1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Copyright (C) 2020 Stefan Roese <sr@denx.de>
4 */
5
6 #ifndef __CVMX_REGS_H__
7 #define __CVMX_REGS_H__
8
9 #include <log.h>
10 #include <linux/bitfield.h>
11 #include <linux/bitops.h>
12 #include <linux/io.h>
13 #include <mach/cvmx-address.h>
14
15 /* General defines */
16 #define CVMX_MAX_CORES 48
17 /* Maximum # of bits to define core in node */
18 #define CVMX_NODE_NO_SHIFT 7
19 #define CVMX_NODE_BITS 2 /* Number of bits to define a node */
20 #define CVMX_MAX_NODES (1 << CVMX_NODE_BITS)
21 #define CVMX_NODE_MASK (CVMX_MAX_NODES - 1)
22 #define CVMX_NODE_IO_SHIFT 36
23 #define CVMX_NODE_MEM_SHIFT 40
24 #define CVMX_NODE_IO_MASK ((u64)CVMX_NODE_MASK << CVMX_NODE_IO_SHIFT)
25
26 #define CVMX_MIPS_MAX_CORE_BITS 10 /* Maximum # of bits to define cores */
27 #define CVMX_MIPS_MAX_CORES (1 << CVMX_MIPS_MAX_CORE_BITS)
28
29 #define MAX_CORE_TADS 8
30
31 #define CASTPTR(type, v) ((type *)(long)(v))
32 #define CAST64(v) ((long long)(long)(v))
33
34 /* Regs */
35 #define CVMX_CIU3_NMI 0x0001010000000160ULL
36 #define CVMX_CIU3_ISCX_W1C(x) (0x0001010090000000ull + ((x) & 1048575) * 8)
37
38 #define CVMX_MIO_BOOT_LOC_CFGX(x) (0x0001180000000080ULL + ((x) & 1) * 8)
39 #define MIO_BOOT_LOC_CFG_BASE GENMASK_ULL(27, 3)
40 #define MIO_BOOT_LOC_CFG_EN BIT_ULL(31)
41
42 #define CVMX_MIO_BOOT_LOC_ADR 0x0001180000000090ULL
43 #define MIO_BOOT_LOC_ADR_ADR GENMASK_ULL(7, 3)
44
45 #define CVMX_MIO_BOOT_LOC_DAT 0x0001180000000098ULL
46
47 #define CVMX_MIO_FUS_DAT2 0x0001180000001410ULL
48 #define MIO_FUS_DAT2_NOCRYPTO BIT_ULL(26)
49 #define MIO_FUS_DAT2_NOMUL BIT_ULL(27)
50 #define MIO_FUS_DAT2_DORM_CRYPTO BIT_ULL(34)
51
52 #define CVMX_MIO_FUS_RCMD 0x0001180000001500ULL
53 #define MIO_FUS_RCMD_ADDR GENMASK_ULL(7, 0)
54 #define MIO_FUS_RCMD_PEND BIT_ULL(12)
55 #define MIO_FUS_RCMD_DAT GENMASK_ULL(23, 16)
56
57 #define CVMX_RNM_CTL_STATUS 0x0001180040000000ULL
58 #define RNM_CTL_STATUS_EER_VAL BIT_ULL(9)
59
60 /* IOBDMA/LMTDMA IO addresses */
61 #define CVMX_LMTDMA_ORDERED_IO_ADDR 0xffffffffffffa400ull
62 #define CVMX_IOBDMA_ORDERED_IO_ADDR 0xffffffffffffa200ull
63
64 /* turn the variable name into a string */
65 #define CVMX_TMP_STR(x) CVMX_TMP_STR2(x)
66 #define CVMX_TMP_STR2(x) #x
67 #define VASTR(...) #__VA_ARGS__
68
69 #define CVMX_PKO_LMTLINE 2ull
70 #define CVMX_SCRATCH_BASE (-32768l) /* 0xffffffffffff8000 */
71
72 #define COP0_CVMMEMCTL $11,7 /* Cavium memory control */
73
74 #define CVMX_RDHWR(result, regstr) \
75 asm volatile("rdhwr %[rt],$" CVMX_TMP_STR(regstr) : [rt] "=d"(result))
76 #define CVMX_RDHWRNV(result, regstr) \
77 asm("rdhwr %[rt],$" CVMX_TMP_STR(regstr) : [rt] "=d"(result))
78 #define CVMX_POP(result, input) \
79 asm("pop %[rd],%[rs]" : [rd] "=d"(result) : [rs] "d"(input))
80 #define CVMX_MF_COP0(val, cop0) \
81 asm("dmfc0 %[rt]," VASTR(cop0) : [rt] "=d" (val))
82 #define CVMX_MT_COP0(val, cop0) \
83 asm("dmtc0 %[rt]," VASTR(cop0) : : [rt] "d" (val))
84
85 #define CVMX_MF_CVM_MEM_CTL(val) CVMX_MF_COP0(val, COP0_CVMMEMCTL)
86 #define CVMX_MT_CVM_MEM_CTL(val) CVMX_MT_COP0(val, COP0_CVMMEMCTL)
87
88 #define CVMX_SYNC asm volatile("sync\n" : : : "memory")
89 #define CVMX_SYNCW asm volatile("syncw\nsyncw\n" : : : "memory")
90 #define CVMX_SYNCS asm volatile("syncs\n" : : : "memory")
91 #define CVMX_SYNCWS asm volatile("syncws\n" : : : "memory")
92
93 #define CVMX_CACHE_LINE_SIZE 128 // In bytes
94 #define CVMX_CACHE_LINE_MASK (CVMX_CACHE_LINE_SIZE - 1) // In bytes
95 #define CVMX_CACHE_LINE_ALIGNED __aligned(CVMX_CACHE_LINE_SIZE)
96
97 #define CVMX_SYNCIOBDMA asm volatile("synciobdma" : : : "memory")
98
99 #define CVMX_MF_CHORD(dest) CVMX_RDHWR(dest, 30)
100
101 #define CVMX_PREFETCH0(address) CVMX_PREFETCH(address, 0)
102 #define CVMX_PREFETCH128(address) CVMX_PREFETCH(address, 128)
103
104 /** a normal prefetch */
105 #define CVMX_PREFETCH(address, offset) CVMX_PREFETCH_PREF0(address, offset)
106
107 /** normal prefetches that use the pref instruction */
108 #define CVMX_PREFETCH_PREFX(X, address, offset) \
109 asm volatile ("pref %[type], %[off](%[rbase])" : : [rbase] "d" (address), [off] "I" (offset), [type] "n" (X))
110 #define CVMX_PREFETCH_PREF0(address, offset) \
111 CVMX_PREFETCH_PREFX(0, address, offset)
112
113 /*
114 * The macros cvmx_likely and cvmx_unlikely use the
115 * __builtin_expect GCC operation to control branch
116 * probabilities for a conditional. For example, an "if"
117 * statement in the code that will almost always be
118 * executed should be written as "if (cvmx_likely(...))".
119 * If the "else" section of an if statement is more
120 * probable, use "if (cvmx_unlikey(...))".
121 */
122 #define cvmx_likely(x) __builtin_expect(!!(x), 1)
123 #define cvmx_unlikely(x) __builtin_expect(!!(x), 0)
124
125 #define CVMX_WAIT_FOR_FIELD64(address, type, field, op, value, to_us) \
126 ({ \
127 int result; \
128 do { \
129 u64 done = get_timer(0); \
130 type c; \
131 while (1) { \
132 c.u64 = csr_rd(address); \
133 if ((c.s.field)op(value)) { \
134 result = 0; \
135 break; \
136 } else if (get_timer(done) > ((to_us) / 1000)) { \
137 result = -1; \
138 break; \
139 } else \
140 udelay(100); \
141 } \
142 } while (0); \
143 result; \
144 })
145
146 #define CVMX_WAIT_FOR_FIELD64_NODE(node, address, type, field, op, value, to_us) \
147 ({ \
148 int result; \
149 do { \
150 u64 done = get_timer(0); \
151 type c; \
152 while (1) { \
153 c.u64 = csr_rd(address); \
154 if ((c.s.field)op(value)) { \
155 result = 0; \
156 break; \
157 } else if (get_timer(done) > ((to_us) / 1000)) { \
158 result = -1; \
159 break; \
160 } else \
161 udelay(100); \
162 } \
163 } while (0); \
164 result; \
165 })
166
167 /* ToDo: Currently only node = 0 supported */
168 #define cvmx_get_node_num() 0
169
csr_rd_node(int node,u64 addr)170 static inline u64 csr_rd_node(int node, u64 addr)
171 {
172 void __iomem *base;
173
174 base = ioremap_nocache(addr, 0x100);
175 return ioread64(base);
176 }
177
csr_rd32_node(int node,u64 addr)178 static inline u32 csr_rd32_node(int node, u64 addr)
179 {
180 void __iomem *base;
181
182 base = ioremap_nocache(addr, 0x100);
183 return ioread32(base);
184 }
185
csr_rd(u64 addr)186 static inline u64 csr_rd(u64 addr)
187 {
188 return csr_rd_node(0, addr);
189 }
190
csr_rd32(u64 addr)191 static inline u32 csr_rd32(u64 addr)
192 {
193 return csr_rd32_node(0, addr);
194 }
195
csr_wr_node(int node,u64 addr,u64 val)196 static inline void csr_wr_node(int node, u64 addr, u64 val)
197 {
198 void __iomem *base;
199
200 base = ioremap_nocache(addr, 0x100);
201 iowrite64(val, base);
202 }
203
csr_wr32_node(int node,u64 addr,u32 val)204 static inline void csr_wr32_node(int node, u64 addr, u32 val)
205 {
206 void __iomem *base;
207
208 base = ioremap_nocache(addr, 0x100);
209 iowrite32(val, base);
210 }
211
csr_wr(u64 addr,u64 val)212 static inline void csr_wr(u64 addr, u64 val)
213 {
214 csr_wr_node(0, addr, val);
215 }
216
csr_wr32(u64 addr,u32 val)217 static inline void csr_wr32(u64 addr, u32 val)
218 {
219 csr_wr32_node(0, addr, val);
220 }
221
222 /*
223 * We need to use the volatile access here, otherwise the IO accessor
224 * functions might swap the bytes
225 */
cvmx_read64_uint64(u64 addr)226 static inline u64 cvmx_read64_uint64(u64 addr)
227 {
228 return *(volatile u64 *)addr;
229 }
230
cvmx_read64_int64(u64 addr)231 static inline s64 cvmx_read64_int64(u64 addr)
232 {
233 return *(volatile s64 *)addr;
234 }
235
cvmx_write64_uint64(u64 addr,u64 val)236 static inline void cvmx_write64_uint64(u64 addr, u64 val)
237 {
238 *(volatile u64 *)addr = val;
239 }
240
cvmx_write64_int64(u64 addr,s64 val)241 static inline void cvmx_write64_int64(u64 addr, s64 val)
242 {
243 *(volatile s64 *)addr = val;
244 }
245
cvmx_read64_uint32(u64 addr)246 static inline u32 cvmx_read64_uint32(u64 addr)
247 {
248 return *(volatile u32 *)addr;
249 }
250
cvmx_read64_int32(u64 addr)251 static inline s32 cvmx_read64_int32(u64 addr)
252 {
253 return *(volatile s32 *)addr;
254 }
255
cvmx_write64_uint32(u64 addr,u32 val)256 static inline void cvmx_write64_uint32(u64 addr, u32 val)
257 {
258 *(volatile u32 *)addr = val;
259 }
260
cvmx_write64_int32(u64 addr,s32 val)261 static inline void cvmx_write64_int32(u64 addr, s32 val)
262 {
263 *(volatile s32 *)addr = val;
264 }
265
cvmx_write64_int16(u64 addr,s16 val)266 static inline void cvmx_write64_int16(u64 addr, s16 val)
267 {
268 *(volatile s16 *)addr = val;
269 }
270
cvmx_write64_uint16(u64 addr,u16 val)271 static inline void cvmx_write64_uint16(u64 addr, u16 val)
272 {
273 *(volatile u16 *)addr = val;
274 }
275
cvmx_write64_int8(u64 addr,int8_t val)276 static inline void cvmx_write64_int8(u64 addr, int8_t val)
277 {
278 *(volatile int8_t *)addr = val;
279 }
280
cvmx_write64_uint8(u64 addr,u8 val)281 static inline void cvmx_write64_uint8(u64 addr, u8 val)
282 {
283 *(volatile u8 *)addr = val;
284 }
285
cvmx_read64_int16(u64 addr)286 static inline s16 cvmx_read64_int16(u64 addr)
287 {
288 return *(volatile s16 *)addr;
289 }
290
cvmx_read64_uint16(u64 addr)291 static inline u16 cvmx_read64_uint16(u64 addr)
292 {
293 return *(volatile u16 *)addr;
294 }
295
cvmx_read64_int8(u64 addr)296 static inline int8_t cvmx_read64_int8(u64 addr)
297 {
298 return *(volatile int8_t *)addr;
299 }
300
cvmx_read64_uint8(u64 addr)301 static inline u8 cvmx_read64_uint8(u64 addr)
302 {
303 return *(volatile u8 *)addr;
304 }
305
cvmx_send_single(u64 data)306 static inline void cvmx_send_single(u64 data)
307 {
308 cvmx_write64_uint64(CVMX_IOBDMA_ORDERED_IO_ADDR, data);
309 }
310
311 /**
312 * Perform a 64-bit write to an IO address
313 *
314 * @param io_addr I/O address to write to
315 * @param val 64-bit value to write
316 */
cvmx_write_io(u64 io_addr,u64 val)317 static inline void cvmx_write_io(u64 io_addr, u64 val)
318 {
319 cvmx_write64_uint64(io_addr, val);
320 }
321
322 /**
323 * Builds a memory address for I/O based on the Major and Sub DID.
324 *
325 * @param major_did 5 bit major did
326 * @param sub_did 3 bit sub did
327 * Return: I/O base address
328 */
cvmx_build_io_address(u64 major_did,u64 sub_did)329 static inline u64 cvmx_build_io_address(u64 major_did, u64 sub_did)
330 {
331 return ((0x1ull << 48) | (major_did << 43) | (sub_did << 40));
332 }
333
334 /**
335 * Builds a bit mask given the required size in bits.
336 *
337 * @param bits Number of bits in the mask
338 * Return: The mask
339 */
cvmx_build_mask(u64 bits)340 static inline u64 cvmx_build_mask(u64 bits)
341 {
342 if (bits == 64)
343 return -1;
344
345 return ~((~0x0ull) << bits);
346 }
347
348 /**
349 * Extract bits out of a number
350 *
351 * @param input Number to extract from
352 * @param lsb Starting bit, least significant (0-63)
353 * @param width Width in bits (1-64)
354 *
355 * Return: Extracted number
356 */
cvmx_bit_extract(u64 input,int lsb,int width)357 static inline u64 cvmx_bit_extract(u64 input, int lsb, int width)
358 {
359 u64 result = input >> lsb;
360
361 result &= cvmx_build_mask(width);
362
363 return result;
364 }
365
366 /**
367 * Perform mask and shift to place the supplied value into
368 * the supplied bit rage.
369 *
370 * Example: cvmx_build_bits(39,24,value)
371 * <pre>
372 * 6 5 4 3 3 2 1
373 * 3 5 7 9 1 3 5 7 0
374 * +-------+-------+-------+-------+-------+-------+-------+------+
375 * 000000000000000000000000___________value000000000000000000000000
376 * </pre>
377 *
378 * @param high_bit Highest bit value can occupy (inclusive) 0-63
379 * @param low_bit Lowest bit value can occupy inclusive 0-high_bit
380 * @param value Value to use
381 * Return: Value masked and shifted
382 */
cvmx_build_bits(u64 high_bit,u64 low_bit,u64 value)383 static inline u64 cvmx_build_bits(u64 high_bit, u64 low_bit, u64 value)
384 {
385 return ((value & cvmx_build_mask(high_bit - low_bit + 1)) << low_bit);
386 }
387
cvmx_mask_to_localaddr(u64 addr)388 static inline u64 cvmx_mask_to_localaddr(u64 addr)
389 {
390 return (addr & 0xffffffffff);
391 }
392
cvmx_addr_on_node(u64 node,u64 addr)393 static inline u64 cvmx_addr_on_node(u64 node, u64 addr)
394 {
395 return (node << 40) | cvmx_mask_to_localaddr(addr);
396 }
397
cvmx_phys_to_ptr(u64 addr)398 static inline void *cvmx_phys_to_ptr(u64 addr)
399 {
400 return (void *)CKSEG0ADDR(addr);
401 }
402
cvmx_ptr_to_phys(void * ptr)403 static inline u64 cvmx_ptr_to_phys(void *ptr)
404 {
405 return virt_to_phys(ptr);
406 }
407
408 /**
409 * Number of the Core on which the program is currently running.
410 *
411 * Return: core number
412 */
cvmx_get_core_num(void)413 static inline unsigned int cvmx_get_core_num(void)
414 {
415 unsigned int core_num;
416
417 CVMX_RDHWRNV(core_num, 0);
418 return core_num;
419 }
420
421 /**
422 * Node-local number of the core on which the program is currently running.
423 *
424 * Return: core number on local node
425 */
cvmx_get_local_core_num(void)426 static inline unsigned int cvmx_get_local_core_num(void)
427 {
428 unsigned int core_num, core_mask;
429
430 CVMX_RDHWRNV(core_num, 0);
431 /* note that MAX_CORES may not be power of 2 */
432 core_mask = (1 << CVMX_NODE_NO_SHIFT) - 1;
433
434 return core_num & core_mask;
435 }
436
437 /**
438 * Given a CSR address return the node number of that address
439 *
440 * @param addr Address to extract node number from
441 *
442 * @return node number
443 */
cvmx_csr_addr_to_node(u64 addr)444 static inline u8 cvmx_csr_addr_to_node(u64 addr)
445 {
446 return (addr >> CVMX_NODE_IO_SHIFT) & CVMX_NODE_MASK;
447 }
448
449 /**
450 * Strip the node address bits from a CSR address
451 *
452 * @param addr CSR address to strip the node bits from
453 *
454 * @return CSR address with the node bits set to zero
455 */
cvmx_csr_addr_strip_node(u64 addr)456 static inline u64 cvmx_csr_addr_strip_node(u64 addr)
457 {
458 return addr & ~((u64)CVMX_NODE_MASK << CVMX_NODE_IO_SHIFT);
459 }
460
461 /**
462 * Returns the number of bits set in the provided value.
463 * Simple wrapper for POP instruction.
464 *
465 * @param val 32 bit value to count set bits in
466 *
467 * Return: Number of bits set
468 */
cvmx_pop(u32 val)469 static inline u32 cvmx_pop(u32 val)
470 {
471 u32 pop;
472
473 CVMX_POP(pop, val);
474
475 return pop;
476 }
477
478 #define cvmx_read_csr_node(node, addr) csr_rd(addr)
479 #define cvmx_write_csr_node(node, addr, val) csr_wr(addr, val)
480
481 #define cvmx_printf printf
482 #define cvmx_vprintf vprintf
483
484 /* Use common debug macros */
485 #define cvmx_warn debug
486 #define cvmx_warn_if debug_cond
487
488 /**
489 * Atomically adds a signed value to a 32 bit (aligned) memory location,
490 * and returns previous value.
491 *
492 * Memory access ordering is enforced before/after the atomic operation,
493 * so no additional 'sync' instructions are required.
494 *
495 * @param ptr address in memory to add incr to
496 * @param incr amount to increment memory location by (signed)
497 *
498 * @return Value of memory location before increment
499 */
cvmx_atomic_fetch_and_add32(int32_t * ptr,int32_t incr)500 static inline int32_t cvmx_atomic_fetch_and_add32(int32_t * ptr, int32_t incr)
501 {
502 int32_t val;
503
504 val = *ptr;
505 *ptr += incr;
506 return val;
507 }
508
509 /**
510 * Atomically adds a signed value to a 32 bit (aligned) memory location.
511 *
512 * This version does not perform 'sync' operations to enforce memory
513 * operations. This should only be used when there are no memory operation
514 * ordering constraints. (This should NOT be used for reference counting -
515 * use the standard version instead.)
516 *
517 * @param ptr address in memory to add incr to
518 * @param incr amount to increment memory location by (signed)
519 */
cvmx_atomic_add32_nosync(int32_t * ptr,int32_t incr)520 static inline void cvmx_atomic_add32_nosync(int32_t * ptr, int32_t incr)
521 {
522 *ptr += incr;
523 }
524
525 #endif /* __CVMX_REGS_H__ */
526