462 
1463 	if (!IS_ENABLED(CONFIG_CMD_STM32PROG_OTP)) {
1464 		stm32prog_err("OTP update not supported");
1465 
1466 		return -EOPNOTSUPP;
1467 	}
1468 
1469 	log_debug("%s: %x %lx\n", __func__, offset, *size);
1470 	/* alway read for first packet */
1471 	if (!offset) {
1472 		if (!data->otp_part)
1473 			data->otp_part =
1474 				memalign(CONFIG_SYS_CACHELINE_SIZE, otp_size);
1475 
1476 		if (!data->otp_part) {
1477 			result = -ENOMEM;
1478 			goto end_otp_read;
1479 		}
1480 
1481 		/* init struct with 0 */
1482 		memset(data->otp_part, 0, otp_size);
1483 
1484 		/* call the service */
1485 		result = -EOPNOTSUPP;
1486 		if (data->tee && CONFIG_IS_ENABLED(OPTEE))
1487 			result = optee_ta_invoke(data, TA_NVMEM_READ, NVMEM_OTP,
1488 						 data->otp_part, OTP_SIZE_TA);
1489 		else if (IS_ENABLED(CONFIG_ARM_SMCCC))
1490 			result = stm32_smc_exec(STM32_SMC_BSEC, STM32_SMC_READ_ALL,
1491 						(unsigned long)data->otp_part, 0);
1492 		if (result)
1493 			goto end_otp_read;
1494 	}
1495 
1496 	if (!data->otp_part) {
1497 		result = -ENOMEM;
1498 		goto end_otp_read;
1499 	}
1500 
1501 	if (offset + *size > otp_size)
1502 		*size = otp_size - offset;
1503 	memcpy(buffer, (void *)((uintptr_t)data->otp_part + offset), *size);
1504 
1505 end_otp_read:
1506 	log_debug("%s: result %i\n", __func__, result);
1507 
1508 	return result;
1509 }
1510 
stm32prog_otp_start(struct stm32prog_data * data)1511 int stm32prog_otp_start(struct stm32prog_data *data)
1512 {
1513 	int result = 0;
1514 	struct arm_smccc_res res;
1515 
1516 	if (!IS_ENABLED(CONFIG_CMD_STM32PROG_OTP)) {
1517 		stm32prog_err("OTP update not supported");
1518 
1519 		return -EOPNOTSUPP;
1520 	}
1521 
1522 	if (!data->otp_part) {
1523 		stm32prog_err("start OTP without data");
1524 		return -1;
1525 	}
1526 
1527 	result = -EOPNOTSUPP;
1528 	if (data->tee && CONFIG_IS_ENABLED(OPTEE)) {
1529 		result = optee_ta_invoke(data, TA_NVMEM_WRITE, NVMEM_OTP,
1530 					 data->otp_part, OTP_SIZE_TA);
1531 	} else if (IS_ENABLED(CONFIG_ARM_SMCCC)) {
1532 		arm_smccc_smc(STM32_SMC_BSEC, STM32_SMC_WRITE_ALL,
1533 			      (uintptr_t)data->otp_part, 0, 0, 0, 0, 0, &res);
1534 
1535 		if (!res.a0) {
1536 			switch (res.a1) {
1537 			case 0:
1538 				result = 0;
1539 				break;
1540 			case 1:
1541 				stm32prog_err("Provisioning");
1542 				result = 0;
1543 				break;
1544 			default:
1545 				log_err("%s: OTP incorrect value (err = %ld)\n",
1546 					__func__, res.a1);
1547 				result = -EINVAL;
1548 				break;
1549 			}
1550 		} else {
1551 			log_err("%s: Failed to exec svc=%x op=%x in secure mode (err = %ld)\n",
1552 				__func__, STM32_SMC_BSEC, STM32_SMC_WRITE_ALL, res.a0);
1553 			result = -EINVAL;
1554 		}
1555 	}
1556 
1557 	free(data->otp_part);
1558 	data->otp_part = NULL;
1559 	log_debug("%s: result %i\n", __func__, result);
1560 
1561 	return result;
1562 }
1563 
stm32prog_pmic_write(struct stm32prog_data * data,u32 offset,u8 * buffer,long * size)1564 int stm32prog_pmic_write(struct stm32prog_data *data, u32 offset, u8 *buffer,
1565 			 long *size)
1566 {
1567 	log_debug("%s: %x %lx\n", __func__, offset, *size);
1568 
1569 	if (!offset)
1570 		memset(data->pmic_part, 0, PMIC_SIZE);
1571 
1572 	if (offset + *size > PMIC_SIZE)
1573 		*size = PMIC_SIZE - offset;
1574 
1575 	memcpy(&data->pmic_part[offset], buffer, *size);
1576 
1577 	return 0;
1578 }
1579 
stm32prog_pmic_read(struct stm32prog_data * data,u32 offset,u8 * buffer,long * size)1580 int stm32prog_pmic_read(struct stm32prog_data *data, u32 offset, u8 *buffer,
1581 			long *size)
1582 {
1583 	int result = 0, ret;
1584 	struct udevice *dev;
1585 
1586 	if (!IS_ENABLED(CONFIG_PMIC_STPMIC1)) {
1587 		stm32prog_err("PMIC update not supported");
1588 
1589 		return -EOPNOTSUPP;
1590 	}
1591 
1592 	log_debug("%s: %x %lx\n", __func__, offset, *size);
1593 	ret = uclass_get_device_by_driver(UCLASS_MISC,
1594 					  DM_DRIVER_GET(stpmic1_nvm),
1595 					  &dev);
1596 	if (ret)
1597 		return ret;
1598 
1599 	/* alway request PMIC for first packet */
1600 	if (!offset) {
1601 		/* init struct with 0 */
1602 		memset(data->pmic_part, 0, PMIC_SIZE);
1603 
1604 		ret = uclass_get_device_by_driver(UCLASS_MISC,
1605 						  DM_DRIVER_GET(stpmic1_nvm),
1606 						  &dev);
1607 		if (ret)
1608 			return ret;
1609 
1610 		ret = misc_read(dev, 0xF8, data->pmic_part, PMIC_SIZE);
1611 		if (ret < 0) {
1612 			result = ret;
1613 			goto end_pmic_read;
1614 		}
1615 		if (ret != PMIC_SIZE) {
1616 			result = -EACCES;
1617 			goto end_pmic_read;
1618 		}
1619 	}
1620 
1621 	if (offset + *size > PMIC_SIZE)
1622 		*size = PMIC_SIZE - offset;
1623 
1624 	memcpy(buffer, &data->pmic_part[offset], *size);
1625 
1626 end_pmic_read:
1627 	log_debug("%s: result %i\n", __func__, result);
1628 	return result;
1629 }
1630 
stm32prog_pmic_start(struct stm32prog_data * data)1631 int stm32prog_pmic_start(struct stm32prog_data *data)
1632 {
1633 	int ret;
1634 	struct udevice *dev;
1635 
1636 	if (!IS_ENABLED(CONFIG_PMIC_STPMIC1)) {
1637 		stm32prog_err("PMIC update not supported");
1638 
1639 		return -EOPNOTSUPP;
1640 	}
1641 
1642 	ret = uclass_get_device_by_driver(UCLASS_MISC,
1643 					  DM_DRIVER_GET(stpmic1_nvm),
1644 					  &dev);
1645 	if (ret)
1646 		return ret;
1647 
1648 	return misc_write(dev, 0xF8, data->pmic_part, PMIC_SIZE);
1649 }
1650 
1651 /* copy FSBL on NAND to improve reliability on NAND */
stm32prog_copy_fsbl(struct stm32prog_part_t * part)1652 static int stm32prog_copy_fsbl(struct stm32prog_part_t *part)
1653 {
1654 	int ret, i;
1655 	void *fsbl;
1656 	struct image_header_s header;
1657 	struct stm32_header_v2 raw_header; /* V2 size > v1 size */
1658 	struct dfu_entity *dfu;
1659 	long size, offset;
1660 
1661 	if (part->target != STM32PROG_NAND &&
1662 	    part->target != STM32PROG_SPI_NAND)
1663 		return -EINVAL;
1664 
1665 	dfu = dfu_get_entity(part->alt_id);
1666 
1667 	/* read header */
1668 	dfu_transaction_cleanup(dfu);
1669 	size = sizeof(raw_header);
1670 	ret = dfu->read_medium(dfu, 0, (void *)&raw_header, &size);
1671 	if (ret)
1672 		return ret;
1673 
1674 	stm32prog_header_check((ulong)&raw_header, &header);
1675 	if (header.type != HEADER_STM32IMAGE &&
1676 	    header.type != HEADER_STM32IMAGE_V2)
1677 		return -ENOENT;
1678 
1679 	/* read header + payload */
1680 	size = header.image_length + header.length;
1681 	size = round_up(size, part->dev->mtd->erasesize);
1682 	fsbl = calloc(1, size);
1683 	if (!fsbl)
1684 		return -ENOMEM;
1685 	ret = dfu->read_medium(dfu, 0, fsbl, &size);
1686 	log_debug("%s read size=%lx ret=%d\n", __func__, size, ret);
1687 	if (ret)
1688 		goto error;
1689 
1690 	dfu_transaction_cleanup(dfu);
1691 	offset = 0;
1692 	for (i = part->bin_nb - 1; i > 0; i--) {
1693 		offset += size;
1694 		/* write to the next erase block */
1695 		ret = dfu->write_medium(dfu, offset, fsbl, &size);
1696 		log_debug("%s copy at ofset=%lx size=%lx ret=%d",
1697 			  __func__, offset, size, ret);
1698 		if (ret)
1699 			goto error;
1700 	}
1701 
1702 error:
1703 	free(fsbl);
1704 	return ret;
1705 }
1706 
stm32prog_end_phase(struct stm32prog_data * data,u64 offset)1707 static void stm32prog_end_phase(struct stm32prog_data *data, u64 offset)
1708 {
1709 	if (data->phase == PHASE_FLASHLAYOUT) {
1710 #if defined(CONFIG_LEGACY_IMAGE_FORMAT)
1711 		if (genimg_get_format((void *)CONFIG_SYS_LOAD_ADDR) == IMAGE_FORMAT_LEGACY) {
1712 			data->script = CONFIG_SYS_LOAD_ADDR;
1713 			data->phase = PHASE_END;
1714 			log_notice("U-Boot script received\n");
1715 			return;
1716 		}
1717 #endif
1718 		log_notice("\nFlashLayout received, size = %lld\n", offset);
1719 		if (parse_flash_layout(data, CONFIG_SYS_LOAD_ADDR, offset))
1720 			stm32prog_err("Layout: invalid FlashLayout");
1721 		return;
1722 	}
1723 
1724 	if (!data->cur_part)
1725 		return;
1726 
1727 	if (data->cur_part->target == STM32PROG_RAM) {
1728 		if (data->cur_part->part_type == PART_SYSTEM)
1729 			data->uimage = data->cur_part->addr;
1730 		if (data->cur_part->part_type == PART_FILESYSTEM)
1731 			data->dtb = data->cur_part->addr;
1732 		if (data->cur_part->part_type == PART_BINARY) {
1733 			data->initrd = data->cur_part->addr;
1734 			data->initrd_size = offset;
1735 		}
1736 	}
1737 
1738 	if (CONFIG_IS_ENABLED(MMC) &&
1739 	    data->cur_part->part_id < 0) {
1740 		char cmdbuf[60];
1741 
1742 		sprintf(cmdbuf, "mmc bootbus %d 0 0 0; mmc partconf %d 1 %d 0",
1743 			data->cur_part->dev_id, data->cur_part->dev_id,
1744 			-(data->cur_part->part_id));
1745 		if (run_command(cmdbuf, 0)) {
1746 			stm32prog_err("commands '%s' failed", cmdbuf);
1747 			return;
1748 		}
1749 	}
1750 
1751 	if (IS_ENABLED(CONFIG_MTD) &&
1752 	    data->cur_part->bin_nb > 1) {
1753 		if (stm32prog_copy_fsbl(data->cur_part)) {
1754 			stm32prog_err("%s (0x%x): copy of fsbl failed",
1755 				      data->cur_part->name, data->cur_part->id);
1756 			return;
1757 		}
1758 	}
1759 }
1760 
stm32prog_do_reset(struct stm32prog_data * data)1761 void stm32prog_do_reset(struct stm32prog_data *data)
1762 {
1763 	if (data->phase == PHASE_RESET) {
1764 		data->phase = PHASE_DO_RESET;
1765 		puts("Reset requested\n");
1766 	}
1767 }
1768 
stm32prog_next_phase(struct stm32prog_data * data)1769 void stm32prog_next_phase(struct stm32prog_data *data)
1770 {
1771 	int phase, i;
1772 	struct stm32prog_part_t *part;
1773 	bool found;
1774 
1775 	phase = data->phase;
1776 	switch (phase) {
1777 	case PHASE_RESET:
1778 	case PHASE_END:
1779 	case PHASE_DO_RESET:
1780 		return;
1781 	}
1782 
1783 	/* found next selected partition */
1784 	data->dfu_seq = 0;
1785 	data->cur_part = NULL;
1786 	data->phase = PHASE_END;
1787 	found = false;
1788 	do {
1789 		phase++;
1790 		if (phase > PHASE_LAST_USER)
1791 			break;
1792 		for (i = 0; i < data->part_nb; i++) {
1793 			part = &data->part_array[i];
1794 			if (part->id == phase) {
1795 				if (IS_SELECT(part) && !IS_EMPTY(part)) {
1796 					data->cur_part = part;
1797 					data->phase = phase;
1798 					found = true;
1799 				}
1800 				break;
1801 			}
1802 		}
1803 	} while (!found);
1804 
1805 	if (data->phase == PHASE_END)
1806 		puts("Phase=END\n");
1807 }
1808 
part_delete(struct stm32prog_data * data,struct stm32prog_part_t * part)1809 static int part_delete(struct stm32prog_data *data,
1810 		       struct stm32prog_part_t *part)
1811 {
1812 	int ret = 0;
1813 	unsigned long blks, blks_offset, blks_size;
1814 	struct blk_desc *block_dev = NULL;
1815 	char cmdbuf[40];
1816 	char devstr[10];
1817 
1818 	printf("Erasing %s ", part->name);
1819 	switch (part->target) {
1820 	case STM32PROG_MMC:
1821 		if (!IS_ENABLED(CONFIG_MMC)) {
1822 			ret = -1;
1823 			stm32prog_err("%s (0x%x): erase invalid",
1824 				      part->name, part->id);
1825 			break;
1826 		}
1827 		printf("on mmc %d: ", part->dev->dev_id);
1828 		block_dev = mmc_get_blk_desc(part->dev->mmc);
1829 		blks_offset = lldiv(part->addr, part->dev->mmc->read_bl_len);
1830 		blks_size = lldiv(part->size, part->dev->mmc->read_bl_len);
1831 		/* -1 or -2 : delete boot partition of MMC
1832 		 * need to switch to associated hwpart 1 or 2
1833 		 */
1834 		if (part->part_id < 0)
1835 			if (blk_select_hwpart_devnum(UCLASS_MMC,
1836 						     part->dev->dev_id,
1837 						     -part->part_id))
1838 				return -1;
1839 
1840 		blks = blk_derase(block_dev, blks_offset, blks_size);
1841 
1842 		/* return to user partition */
1843 		if (part->part_id < 0)
1844 			blk_select_hwpart_devnum(UCLASS_MMC,
1845 						 part->dev->dev_id, 0);
1846 		if (blks != blks_size) {
1847 			ret = -1;
1848 			stm32prog_err("%s (0x%x): MMC erase failed",
1849 				      part->name, part->id);
1850 		}
1851 		break;
1852 	case STM32PROG_NOR:
1853 	case STM32PROG_NAND:
1854 	case STM32PROG_SPI_NAND:
1855 		if (!IS_ENABLED(CONFIG_MTD)) {
1856 			ret = -1;
1857 			stm32prog_err("%s (0x%x): erase invalid",
1858 				      part->name, part->id);
1859 			break;
1860 		}
1861 		get_mtd_by_target(devstr, part->target, part->dev->dev_id);
1862 		printf("on %s: ", devstr);
1863 		sprintf(cmdbuf, "mtd erase %s 0x%llx 0x%llx",
1864 			devstr, part->addr, part->size);
1865 		if (run_command(cmdbuf, 0)) {
1866 			ret = -1;
1867 			stm32prog_err("%s (0x%x): MTD erase commands failed (%s)",
1868 				      part->name, part->id, cmdbuf);
1869 		}
1870 		break;
1871 	case STM32PROG_RAM:
1872 		printf("on ram: ");
1873 		memset((void *)(uintptr_t)part->addr, 0, (size_t)part->size);
1874 		break;
1875 	default:
1876 		ret = -1;
1877 		stm32prog_err("%s (0x%x): erase invalid", part->name, part->id);
1878 		break;
1879 	}
1880 	if (!ret)
1881 		printf("done\n");
1882 
1883 	return ret;
1884 }
1885 
stm32prog_devices_init(struct stm32prog_data * data)1886 static void stm32prog_devices_init(struct stm32prog_data *data)
1887 {
1888 	int i;
1889 	int ret;
1890 	struct stm32prog_part_t *part;
1891 
1892 	ret = treat_partition_list(data);
1893 	if (ret)
1894 		goto error;
1895 
1896 	/* empty flashlayout */
1897 	if (!data->dev_nb)
1898 		return;
1899 
1900 	/* initialize the selected device */
1901 	for (i = 0; i < data->dev_nb; i++) {
1902 		ret = init_device(data, &data->dev[i]);
1903 		if (ret)
1904 			goto error;
1905 	}
1906 
1907 	/* delete RAW partition before create partition */
1908 	for (i = 0; i < data->part_nb; i++) {
1909 		part = &data->part_array[i];
1910 
1911 		if (part->part_type != RAW_IMAGE)
1912 			continue;
1913 
1914 		if (!IS_SELECT(part) || !IS_DELETE(part))
1915 			continue;
1916 
1917 		ret = part_delete(data, part);
1918 		if (ret)
1919 			goto error;
1920 	}
1921 
1922 	if (IS_ENABLED(CONFIG_MMC)) {
1923 		ret = create_gpt_partitions(data);
1924 		if (ret)
1925 			goto error;
1926 	}
1927 
1928 	/* delete partition GPT or MTD */
1929 	for (i = 0; i < data->part_nb; i++) {
1930 		part = &data->part_array[i];
1931 
1932 		if (part->part_type == RAW_IMAGE)
1933 			continue;
1934 
1935 		if (!IS_SELECT(part) || !IS_DELETE(part))
1936 			continue;
1937 
1938 		ret = part_delete(data, part);
1939 		if (ret)
1940 			goto error;
1941 	}
1942 
1943 	return;
1944 
1945 error:
1946 	data->part_nb = 0;
1947 }
1948 
stm32prog_dfu_init(struct stm32prog_data * data)1949 int stm32prog_dfu_init(struct stm32prog_data *data)
1950 {
1951 	/* init device if no error */
1952 	if (data->part_nb)
1953 		stm32prog_devices_init(data);
1954 
1955 	if (data->part_nb)
1956 		stm32prog_next_phase(data);
1957 
1958 	/* prepare DFU for device read/write */
1959 	dfu_free_entities();
1960 	return dfu_init_entities(data);
1961 }
1962 
stm32prog_init(struct stm32prog_data * data,uintptr_t addr,ulong size)1963 int stm32prog_init(struct stm32prog_data *data, uintptr_t addr, ulong size)
1964 {
1965 	memset(data, 0x0, sizeof(*data));
1966 	data->read_phase = PHASE_RESET;
1967 	data->phase = PHASE_FLASHLAYOUT;
1968 
1969 	return parse_flash_layout(data, addr, size);
1970 }
1971 
stm32prog_clean(struct stm32prog_data * data)1972 void stm32prog_clean(struct stm32prog_data *data)
1973 {
1974 	/* clean */
1975 	dfu_free_entities();
1976 	free(data->part_array);
1977 	free(data->otp_part);
1978 	free(data->buffer);
1979 
1980 	if (CONFIG_IS_ENABLED(OPTEE) && data->tee) {
1981 		tee_close_session(data->tee, data->tee_session);
1982 		data->tee = NULL;
1983 		data->tee_session = 0x0;
1984 	}
1985 }
1986 
1987 /* DFU callback: used after serial and direct DFU USB access */
dfu_flush_callback(struct dfu_entity * dfu)1988 void dfu_flush_callback(struct dfu_entity *dfu)
1989 {
1990 	if (!stm32prog_data)
1991 		return;
1992 
1993 	if (dfu->dev_type == DFU_DEV_VIRT) {
1994 		if (dfu->data.virt.dev_num == PHASE_OTP)
1995 			stm32prog_otp_start(stm32prog_data);
1996 		else if (dfu->data.virt.dev_num == PHASE_PMIC)
1997 			stm32prog_pmic_start(stm32prog_data);
1998 		return;
1999 	}
2000 
2001 	if (dfu->dev_type == DFU_DEV_RAM) {
2002 		if (dfu->alt == 0 &&
2003 		    stm32prog_data->phase == PHASE_FLASHLAYOUT) {
2004 			stm32prog_end_phase(stm32prog_data, dfu->offset);
2005 			/* waiting DFU DETACH for reenumeration */
2006 		}
2007 	}
2008 
2009 	if (!stm32prog_data->cur_part)
2010 		return;
2011 
2012 	if (dfu->alt == stm32prog_data->cur_part->alt_id) {
2013 		stm32prog_end_phase(stm32prog_data, dfu->offset);
2014 		stm32prog_next_phase(stm32prog_data);
2015 	}
2016 }
2017 
dfu_initiated_callback(struct dfu_entity * dfu)2018 void dfu_initiated_callback(struct dfu_entity *dfu)
2019 {
2020 	if (!stm32prog_data)
2021 		return;
2022 
2023 	if (!stm32prog_data->cur_part)
2024 		return;
2025 
2026 	/* force the saved offset for the current partition */
2027 	if (dfu->alt == stm32prog_data->cur_part->alt_id) {
2028 		dfu->offset = stm32prog_data->offset;
2029 		stm32prog_data->dfu_seq = 0;
2030 		log_debug("dfu offset = 0x%llx\n", dfu->offset);
2031 	}
2032 }
2033 
dfu_error_callback(struct dfu_entity * dfu,const char * msg)2034 void dfu_error_callback(struct dfu_entity *dfu, const char *msg)
2035 {
2036 	struct stm32prog_data *data = stm32prog_data;
2037 
2038 	if (!stm32prog_data)
2039 		return;
2040 
2041 	if (!stm32prog_data->cur_part)
2042 		return;
2043 
2044 	if (dfu->alt == stm32prog_data->cur_part->alt_id)
2045 		stm32prog_err(msg);
2046 }
2047