1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2008 RuggedCom, Inc.
4  * Richard Retanubun <RichardRetanubun@RuggedCom.com>
5  */
6 
7 /*
8  * NOTE:
9  *   when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this
10  *   limits the maximum size of addressable storage to < 2 tebibytes
11  */
12 #include <common.h>
13 #include <blk.h>
14 #include <log.h>
15 #include <part.h>
16 #include <uuid.h>
17 #include <asm/cache.h>
18 #include <asm/global_data.h>
19 #include <asm/unaligned.h>
20 #include <command.h>
21 #include <fdtdec.h>
22 #include <ide.h>
23 #include <malloc.h>
24 #include <memalign.h>
25 #include <part_efi.h>
26 #include <dm/ofnode.h>
27 #include <linux/compiler.h>
28 #include <linux/ctype.h>
29 #include <u-boot/crc.h>
30 
31 /* GUID for basic data partitons */
32 #if CONFIG_IS_ENABLED(EFI_PARTITION)
33 static const efi_guid_t partition_basic_data_guid = PARTITION_BASIC_DATA_GUID;
34 #endif
35 
36 /**
37  * efi_crc32() - EFI version of crc32 function
38  * @buf: buffer to calculate crc32 of
39  * @len - length of buf
40  *
41  * Description: Returns EFI-style CRC32 value for @buf
42  */
efi_crc32(const void * buf,u32 len)43 static inline u32 efi_crc32(const void *buf, u32 len)
44 {
45 	return crc32(0, buf, len);
46 }
47 
48 /*
49  * Private function prototypes
50  */
51 
52 static int pmbr_part_valid(struct partition *part);
53 static int is_pmbr_valid(legacy_mbr * mbr);
54 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba,
55 				gpt_header *pgpt_head, gpt_entry **pgpt_pte);
56 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc,
57 					 gpt_header *pgpt_head);
58 static int is_pte_valid(gpt_entry * pte);
59 static int find_valid_gpt(struct blk_desc *dev_desc, gpt_header *gpt_head,
60 			  gpt_entry **pgpt_pte);
61 
print_efiname(gpt_entry * pte)62 static char *print_efiname(gpt_entry *pte)
63 {
64 	static char name[PARTNAME_SZ + 1];
65 	int i;
66 	for (i = 0; i < PARTNAME_SZ; i++) {
67 		u8 c;
68 		c = pte->partition_name[i] & 0xff;
69 		c = (c && !isprint(c)) ? '.' : c;
70 		name[i] = c;
71 	}
72 	name[PARTNAME_SZ] = 0;
73 	return name;
74 }
75 
76 static const efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
77 
get_bootable(gpt_entry * p)78 static int get_bootable(gpt_entry *p)
79 {
80 	int ret = 0;
81 
82 	if (!memcmp(&p->partition_type_guid, &system_guid, sizeof(efi_guid_t)))
83 		ret |=  PART_EFI_SYSTEM_PARTITION;
84 	if (p->attributes.fields.legacy_bios_bootable)
85 		ret |=  PART_BOOTABLE;
86 	return ret;
87 }
88 
validate_gpt_header(gpt_header * gpt_h,lbaint_t lba,lbaint_t lastlba)89 static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba,
90 		lbaint_t lastlba)
91 {
92 	uint32_t crc32_backup = 0;
93 	uint32_t calc_crc32;
94 
95 	/* Check the GPT header signature */
96 	if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE_UBOOT) {
97 		log_debug("%s signature is wrong: %#llX != %#llX\n",
98 			  "GUID Partition Table Header",
99 			  le64_to_cpu(gpt_h->signature),
100 			  GPT_HEADER_SIGNATURE_UBOOT);
101 		return -1;
102 	}
103 
104 	/* Check the GUID Partition Table CRC */
105 	memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup));
106 	memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32));
107 
108 	calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
109 		le32_to_cpu(gpt_h->header_size));
110 
111 	memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup));
112 
113 	if (calc_crc32 != le32_to_cpu(crc32_backup)) {
114 		log_debug("%s: CRC is wrong: %#x != %#x\n",
115 			  "GUID Partition Table Header",
116 			  le32_to_cpu(crc32_backup), calc_crc32);
117 		return -1;
118 	}
119 
120 	/*
121 	 * Check that the my_lba entry points to the LBA that contains the GPT
122 	 */
123 	if (le64_to_cpu(gpt_h->my_lba) != lba) {
124 		log_debug("GPT: my_lba incorrect: %llX != " LBAF "\n",
125 			  le64_to_cpu(gpt_h->my_lba), lba);
126 		return -1;
127 	}
128 
129 	/*
130 	 * Check that the first_usable_lba and that the last_usable_lba are
131 	 * within the disk.
132 	 */
133 	if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) {
134 		log_debug("GPT: first_usable_lba incorrect: %llX > " LBAF "\n",
135 			  le64_to_cpu(gpt_h->first_usable_lba), lastlba);
136 		return -1;
137 	}
138 	if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) {
139 		log_debug("GPT: last_usable_lba incorrect: %llX > " LBAF "\n",
140 			  le64_to_cpu(gpt_h->last_usable_lba), lastlba);
141 		return -1;
142 	}
143 
144 	debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: "
145 	      LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba),
146 	      le64_to_cpu(gpt_h->last_usable_lba), lastlba);
147 
148 	return 0;
149 }
150 
validate_gpt_entries(gpt_header * gpt_h,gpt_entry * gpt_e)151 static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e)
152 {
153 	uint32_t calc_crc32;
154 
155 	/* Check the GUID Partition Table Entry Array CRC */
156 	calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
157 		le32_to_cpu(gpt_h->num_partition_entries) *
158 		le32_to_cpu(gpt_h->sizeof_partition_entry));
159 
160 	if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) {
161 		log_debug("%s: %#x != %#x\n",
162 			  "GUID Partition Table Entry Array CRC is wrong",
163 			  le32_to_cpu(gpt_h->partition_entry_array_crc32),
164 			  calc_crc32);
165 		return -1;
166 	}
167 
168 	return 0;
169 }
170 
prepare_backup_gpt_header(gpt_header * gpt_h)171 static void prepare_backup_gpt_header(gpt_header *gpt_h)
172 {
173 	uint32_t calc_crc32;
174 	uint64_t val;
175 
176 	/* recalculate the values for the Backup GPT Header */
177 	val = le64_to_cpu(gpt_h->my_lba);
178 	gpt_h->my_lba = gpt_h->alternate_lba;
179 	gpt_h->alternate_lba = cpu_to_le64(val);
180 	gpt_h->partition_entry_lba =
181 			cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1);
182 	gpt_h->header_crc32 = 0;
183 
184 	calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
185 			       le32_to_cpu(gpt_h->header_size));
186 	gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
187 }
188 
189 #if CONFIG_IS_ENABLED(EFI_PARTITION)
190 /*
191  * Public Functions (include/part.h)
192  */
193 
194 /*
195  * UUID is displayed as 32 hexadecimal digits, in 5 groups,
196  * separated by hyphens, in the form 8-4-4-4-12 for a total of 36 characters
197  */
get_disk_guid(struct blk_desc * dev_desc,char * guid)198 int get_disk_guid(struct blk_desc * dev_desc, char *guid)
199 {
200 	ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
201 	gpt_entry *gpt_pte = NULL;
202 	unsigned char *guid_bin;
203 
204 	/* This function validates AND fills in the GPT header and PTE */
205 	if (find_valid_gpt(dev_desc, gpt_head, &gpt_pte) != 1)
206 		return -EINVAL;
207 
208 	guid_bin = gpt_head->disk_guid.b;
209 	uuid_bin_to_str(guid_bin, guid, UUID_STR_FORMAT_GUID);
210 
211 	/* Remember to free pte */
212 	free(gpt_pte);
213 	return 0;
214 }
215 
part_print_efi(struct blk_desc * dev_desc)216 void part_print_efi(struct blk_desc *dev_desc)
217 {
218 	ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
219 	gpt_entry *gpt_pte = NULL;
220 	int i = 0;
221 	unsigned char *uuid;
222 
223 	/* This function validates AND fills in the GPT header and PTE */
224 	if (find_valid_gpt(dev_desc, gpt_head, &gpt_pte) != 1)
225 		return;
226 
227 	debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
228 
229 	printf("Part\tStart LBA\tEnd LBA\t\tName\n");
230 	printf("\tAttributes\n");
231 	printf("\tType GUID\n");
232 	printf("\tPartition GUID\n");
233 
234 	for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) {
235 		/* Skip invalid PTE */
236 		if (!is_pte_valid(&gpt_pte[i]))
237 			continue;
238 
239 		printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
240 			le64_to_cpu(gpt_pte[i].starting_lba),
241 			le64_to_cpu(gpt_pte[i].ending_lba),
242 			print_efiname(&gpt_pte[i]));
243 		printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
244 		uuid = (unsigned char *)gpt_pte[i].partition_type_guid.b;
245 		if (IS_ENABLED(CONFIG_PARTITION_TYPE_GUID))
246 			printf("\ttype:\t%pUl\n\t\t(%pUs)\n", uuid, uuid);
247 		else
248 			printf("\ttype:\t%pUl\n", uuid);
249 		uuid = (unsigned char *)gpt_pte[i].unique_partition_guid.b;
250 		printf("\tguid:\t%pUl\n", uuid);
251 	}
252 
253 	/* Remember to free pte */
254 	free(gpt_pte);
255 	return;
256 }
257 
part_get_info_efi(struct blk_desc * dev_desc,int part,struct disk_partition * info)258 int part_get_info_efi(struct blk_desc *dev_desc, int part,
259 		      struct disk_partition *info)
260 {
261 	ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
262 	gpt_entry *gpt_pte = NULL;
263 
264 	/* "part" argument must be at least 1 */
265 	if (part < 1) {
266 		log_debug("Invalid Argument(s)\n");
267 		return -EINVAL;
268 	}
269 
270 	/* This function validates AND fills in the GPT header and PTE */
271 	if (find_valid_gpt(dev_desc, gpt_head, &gpt_pte) != 1)
272 		return -EINVAL;
273 
274 	if (part > le32_to_cpu(gpt_head->num_partition_entries) ||
275 	    !is_pte_valid(&gpt_pte[part - 1])) {
276 		log_debug("Invalid partition number %d\n", part);
277 		free(gpt_pte);
278 		return -EPERM;
279 	}
280 
281 	/* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */
282 	info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba);
283 	/* The ending LBA is inclusive, to calculate size, add 1 to it */
284 	info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1
285 		     - info->start;
286 	info->blksz = dev_desc->blksz;
287 
288 	snprintf((char *)info->name, sizeof(info->name), "%s",
289 		 print_efiname(&gpt_pte[part - 1]));
290 	strcpy((char *)info->type, "U-Boot");
291 	info->bootable = get_bootable(&gpt_pte[part - 1]);
292 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
293 	uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid,
294 			UUID_STR_FORMAT_GUID);
295 #endif
296 #ifdef CONFIG_PARTITION_TYPE_GUID
297 	uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b,
298 			info->type_guid, UUID_STR_FORMAT_GUID);
299 #endif
300 
301 	log_debug("start 0x" LBAF ", size 0x" LBAF ", name %s\n", info->start,
302 		  info->size, info->name);
303 
304 	/* Remember to free pte */
305 	free(gpt_pte);
306 	return 0;
307 }
308 
part_test_efi(struct blk_desc * dev_desc)309 static int part_test_efi(struct blk_desc *dev_desc)
310 {
311 	ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz);
312 
313 	/* Read legacy MBR from block 0 and validate it */
314 	if ((blk_dread(dev_desc, 0, 1, (ulong *)legacymbr) != 1)
315 		|| (is_pmbr_valid(legacymbr) != 1)) {
316 		return -1;
317 	}
318 	return 0;
319 }
320 
321 /**
322  * set_protective_mbr(): Set the EFI protective MBR
323  * @param dev_desc - block device descriptor
324  *
325  * Return: - zero on success, otherwise error
326  */
set_protective_mbr(struct blk_desc * dev_desc)327 static int set_protective_mbr(struct blk_desc *dev_desc)
328 {
329 	/* Setup the Protective MBR */
330 	ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, p_mbr, 1, dev_desc->blksz);
331 	if (p_mbr == NULL) {
332 		log_debug("calloc failed!\n");
333 		return -ENOMEM;
334 	}
335 
336 	/* Read MBR to backup boot code if it exists */
337 	if (blk_dread(dev_desc, 0, 1, p_mbr) != 1) {
338 		log_debug("** Can't read from device %d **\n",
339 			  dev_desc->devnum);
340 		return -EIO;
341 	}
342 
343 	/* Clear all data in MBR except of backed up boot code */
344 	memset((char *)p_mbr + MSDOS_MBR_BOOT_CODE_SIZE, 0, sizeof(*p_mbr) -
345 			MSDOS_MBR_BOOT_CODE_SIZE);
346 
347 	/* Append signature */
348 	p_mbr->signature = MSDOS_MBR_SIGNATURE;
349 	p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT;
350 	p_mbr->partition_record[0].start_sect = 1;
351 	p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1;
352 
353 	/* Write MBR sector to the MMC device */
354 	if (blk_dwrite(dev_desc, 0, 1, p_mbr) != 1) {
355 		log_debug("** Can't write to device %d **\n", dev_desc->devnum);
356 		return -EIO;
357 	}
358 
359 	return 0;
360 }
361 
write_gpt_table(struct blk_desc * dev_desc,gpt_header * gpt_h,gpt_entry * gpt_e)362 int write_gpt_table(struct blk_desc *dev_desc,
363 		gpt_header *gpt_h, gpt_entry *gpt_e)
364 {
365 	const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries
366 					   * sizeof(gpt_entry)), dev_desc);
367 	u32 calc_crc32;
368 
369 	debug("max lba: %x\n", (u32) dev_desc->lba);
370 	/* Setup the Protective MBR */
371 	if (set_protective_mbr(dev_desc) < 0)
372 		goto err;
373 
374 	/* Generate CRC for the Primary GPT Header */
375 	calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
376 			      le32_to_cpu(gpt_h->num_partition_entries) *
377 			      le32_to_cpu(gpt_h->sizeof_partition_entry));
378 	gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32);
379 
380 	calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
381 			      le32_to_cpu(gpt_h->header_size));
382 	gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
383 
384 	/* Write the First GPT to the block right after the Legacy MBR */
385 	if (blk_dwrite(dev_desc, 1, 1, gpt_h) != 1)
386 		goto err;
387 
388 	if (blk_dwrite(dev_desc, le64_to_cpu(gpt_h->partition_entry_lba),
389 		       pte_blk_cnt, gpt_e) != pte_blk_cnt)
390 		goto err;
391 
392 	prepare_backup_gpt_header(gpt_h);
393 
394 	if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba)
395 		       + 1, pte_blk_cnt, gpt_e) != pte_blk_cnt)
396 		goto err;
397 
398 	if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1,
399 		       gpt_h) != 1)
400 		goto err;
401 
402 	debug("GPT successfully written to block device!\n");
403 	return 0;
404 
405  err:
406 	log_debug("** Can't write to device %d **\n", dev_desc->devnum);
407 	return -EIO;
408 }
409 
gpt_fill_pte(struct blk_desc * dev_desc,gpt_header * gpt_h,gpt_entry * gpt_e,struct disk_partition * partitions,int parts)410 int gpt_fill_pte(struct blk_desc *dev_desc,
411 		 gpt_header *gpt_h, gpt_entry *gpt_e,
412 		 struct disk_partition *partitions, int parts)
413 {
414 	lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba);
415 	lbaint_t last_usable_lba = (lbaint_t)
416 			le64_to_cpu(gpt_h->last_usable_lba);
417 	int i, k;
418 	size_t efiname_len, dosname_len;
419 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
420 	char *str_uuid;
421 	unsigned char *bin_uuid;
422 #endif
423 #ifdef CONFIG_PARTITION_TYPE_GUID
424 	char *str_type_guid;
425 	unsigned char *bin_type_guid;
426 #endif
427 	size_t hdr_start = gpt_h->my_lba;
428 	size_t hdr_end = hdr_start + 1;
429 
430 	size_t pte_start = gpt_h->partition_entry_lba;
431 	size_t pte_end = pte_start +
432 		gpt_h->num_partition_entries * gpt_h->sizeof_partition_entry /
433 		dev_desc->blksz;
434 
435 	for (i = 0; i < parts; i++) {
436 		/* partition starting lba */
437 		lbaint_t start = partitions[i].start;
438 		lbaint_t size = partitions[i].size;
439 
440 		if (start) {
441 			offset = start + size;
442 		} else {
443 			start = offset;
444 			offset += size;
445 		}
446 
447 		/*
448 		 * If our partition overlaps with either the GPT
449 		 * header, or the partition entry, reject it.
450 		 */
451 		if (((start < hdr_end && hdr_start < (start + size)) ||
452 		     (start < pte_end && pte_start < (start + size)))) {
453 			log_debug("Partition overlap\n");
454 			return -ENOSPC;
455 		}
456 
457 		gpt_e[i].starting_lba = cpu_to_le64(start);
458 
459 		if (offset > (last_usable_lba + 1)) {
460 			log_debug("Partitions layout exceeds disk size\n");
461 			return -E2BIG;
462 		}
463 		/* partition ending lba */
464 		if ((i == parts - 1) && (size == 0))
465 			/* extend the last partition to maximuim */
466 			gpt_e[i].ending_lba = gpt_h->last_usable_lba;
467 		else
468 			gpt_e[i].ending_lba = cpu_to_le64(offset - 1);
469 
470 #ifdef CONFIG_PARTITION_TYPE_GUID
471 		str_type_guid = partitions[i].type_guid;
472 		bin_type_guid = gpt_e[i].partition_type_guid.b;
473 		if (strlen(str_type_guid)) {
474 			if (uuid_str_to_bin(str_type_guid, bin_type_guid,
475 					    UUID_STR_FORMAT_GUID)) {
476 				log_debug("Partition no. %d: invalid type guid: %s\n",
477 					  i, str_type_guid);
478 				return -EINVAL;
479 			}
480 		} else {
481 			/* default partition type GUID */
482 			memcpy(bin_type_guid,
483 			       &partition_basic_data_guid, 16);
484 		}
485 #else
486 		/* partition type GUID */
487 		memcpy(gpt_e[i].partition_type_guid.b,
488 			&partition_basic_data_guid, 16);
489 #endif
490 
491 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
492 		str_uuid = partitions[i].uuid;
493 		bin_uuid = gpt_e[i].unique_partition_guid.b;
494 
495 		if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_GUID)) {
496 			log_debug("Partition no. %d: invalid guid: %s\n",
497 				  i, str_uuid);
498 			return -EINVAL;
499 		}
500 #endif
501 
502 		/* partition attributes */
503 		memset(&gpt_e[i].attributes, 0,
504 		       sizeof(gpt_entry_attributes));
505 
506 		if (partitions[i].bootable & PART_BOOTABLE)
507 			gpt_e[i].attributes.fields.legacy_bios_bootable = 1;
508 
509 		/* partition name */
510 		efiname_len = sizeof(gpt_e[i].partition_name)
511 			/ sizeof(efi_char16_t);
512 		dosname_len = sizeof(partitions[i].name);
513 
514 		memset(gpt_e[i].partition_name, 0,
515 		       sizeof(gpt_e[i].partition_name));
516 
517 		for (k = 0; k < min(dosname_len, efiname_len); k++)
518 			gpt_e[i].partition_name[k] =
519 				(efi_char16_t)(partitions[i].name[k]);
520 
521 		debug("%s: name: %s offset[%d]: 0x" LBAF
522 		      " size[%d]: 0x" LBAF "\n",
523 		      __func__, partitions[i].name, i,
524 		      offset, i, size);
525 	}
526 
527 	return 0;
528 }
529 
partition_entries_offset(struct blk_desc * dev_desc)530 static uint32_t partition_entries_offset(struct blk_desc *dev_desc)
531 {
532 	uint32_t offset_blks = 2;
533 	uint32_t __maybe_unused offset_bytes;
534 	int __maybe_unused config_offset;
535 
536 #if defined(CONFIG_EFI_PARTITION_ENTRIES_OFF)
537 	/*
538 	 * Some architectures require their SPL loader at a fixed
539 	 * address within the first 16KB of the disk.  To avoid an
540 	 * overlap with the partition entries of the EFI partition
541 	 * table, the first safe offset (in bytes, from the start of
542 	 * the disk) for the entries can be set in
543 	 * CONFIG_EFI_PARTITION_ENTRIES_OFF.
544 	 */
545 	offset_bytes =
546 		PAD_TO_BLOCKSIZE(CONFIG_EFI_PARTITION_ENTRIES_OFF, dev_desc);
547 	offset_blks = offset_bytes / dev_desc->blksz;
548 #endif
549 
550 #if defined(CONFIG_OF_CONTROL)
551 	/*
552 	 * Allow the offset of the first partition entires (in bytes
553 	 * from the start of the device) to be specified as a property
554 	 * of the device tree '/config' node.
555 	 */
556 	config_offset = ofnode_conf_read_int(
557 		"u-boot,efi-partition-entries-offset", -EINVAL);
558 	if (config_offset != -EINVAL) {
559 		offset_bytes = PAD_TO_BLOCKSIZE(config_offset, dev_desc);
560 		offset_blks = offset_bytes / dev_desc->blksz;
561 	}
562 #endif
563 
564 	debug("efi: partition entries offset (in blocks): %d\n", offset_blks);
565 
566 	/*
567 	 * The earliest LBA this can be at is LBA#2 (i.e. right behind
568 	 * the (protective) MBR and the GPT header.
569 	 */
570 	if (offset_blks < 2)
571 		offset_blks = 2;
572 
573 	return offset_blks;
574 }
575 
gpt_fill_header(struct blk_desc * dev_desc,gpt_header * gpt_h,char * str_guid,int parts_count)576 int gpt_fill_header(struct blk_desc *dev_desc, gpt_header *gpt_h,
577 		char *str_guid, int parts_count)
578 {
579 	gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE_UBOOT);
580 	gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1);
581 	gpt_h->header_size = cpu_to_le32(sizeof(gpt_header));
582 	gpt_h->my_lba = cpu_to_le64(1);
583 	gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1);
584 	gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34);
585 	gpt_h->partition_entry_lba =
586 		cpu_to_le64(partition_entries_offset(dev_desc));
587 	gpt_h->first_usable_lba =
588 		cpu_to_le64(le64_to_cpu(gpt_h->partition_entry_lba) + 32);
589 	gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS);
590 	gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry));
591 	gpt_h->header_crc32 = 0;
592 	gpt_h->partition_entry_array_crc32 = 0;
593 
594 	if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID))
595 		return -1;
596 
597 	return 0;
598 }
599 
gpt_restore(struct blk_desc * dev_desc,char * str_disk_guid,struct disk_partition * partitions,int parts_count)600 int gpt_restore(struct blk_desc *dev_desc, char *str_disk_guid,
601 		struct disk_partition *partitions, int parts_count)
602 {
603 	gpt_header *gpt_h;
604 	gpt_entry *gpt_e;
605 	int ret, size;
606 
607 	size = PAD_TO_BLOCKSIZE(sizeof(gpt_header), dev_desc);
608 	gpt_h = malloc_cache_aligned(size);
609 	if (gpt_h == NULL) {
610 		log_debug("calloc failed!\n");
611 		return -ENOMEM;
612 	}
613 	memset(gpt_h, 0, size);
614 
615 	size = PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS * sizeof(gpt_entry),
616 				dev_desc);
617 	gpt_e = malloc_cache_aligned(size);
618 	if (gpt_e == NULL) {
619 		log_debug("calloc failed!\n");
620 		free(gpt_h);
621 		return -ENOMEM;
622 	}
623 	memset(gpt_e, 0, size);
624 
625 	/* Generate Primary GPT header (LBA1) */
626 	ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count);
627 	if (ret)
628 		goto err;
629 
630 	/* Generate partition entries */
631 	ret = gpt_fill_pte(dev_desc, gpt_h, gpt_e, partitions, parts_count);
632 	if (ret)
633 		goto err;
634 
635 	/* Write GPT partition table */
636 	ret = write_gpt_table(dev_desc, gpt_h, gpt_e);
637 
638 err:
639 	free(gpt_e);
640 	free(gpt_h);
641 	return ret;
642 }
643 
644 /**
645  * gpt_convert_efi_name_to_char() - convert u16 string to char string
646  *
647  * TODO: this conversion only supports ANSI characters
648  *
649  * @s:	target buffer
650  * @es:	u16 string to be converted
651  * @n:	size of target buffer
652  */
gpt_convert_efi_name_to_char(char * s,void * es,int n)653 static void gpt_convert_efi_name_to_char(char *s, void *es, int n)
654 {
655 	char *ess = es;
656 	int i, j;
657 
658 	memset(s, '\0', n);
659 
660 	for (i = 0, j = 0; j < n; i += 2, j++) {
661 		s[j] = ess[i];
662 		if (!ess[i])
663 			return;
664 	}
665 }
666 
gpt_verify_headers(struct blk_desc * dev_desc,gpt_header * gpt_head,gpt_entry ** gpt_pte)667 int gpt_verify_headers(struct blk_desc *dev_desc, gpt_header *gpt_head,
668 		       gpt_entry **gpt_pte)
669 {
670 	/*
671 	 * This function validates AND
672 	 * fills in the GPT header and PTE
673 	 */
674 	if (is_gpt_valid(dev_desc,
675 			 GPT_PRIMARY_PARTITION_TABLE_LBA,
676 			 gpt_head, gpt_pte) != 1) {
677 		log_debug("Invalid GPT\n");
678 		return -1;
679 	}
680 
681 	/* Free pte before allocating again */
682 	free(*gpt_pte);
683 
684 	/*
685 	 * Check that the alternate_lba entry points to the last LBA
686 	 */
687 	if (le64_to_cpu(gpt_head->alternate_lba) != (dev_desc->lba - 1)) {
688 		log_debug("Misplaced Backup GPT\n");
689 		return -1;
690 	}
691 
692 	if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
693 			 gpt_head, gpt_pte) != 1) {
694 		log_debug("Invalid Backup GPT\n");
695 		return -1;
696 	}
697 
698 	return 0;
699 }
700 
restore_primary_gpt_header(gpt_header * gpt_h,struct blk_desc * dev_desc)701 static void restore_primary_gpt_header(gpt_header *gpt_h, struct blk_desc *dev_desc)
702 {
703 	u32 calc_crc32;
704 	u64 val;
705 
706 	/* recalculate the values for the Primary GPT Header */
707 	val = le64_to_cpu(gpt_h->my_lba);
708 	gpt_h->my_lba = gpt_h->alternate_lba;
709 	gpt_h->alternate_lba = cpu_to_le64(val);
710 	gpt_h->partition_entry_lba = cpu_to_le64(partition_entries_offset(dev_desc));
711 
712 	gpt_h->header_crc32 = 0;
713 
714 	calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
715 			       le32_to_cpu(gpt_h->header_size));
716 	gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
717 }
718 
write_one_gpt_table(struct blk_desc * dev_desc,gpt_header * gpt_h,gpt_entry * gpt_e)719 static int write_one_gpt_table(struct blk_desc *dev_desc,
720 			       gpt_header *gpt_h, gpt_entry *gpt_e)
721 {
722 	const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries
723 					   * sizeof(gpt_entry)), dev_desc);
724 	lbaint_t start;
725 	int ret = 0;
726 
727 	start = le64_to_cpu(gpt_h->my_lba);
728 	if (blk_dwrite(dev_desc, start, 1, gpt_h) != 1) {
729 		ret = -1;
730 		goto out;
731 	}
732 
733 	start = le64_to_cpu(gpt_h->partition_entry_lba);
734 	if (blk_dwrite(dev_desc, start, pte_blk_cnt, gpt_e) != pte_blk_cnt) {
735 		ret = -1;
736 		goto out;
737 	}
738 
739  out:
740 	return ret;
741 }
742 
gpt_repair_headers(struct blk_desc * dev_desc)743 int gpt_repair_headers(struct blk_desc *dev_desc)
744 {
745 	ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_h1, 1, dev_desc->blksz);
746 	ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_h2, 1, dev_desc->blksz);
747 	gpt_entry *gpt_e1 = NULL, *gpt_e2 = NULL;
748 	int is_gpt1_valid, is_gpt2_valid;
749 	int ret = -1;
750 
751 	is_gpt1_valid = is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
752 				     gpt_h1, &gpt_e1);
753 	is_gpt2_valid = is_gpt_valid(dev_desc, dev_desc->lba - 1,
754 				     gpt_h2, &gpt_e2);
755 
756 	if (is_gpt1_valid && is_gpt2_valid) {
757 		ret = 0;
758 		goto out;
759 	}
760 
761 	if (is_gpt1_valid && !is_gpt2_valid) {
762 		prepare_backup_gpt_header(gpt_h1);
763 		ret = write_one_gpt_table(dev_desc, gpt_h1, gpt_e1);
764 		goto out;
765 	}
766 
767 	if (!is_gpt1_valid && is_gpt2_valid) {
768 		restore_primary_gpt_header(gpt_h2, dev_desc);
769 		ret = write_one_gpt_table(dev_desc, gpt_h2, gpt_e2);
770 		goto out;
771 	}
772 
773 	if (!is_gpt1_valid && !is_gpt2_valid) {
774 		ret = -1;
775 		goto out;
776 	}
777 
778  out:
779 	if (is_gpt1_valid)
780 		free(gpt_e1);
781 	if (is_gpt2_valid)
782 		free(gpt_e2);
783 
784 	return ret;
785 }
786 
gpt_verify_partitions(struct blk_desc * dev_desc,struct disk_partition * partitions,int parts,gpt_header * gpt_head,gpt_entry ** gpt_pte)787 int gpt_verify_partitions(struct blk_desc *dev_desc,
788 			  struct disk_partition *partitions, int parts,
789 			  gpt_header *gpt_head, gpt_entry **gpt_pte)
790 {
791 	char efi_str[PARTNAME_SZ + 1];
792 	u64 gpt_part_size;
793 	gpt_entry *gpt_e;
794 	int ret, i;
795 
796 	ret = gpt_verify_headers(dev_desc, gpt_head, gpt_pte);
797 	if (ret)
798 		return ret;
799 
800 	gpt_e = *gpt_pte;
801 
802 	for (i = 0; i < parts; i++) {
803 		if (i == gpt_head->num_partition_entries) {
804 			pr_err("More partitions than allowed!\n");
805 			return -1;
806 		}
807 
808 		/* Check if GPT and ENV partition names match */
809 		gpt_convert_efi_name_to_char(efi_str, gpt_e[i].partition_name,
810 					     PARTNAME_SZ + 1);
811 
812 		debug("%s: part: %2d name - GPT: %16s, ENV: %16s ",
813 		      __func__, i, efi_str, partitions[i].name);
814 
815 		if (strncmp(efi_str, (char *)partitions[i].name,
816 			    sizeof(partitions->name))) {
817 			pr_err("Partition name: %s does not match %s!\n",
818 			      efi_str, (char *)partitions[i].name);
819 			return -1;
820 		}
821 
822 		/* Check if GPT and ENV sizes match */
823 		gpt_part_size = le64_to_cpu(gpt_e[i].ending_lba) -
824 			le64_to_cpu(gpt_e[i].starting_lba) + 1;
825 		debug("size(LBA) - GPT: %8llu, ENV: %8llu ",
826 		      (unsigned long long)gpt_part_size,
827 		      (unsigned long long)partitions[i].size);
828 
829 		if (le64_to_cpu(gpt_part_size) != partitions[i].size) {
830 			/* We do not check the extend partition size */
831 			if ((i == parts - 1) && (partitions[i].size == 0))
832 				continue;
833 
834 			pr_err("Partition %s size: %llu does not match %llu!\n",
835 			      efi_str, (unsigned long long)gpt_part_size,
836 			      (unsigned long long)partitions[i].size);
837 			return -1;
838 		}
839 
840 		/*
841 		 * Start address is optional - check only if provided
842 		 * in '$partition' variable
843 		 */
844 		if (!partitions[i].start) {
845 			debug("\n");
846 			continue;
847 		}
848 
849 		/* Check if GPT and ENV start LBAs match */
850 		debug("start LBA - GPT: %8llu, ENV: %8llu\n",
851 		      le64_to_cpu(gpt_e[i].starting_lba),
852 		      (unsigned long long)partitions[i].start);
853 
854 		if (le64_to_cpu(gpt_e[i].starting_lba) != partitions[i].start) {
855 			pr_err("Partition %s start: %llu does not match %llu!\n",
856 			      efi_str, le64_to_cpu(gpt_e[i].starting_lba),
857 			      (unsigned long long)partitions[i].start);
858 			return -1;
859 		}
860 	}
861 
862 	return 0;
863 }
864 
is_valid_gpt_buf(struct blk_desc * dev_desc,void * buf)865 int is_valid_gpt_buf(struct blk_desc *dev_desc, void *buf)
866 {
867 	gpt_header *gpt_h;
868 	gpt_entry *gpt_e;
869 
870 	/* determine start of GPT Header in the buffer */
871 	gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
872 		       dev_desc->blksz);
873 	if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA,
874 				dev_desc->lba))
875 		return -1;
876 
877 	/* determine start of GPT Entries in the buffer */
878 	gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
879 		       dev_desc->blksz);
880 	if (validate_gpt_entries(gpt_h, gpt_e))
881 		return -1;
882 
883 	return 0;
884 }
885 
write_mbr_and_gpt_partitions(struct blk_desc * dev_desc,void * buf)886 int write_mbr_and_gpt_partitions(struct blk_desc *dev_desc, void *buf)
887 {
888 	gpt_header *gpt_h;
889 	gpt_entry *gpt_e;
890 	int gpt_e_blk_cnt;
891 	lbaint_t lba;
892 	int cnt;
893 
894 	if (is_valid_gpt_buf(dev_desc, buf))
895 		return -1;
896 
897 	/* determine start of GPT Header in the buffer */
898 	gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
899 		       dev_desc->blksz);
900 
901 	/* determine start of GPT Entries in the buffer */
902 	gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
903 		       dev_desc->blksz);
904 	gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) *
905 				   le32_to_cpu(gpt_h->sizeof_partition_entry)),
906 				  dev_desc);
907 
908 	/* write MBR */
909 	lba = 0;	/* MBR is always at 0 */
910 	cnt = 1;	/* MBR (1 block) */
911 	if (blk_dwrite(dev_desc, lba, cnt, buf) != cnt) {
912 		log_debug("failed writing '%s' (%d blks at 0x" LBAF ")\n",
913 			  "MBR", cnt, lba);
914 		return 1;
915 	}
916 
917 	/* write Primary GPT */
918 	lba = GPT_PRIMARY_PARTITION_TABLE_LBA;
919 	cnt = 1;	/* GPT Header (1 block) */
920 	if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) {
921 		log_debug("failed writing '%s' (%d blks at 0x" LBAF ")\n",
922 			  "Primary GPT Header", cnt, lba);
923 		return 1;
924 	}
925 
926 	lba = le64_to_cpu(gpt_h->partition_entry_lba);
927 	cnt = gpt_e_blk_cnt;
928 	if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) {
929 		log_debug("failed writing '%s' (%d blks at 0x" LBAF ")\n",
930 			  "Primary GPT Entries", cnt, lba);
931 		return 1;
932 	}
933 
934 	prepare_backup_gpt_header(gpt_h);
935 
936 	/* write Backup GPT */
937 	lba = le64_to_cpu(gpt_h->partition_entry_lba);
938 	cnt = gpt_e_blk_cnt;
939 	if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) {
940 		log_debug("failed writing '%s' (%d blks at 0x" LBAF ")\n",
941 			  "Backup GPT Entries", cnt, lba);
942 		return 1;
943 	}
944 
945 	lba = le64_to_cpu(gpt_h->my_lba);
946 	cnt = 1;	/* GPT Header (1 block) */
947 	if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) {
948 		log_debug("failed writing '%s' (%d blks at 0x" LBAF ")\n",
949 			  "Backup GPT Header", cnt, lba);
950 		return 1;
951 	}
952 
953 	/* Update the partition table entries*/
954 	part_init(dev_desc);
955 
956 	return 0;
957 }
958 #endif
959 
960 /*
961  * Private functions
962  */
963 /*
964  * pmbr_part_valid(): Check for EFI partition signature
965  *
966  * Returns: 1 if EFI GPT partition type is found.
967  */
pmbr_part_valid(struct partition * part)968 static int pmbr_part_valid(struct partition *part)
969 {
970 	if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
971 		get_unaligned_le32(&part->start_sect) == 1UL) {
972 		return 1;
973 	}
974 
975 	return 0;
976 }
977 
978 /*
979  * is_pmbr_valid(): test Protective MBR for validity
980  *
981  * Returns: 1 if PMBR is valid, 0 otherwise.
982  * Validity depends on two things:
983  *  1) MSDOS signature is in the last two bytes of the MBR
984  *  2) One partition of type 0xEE is found, checked by pmbr_part_valid()
985  */
is_pmbr_valid(legacy_mbr * mbr)986 static int is_pmbr_valid(legacy_mbr * mbr)
987 {
988 	int i = 0;
989 
990 	if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
991 		return 0;
992 
993 	for (i = 0; i < 4; i++) {
994 		if (pmbr_part_valid(&mbr->partition_record[i])) {
995 			return 1;
996 		}
997 	}
998 	return 0;
999 }
1000 
1001 /**
1002  * is_gpt_valid() - tests one GPT header and PTEs for validity
1003  *
1004  * lba is the logical block address of the GPT header to test
1005  * gpt is a GPT header ptr, filled on return.
1006  * ptes is a PTEs ptr, filled on return.
1007  *
1008  * Description: returns 1 if valid,  0 on error, 2 if ignored header
1009  * If valid, returns pointers to PTEs.
1010  */
is_gpt_valid(struct blk_desc * dev_desc,u64 lba,gpt_header * pgpt_head,gpt_entry ** pgpt_pte)1011 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba,
1012 			gpt_header *pgpt_head, gpt_entry **pgpt_pte)
1013 {
1014 	/* Confirm valid arguments prior to allocation. */
1015 	if (!dev_desc || !pgpt_head) {
1016 		log_debug("Invalid Argument(s)\n");
1017 		return 0;
1018 	}
1019 
1020 	ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, mbr, 1, dev_desc->blksz);
1021 
1022 	/* Read MBR Header from device */
1023 	if (blk_dread(dev_desc, 0, 1, (ulong *)mbr) != 1) {
1024 		log_debug("Can't read MBR header\n");
1025 		return 0;
1026 	}
1027 
1028 	/* Read GPT Header from device */
1029 	if (blk_dread(dev_desc, (lbaint_t)lba, 1, pgpt_head) != 1) {
1030 		log_debug("Can't read GPT header\n");
1031 		return 0;
1032 	}
1033 
1034 	/* Invalid but nothing to yell about. */
1035 	if (le64_to_cpu(pgpt_head->signature) == GPT_HEADER_CHROMEOS_IGNORE) {
1036 		log_debug("ChromeOS 'IGNOREME' GPT header found and ignored\n");
1037 		return 2;
1038 	}
1039 
1040 	if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba))
1041 		return 0;
1042 
1043 	if (dev_desc->sig_type == SIG_TYPE_NONE) {
1044 		efi_guid_t empty = {};
1045 		if (memcmp(&pgpt_head->disk_guid, &empty, sizeof(empty))) {
1046 			dev_desc->sig_type = SIG_TYPE_GUID;
1047 			memcpy(&dev_desc->guid_sig, &pgpt_head->disk_guid,
1048 			      sizeof(empty));
1049 		} else if (mbr->unique_mbr_signature != 0) {
1050 			dev_desc->sig_type = SIG_TYPE_MBR;
1051 			dev_desc->mbr_sig = mbr->unique_mbr_signature;
1052 		}
1053 	}
1054 
1055 	/* Read and allocate Partition Table Entries */
1056 	*pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
1057 	if (!*pgpt_pte)
1058 		return 0;
1059 
1060 	if (validate_gpt_entries(pgpt_head, *pgpt_pte)) {
1061 		free(*pgpt_pte);
1062 		return 0;
1063 	}
1064 
1065 	/* We're done, all's well */
1066 	return 1;
1067 }
1068 
1069 /**
1070  * find_valid_gpt() - finds a valid GPT header and PTEs
1071  *
1072  * gpt is a GPT header ptr, filled on return.
1073  * ptes is a PTEs ptr, filled on return.
1074  *
1075  * Description: returns 1 if found a valid gpt,  0 on error.
1076  * If valid, returns pointers to PTEs.
1077  */
find_valid_gpt(struct blk_desc * dev_desc,gpt_header * gpt_head,gpt_entry ** pgpt_pte)1078 static int find_valid_gpt(struct blk_desc *dev_desc, gpt_header *gpt_head,
1079 			  gpt_entry **pgpt_pte)
1080 {
1081 	int r;
1082 
1083 	r = is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, gpt_head,
1084 			 pgpt_pte);
1085 
1086 	if (r != 1) {
1087 		if (r != 2)
1088 			log_debug("Invalid GPT\n");
1089 
1090 		if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), gpt_head,
1091 				 pgpt_pte) != 1) {
1092 			log_debug("Invalid Backup GPT\n");
1093 			return 0;
1094 		}
1095 		if (r != 2)
1096 			log_debug("        Using Backup GPT\n");
1097 	}
1098 	return 1;
1099 }
1100 
1101 /**
1102  * alloc_read_gpt_entries(): reads partition entries from disk
1103  * @dev_desc
1104  * @gpt - GPT header
1105  *
1106  * Description: Returns ptes on success,  NULL on error.
1107  * Allocates space for PTEs based on information found in @gpt.
1108  * Notes: remember to free pte when you're done!
1109  */
alloc_read_gpt_entries(struct blk_desc * dev_desc,gpt_header * pgpt_head)1110 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc,
1111 					 gpt_header *pgpt_head)
1112 {
1113 	size_t count = 0, blk_cnt;
1114 	lbaint_t blk;
1115 	gpt_entry *pte = NULL;
1116 
1117 	if (!dev_desc || !pgpt_head) {
1118 		log_debug("Invalid Argument(s)\n");
1119 		return NULL;
1120 	}
1121 
1122 	count = le32_to_cpu(pgpt_head->num_partition_entries) *
1123 		le32_to_cpu(pgpt_head->sizeof_partition_entry);
1124 
1125 	log_debug("count = %u * %u = %lu\n",
1126 		  (u32)le32_to_cpu(pgpt_head->num_partition_entries),
1127 		  (u32)le32_to_cpu(pgpt_head->sizeof_partition_entry),
1128 		  (ulong)count);
1129 
1130 	/* Allocate memory for PTE, remember to FREE */
1131 	if (count != 0) {
1132 		pte = memalign(ARCH_DMA_MINALIGN,
1133 			       PAD_TO_BLOCKSIZE(count, dev_desc));
1134 	}
1135 
1136 	if (count == 0 || pte == NULL) {
1137 		log_debug("ERROR: Can't allocate %#lX bytes for GPT Entries\n",
1138 			  (ulong)count);
1139 		return NULL;
1140 	}
1141 
1142 	/* Read GPT Entries from device */
1143 	blk = le64_to_cpu(pgpt_head->partition_entry_lba);
1144 	blk_cnt = BLOCK_CNT(count, dev_desc);
1145 	if (blk_dread(dev_desc, blk, (lbaint_t)blk_cnt, pte) != blk_cnt) {
1146 		log_debug("Can't read GPT Entries\n");
1147 		free(pte);
1148 		return NULL;
1149 	}
1150 	return pte;
1151 }
1152 
1153 /**
1154  * is_pte_valid(): validates a single Partition Table Entry
1155  * @gpt_entry - Pointer to a single Partition Table Entry
1156  *
1157  * Description: returns 1 if valid,  0 on error.
1158  */
is_pte_valid(gpt_entry * pte)1159 static int is_pte_valid(gpt_entry * pte)
1160 {
1161 	efi_guid_t unused_guid;
1162 
1163 	if (!pte) {
1164 		log_debug("Invalid Argument(s)\n");
1165 		return 0;
1166 	}
1167 
1168 	/* Only one validation for now:
1169 	 * The GUID Partition Type != Unused Entry (ALL-ZERO)
1170 	 */
1171 	memset(unused_guid.b, 0, sizeof(unused_guid.b));
1172 
1173 	if (memcmp(pte->partition_type_guid.b, unused_guid.b,
1174 		sizeof(unused_guid.b)) == 0) {
1175 
1176 		log_debug("Found an unused PTE GUID at 0x%08X\n",
1177 			  (unsigned int)(uintptr_t)pte);
1178 
1179 		return 0;
1180 	} else {
1181 		return 1;
1182 	}
1183 }
1184 
1185 /*
1186  * Add an 'a_' prefix so it comes before 'dos' in the linker list. We need to
1187  * check EFI first, since a DOS partition is often used as a 'protective MBR'
1188  * with EFI.
1189  */
1190 U_BOOT_PART_TYPE(a_efi) = {
1191 	.name		= "EFI",
1192 	.part_type	= PART_TYPE_EFI,
1193 	.max_entries	= GPT_ENTRY_NUMBERS,
1194 	.get_info	= part_get_info_ptr(part_get_info_efi),
1195 	.print		= part_print_ptr(part_print_efi),
1196 	.test		= part_test_efi,
1197 };
1198