1 #ifndef _LINUX_MATH64_H
2 #define _LINUX_MATH64_H
3 
4 #include <div64.h>
5 #include <linux/bitops.h>
6 #include <linux/types.h>
7 
8 #if BITS_PER_LONG == 64
9 
10 #define div64_long(x, y) div64_s64((x), (y))
11 #define div64_ul(x, y)   div64_u64((x), (y))
12 
13 /**
14  * div_u64_rem - unsigned 64bit divide with 32bit divisor with remainder
15  *
16  * This is commonly provided by 32bit archs to provide an optimized 64bit
17  * divide.
18  */
div_u64_rem(u64 dividend,u32 divisor,u32 * remainder)19 static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
20 {
21 	*remainder = dividend % divisor;
22 	return dividend / divisor;
23 }
24 
25 /**
26  * div_s64_rem - signed 64bit divide with 32bit divisor with remainder
27  */
div_s64_rem(s64 dividend,s32 divisor,s32 * remainder)28 static inline s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
29 {
30 	*remainder = dividend % divisor;
31 	return dividend / divisor;
32 }
33 
34 /**
35  * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
36  */
div64_u64_rem(u64 dividend,u64 divisor,u64 * remainder)37 static inline u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
38 {
39 	*remainder = dividend % divisor;
40 	return dividend / divisor;
41 }
42 
43 /**
44  * div64_u64 - unsigned 64bit divide with 64bit divisor
45  */
div64_u64(u64 dividend,u64 divisor)46 static inline u64 div64_u64(u64 dividend, u64 divisor)
47 {
48 	return dividend / divisor;
49 }
50 
51 #define DIV64_U64_ROUND_UP(ll, d)	\
52 	({ u64 _tmp = (d); div64_u64((ll) + _tmp - 1, _tmp); })
53 
54 /**
55  * div64_s64 - signed 64bit divide with 64bit divisor
56  */
div64_s64(s64 dividend,s64 divisor)57 static inline s64 div64_s64(s64 dividend, s64 divisor)
58 {
59 	return dividend / divisor;
60 }
61 
62 #elif BITS_PER_LONG == 32
63 
64 #define div64_long(x, y) div_s64((x), (y))
65 #define div64_ul(x, y)   div_u64((x), (y))
66 
67 #ifndef div_u64_rem
div_u64_rem(u64 dividend,u32 divisor,u32 * remainder)68 static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
69 {
70 	*remainder = do_div(dividend, divisor);
71 	return dividend;
72 }
73 #endif
74 
75 #ifndef div_s64_rem
76 extern s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder);
77 #endif
78 
79 #ifndef div64_u64_rem
80 extern u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder);
81 #endif
82 
83 #ifndef div64_u64
84 extern u64 div64_u64(u64 dividend, u64 divisor);
85 #endif
86 
87 #ifndef div64_s64
88 extern s64 div64_s64(s64 dividend, s64 divisor);
89 #endif
90 
91 #endif /* BITS_PER_LONG */
92 
93 /**
94  * div_u64 - unsigned 64bit divide with 32bit divisor
95  *
96  * This is the most common 64bit divide and should be used if possible,
97  * as many 32bit archs can optimize this variant better than a full 64bit
98  * divide.
99  */
100 #ifndef div_u64
div_u64(u64 dividend,u32 divisor)101 static inline u64 div_u64(u64 dividend, u32 divisor)
102 {
103 	u32 remainder;
104 	return div_u64_rem(dividend, divisor, &remainder);
105 }
106 #endif
107 
108 /**
109  * div_s64 - signed 64bit divide with 32bit divisor
110  */
111 #ifndef div_s64
div_s64(s64 dividend,s32 divisor)112 static inline s64 div_s64(s64 dividend, s32 divisor)
113 {
114 	s32 remainder;
115 	return div_s64_rem(dividend, divisor, &remainder);
116 }
117 #endif
118 
119 u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder);
120 
121 static __always_inline u32
__iter_div_u64_rem(u64 dividend,u32 divisor,u64 * remainder)122 __iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
123 {
124 	u32 ret = 0;
125 
126 	while (dividend >= divisor) {
127 		/* The following asm() prevents the compiler from
128 		   optimising this loop into a modulo operation.  */
129 		asm("" : "+rm"(dividend));
130 
131 		dividend -= divisor;
132 		ret++;
133 	}
134 
135 	*remainder = dividend;
136 
137 	return ret;
138 }
139 
140 #ifndef mul_u32_u32
141 /*
142  * Many a GCC version messes this up and generates a 64x64 mult :-(
143  */
mul_u32_u32(u32 a,u32 b)144 static inline u64 mul_u32_u32(u32 a, u32 b)
145 {
146 	return (u64)a * b;
147 }
148 #endif
149 
150 #if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__)
151 
152 #ifndef mul_u64_u32_shr
mul_u64_u32_shr(u64 a,u32 mul,unsigned int shift)153 static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
154 {
155 	return (u64)(((unsigned __int128)a * mul) >> shift);
156 }
157 #endif /* mul_u64_u32_shr */
158 
159 #ifndef mul_u64_u64_shr
mul_u64_u64_shr(u64 a,u64 mul,unsigned int shift)160 static inline u64 mul_u64_u64_shr(u64 a, u64 mul, unsigned int shift)
161 {
162 	return (u64)(((unsigned __int128)a * mul) >> shift);
163 }
164 #endif /* mul_u64_u64_shr */
165 
166 #else
167 
168 #ifndef mul_u64_u32_shr
mul_u64_u32_shr(u64 a,u32 mul,unsigned int shift)169 static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
170 {
171 	u32 ah, al;
172 	u64 ret;
173 
174 	al = a;
175 	ah = a >> 32;
176 
177 	ret = mul_u32_u32(al, mul) >> shift;
178 	if (ah)
179 		ret += mul_u32_u32(ah, mul) << (32 - shift);
180 
181 	return ret;
182 }
183 #endif /* mul_u64_u32_shr */
184 
185 #ifndef mul_u64_u64_shr
mul_u64_u64_shr(u64 a,u64 b,unsigned int shift)186 static inline u64 mul_u64_u64_shr(u64 a, u64 b, unsigned int shift)
187 {
188 	union {
189 		u64 ll;
190 		struct {
191 #ifdef __BIG_ENDIAN
192 			u32 high, low;
193 #else
194 			u32 low, high;
195 #endif
196 		} l;
197 	} rl, rm, rn, rh, a0, b0;
198 	u64 c;
199 
200 	a0.ll = a;
201 	b0.ll = b;
202 
203 	rl.ll = mul_u32_u32(a0.l.low, b0.l.low);
204 	rm.ll = mul_u32_u32(a0.l.low, b0.l.high);
205 	rn.ll = mul_u32_u32(a0.l.high, b0.l.low);
206 	rh.ll = mul_u32_u32(a0.l.high, b0.l.high);
207 
208 	/*
209 	 * Each of these lines computes a 64-bit intermediate result into "c",
210 	 * starting at bits 32-95.  The low 32-bits go into the result of the
211 	 * multiplication, the high 32-bits are carried into the next step.
212 	 */
213 	rl.l.high = c = (u64)rl.l.high + rm.l.low + rn.l.low;
214 	rh.l.low = c = (c >> 32) + rm.l.high + rn.l.high + rh.l.low;
215 	rh.l.high = (c >> 32) + rh.l.high;
216 
217 	/*
218 	 * The 128-bit result of the multiplication is in rl.ll and rh.ll,
219 	 * shift it right and throw away the high part of the result.
220 	 */
221 	if (shift == 0)
222 		return rl.ll;
223 	if (shift < 64)
224 		return (rl.ll >> shift) | (rh.ll << (64 - shift));
225 	return rh.ll >> (shift & 63);
226 }
227 #endif /* mul_u64_u64_shr */
228 
229 #endif
230 
231 #ifndef mul_u64_u32_div
mul_u64_u32_div(u64 a,u32 mul,u32 divisor)232 static inline u64 mul_u64_u32_div(u64 a, u32 mul, u32 divisor)
233 {
234 	union {
235 		u64 ll;
236 		struct {
237 #ifdef __BIG_ENDIAN
238 			u32 high, low;
239 #else
240 			u32 low, high;
241 #endif
242 		} l;
243 	} u, rl, rh;
244 
245 	u.ll = a;
246 	rl.ll = mul_u32_u32(u.l.low, mul);
247 	rh.ll = mul_u32_u32(u.l.high, mul) + rl.l.high;
248 
249 	/* Bits 32-63 of the result will be in rh.l.low. */
250 	rl.l.high = do_div(rh.ll, divisor);
251 
252 	/* Bits 0-31 of the result will be in rl.l.low.	*/
253 	do_div(rl.ll, divisor);
254 
255 	rl.l.high = rh.l.low;
256 	return rl.ll;
257 }
258 #endif /* mul_u64_u32_div */
259 
260 #endif /* _LINUX_MATH64_H */
261