1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2002
4  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
5  */
6 
7 #include <common.h>
8 #include <log.h>
9 #include <asm/global_data.h>
10 
11 /* Memory test
12  *
13  * General observations:
14  * o The recommended test sequence is to test the data lines: if they are
15  *   broken, nothing else will work properly.  Then test the address
16  *   lines.  Finally, test the cells in the memory now that the test
17  *   program knows that the address and data lines work properly.
18  *   This sequence also helps isolate and identify what is faulty.
19  *
20  * o For the address line test, it is a good idea to use the base
21  *   address of the lowest memory location, which causes a '1' bit to
22  *   walk through a field of zeros on the address lines and the highest
23  *   memory location, which causes a '0' bit to walk through a field of
24  *   '1's on the address line.
25  *
26  * o Floating buses can fool memory tests if the test routine writes
27  *   a value and then reads it back immediately.  The problem is, the
28  *   write will charge the residual capacitance on the data bus so the
29  *   bus retains its state briefely.  When the test program reads the
30  *   value back immediately, the capacitance of the bus can allow it
31  *   to read back what was written, even though the memory circuitry
32  *   is broken.  To avoid this, the test program should write a test
33  *   pattern to the target location, write a different pattern elsewhere
34  *   to charge the residual capacitance in a differnt manner, then read
35  *   the target location back.
36  *
37  * o Always read the target location EXACTLY ONCE and save it in a local
38  *   variable.  The problem with reading the target location more than
39  *   once is that the second and subsequent reads may work properly,
40  *   resulting in a failed test that tells the poor technician that
41  *   "Memory error at 00000000, wrote aaaaaaaa, read aaaaaaaa" which
42  *   doesn't help him one bit and causes puzzled phone calls.  Been there,
43  *   done that.
44  *
45  * Data line test:
46  * ---------------
47  * This tests data lines for shorts and opens by forcing adjacent data
48  * to opposite states. Because the data lines could be routed in an
49  * arbitrary manner the must ensure test patterns ensure that every case
50  * is tested. By using the following series of binary patterns every
51  * combination of adjacent bits is test regardless of routing.
52  *
53  *     ...101010101010101010101010
54  *     ...110011001100110011001100
55  *     ...111100001111000011110000
56  *     ...111111110000000011111111
57  *
58  * Carrying this out, gives us six hex patterns as follows:
59  *
60  *     0xaaaaaaaaaaaaaaaa
61  *     0xcccccccccccccccc
62  *     0xf0f0f0f0f0f0f0f0
63  *     0xff00ff00ff00ff00
64  *     0xffff0000ffff0000
65  *     0xffffffff00000000
66  *
67  * To test for short and opens to other signals on our boards, we
68  * simply test with the 1's complemnt of the paterns as well, resulting
69  * in twelve patterns total.
70  *
71  * After writing a test pattern. a special pattern 0x0123456789ABCDEF is
72  * written to a different address in case the data lines are floating.
73  * Thus, if a byte lane fails, you will see part of the special
74  * pattern in that byte lane when the test runs.  For example, if the
75  * xx__xxxxxxxxxxxx byte line fails, you will see aa23aaaaaaaaaaaa
76  * (for the 'a' test pattern).
77  *
78  * Address line test:
79  * ------------------
80  *  This function performs a test to verify that all the address lines
81  *  hooked up to the RAM work properly.  If there is an address line
82  *  fault, it usually shows up as two different locations in the address
83  *  map (related by the faulty address line) mapping to one physical
84  *  memory storage location.  The artifact that shows up is writing to
85  *  the first location "changes" the second location.
86  *
87  * To test all address lines, we start with the given base address and
88  * xor the address with a '1' bit to flip one address line.  For each
89  * test, we shift the '1' bit left to test the next address line.
90  *
91  * In the actual code, we start with address sizeof(ulong) since our
92  * test pattern we use is a ulong and thus, if we tried to test lower
93  * order address bits, it wouldn't work because our pattern would
94  * overwrite itself.
95  *
96  * Example for a 4 bit address space with the base at 0000:
97  *   0000 <- base
98  *   0001 <- test 1
99  *   0010 <- test 2
100  *   0100 <- test 3
101  *   1000 <- test 4
102  * Example for a 4 bit address space with the base at 0010:
103  *   0010 <- base
104  *   0011 <- test 1
105  *   0000 <- (below the base address, skipped)
106  *   0110 <- test 2
107  *   1010 <- test 3
108  *
109  * The test locations are successively tested to make sure that they are
110  * not "mirrored" onto the base address due to a faulty address line.
111  * Note that the base and each test location are related by one address
112  * line flipped.  Note that the base address need not be all zeros.
113  *
114  * Memory tests 1-4:
115  * -----------------
116  * These tests verify RAM using sequential writes and reads
117  * to/from RAM. There are several test cases that use different patterns to
118  * verify RAM. Each test case fills a region of RAM with one pattern and
119  * then reads the region back and compares its contents with the pattern.
120  * The following patterns are used:
121  *
122  *  1a) zero pattern (0x00000000)
123  *  1b) negative pattern (0xffffffff)
124  *  1c) checkerboard pattern (0x55555555)
125  *  1d) checkerboard pattern (0xaaaaaaaa)
126  *  2)  bit-flip pattern ((1 << (offset % 32))
127  *  3)  address pattern (offset)
128  *  4)  address pattern (~offset)
129  *
130  * Being run in normal mode, the test verifies only small 4Kb
131  * regions of RAM around each 1Mb boundary. For example, for 64Mb
132  * RAM the following areas are verified: 0x00000000-0x00000800,
133  * 0x000ff800-0x00100800, 0x001ff800-0x00200800, ..., 0x03fff800-
134  * 0x04000000. If the test is run in slow-test mode, it verifies
135  * the whole RAM.
136  */
137 
138 #include <post.h>
139 #include <watchdog.h>
140 
141 #if CFG_POST & (CFG_SYS_POST_MEMORY | CFG_SYS_POST_MEM_REGIONS)
142 
143 DECLARE_GLOBAL_DATA_PTR;
144 
145 /*
146  * Define INJECT_*_ERRORS for testing error detection in the presence of
147  * _good_ hardware.
148  */
149 #undef  INJECT_DATA_ERRORS
150 #undef  INJECT_ADDRESS_ERRORS
151 
152 #ifdef INJECT_DATA_ERRORS
153 #warning "Injecting data line errors for testing purposes"
154 #endif
155 
156 #ifdef INJECT_ADDRESS_ERRORS
157 #warning "Injecting address line errors for testing purposes"
158 #endif
159 
160 
161 /*
162  * This function performs a double word move from the data at
163  * the source pointer to the location at the destination pointer.
164  * This is helpful for testing memory on processors which have a 64 bit
165  * wide data bus.
166  *
167  * On those PowerPC with FPU, use assembly and a floating point move:
168  * this does a 64 bit move.
169  *
170  * For other processors, let the compiler generate the best code it can.
171  */
move64(const unsigned long long * src,unsigned long long * dest)172 static void move64(const unsigned long long *src, unsigned long long *dest)
173 {
174 	*dest = *src;
175 }
176 
177 /*
178  * This is 64 bit wide test patterns.  Note that they reside in ROM
179  * (which presumably works) and the tests write them to RAM which may
180  * not work.
181  *
182  * The "otherpattern" is written to drive the data bus to values other
183  * than the test pattern.  This is for detecting floating bus lines.
184  *
185  */
186 const static unsigned long long pattern[] = {
187 	0xaaaaaaaaaaaaaaaaULL,
188 	0xccccccccccccccccULL,
189 	0xf0f0f0f0f0f0f0f0ULL,
190 	0xff00ff00ff00ff00ULL,
191 	0xffff0000ffff0000ULL,
192 	0xffffffff00000000ULL,
193 	0x00000000ffffffffULL,
194 	0x0000ffff0000ffffULL,
195 	0x00ff00ff00ff00ffULL,
196 	0x0f0f0f0f0f0f0f0fULL,
197 	0x3333333333333333ULL,
198 	0x5555555555555555ULL
199 };
200 const unsigned long long otherpattern = 0x0123456789abcdefULL;
201 
202 
memory_post_dataline(unsigned long long * pmem)203 static int memory_post_dataline(unsigned long long * pmem)
204 {
205 	unsigned long long temp64 = 0;
206 	int num_patterns = ARRAY_SIZE(pattern);
207 	int i;
208 	unsigned int hi, lo, pathi, patlo;
209 	int ret = 0;
210 
211 	for ( i = 0; i < num_patterns; i++) {
212 		move64(&(pattern[i]), pmem++);
213 		/*
214 		 * Put a different pattern on the data lines: otherwise they
215 		 * may float long enough to read back what we wrote.
216 		 */
217 		move64(&otherpattern, pmem--);
218 		move64(pmem, &temp64);
219 
220 #ifdef INJECT_DATA_ERRORS
221 		temp64 ^= 0x00008000;
222 #endif
223 
224 		if (temp64 != pattern[i]){
225 			pathi = (pattern[i]>>32) & 0xffffffff;
226 			patlo = pattern[i] & 0xffffffff;
227 
228 			hi = (temp64>>32) & 0xffffffff;
229 			lo = temp64 & 0xffffffff;
230 
231 			post_log("Memory (data line) error at %p, wrote %08x%08x, read %08x%08x !\n",
232 				 pmem, pathi, patlo, hi, lo);
233 			ret = -1;
234 		}
235 	}
236 	return ret;
237 }
238 
memory_post_addrline(ulong * testaddr,ulong * base,ulong size)239 static int memory_post_addrline(ulong *testaddr, ulong *base, ulong size)
240 {
241 	ulong *target;
242 	ulong *end;
243 	ulong readback;
244 	ulong xor;
245 	int   ret = 0;
246 
247 	end = (ulong *)((ulong)base + size);	/* pointer arith! */
248 	xor = 0;
249 	for(xor = sizeof(ulong); xor > 0; xor <<= 1) {
250 		target = (ulong *)((ulong)testaddr ^ xor);
251 		if((target >= base) && (target < end)) {
252 			*testaddr = ~*target;
253 			readback  = *target;
254 
255 #ifdef INJECT_ADDRESS_ERRORS
256 			if(xor == 0x00008000) {
257 				readback = *testaddr;
258 			}
259 #endif
260 			if(readback == *testaddr) {
261 				post_log("Memory (address line) error at %p<->%p, XOR value %08lx !\n",
262 					 testaddr, target, xor);
263 				ret = -1;
264 			}
265 		}
266 	}
267 	return ret;
268 }
269 
memory_post_test1(unsigned long start,unsigned long size,unsigned long val)270 static int memory_post_test1(unsigned long start,
271 			      unsigned long size,
272 			      unsigned long val)
273 {
274 	unsigned long i;
275 	ulong *mem = (ulong *) start;
276 	ulong readback;
277 	int ret = 0;
278 
279 	for (i = 0; i < size / sizeof (ulong); i++) {
280 		mem[i] = val;
281 		if (i % 1024 == 0)
282 			schedule();
283 	}
284 
285 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
286 		readback = mem[i];
287 		if (readback != val) {
288 			post_log("Memory error at %p, wrote %08lx, read %08lx !\n",
289 				 mem + i, val, readback);
290 
291 			ret = -1;
292 			break;
293 		}
294 		if (i % 1024 == 0)
295 			schedule();
296 	}
297 
298 	return ret;
299 }
300 
memory_post_test2(unsigned long start,unsigned long size)301 static int memory_post_test2(unsigned long start, unsigned long size)
302 {
303 	unsigned long i;
304 	ulong *mem = (ulong *) start;
305 	ulong readback;
306 	int ret = 0;
307 
308 	for (i = 0; i < size / sizeof (ulong); i++) {
309 		mem[i] = 1 << (i % 32);
310 		if (i % 1024 == 0)
311 			schedule();
312 	}
313 
314 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
315 		readback = mem[i];
316 		if (readback != (1 << (i % 32))) {
317 			post_log("Memory error at %p, wrote %08lx, read %08lx !\n",
318 				 mem + i, 1UL << (i % 32), readback);
319 
320 			ret = -1;
321 			break;
322 		}
323 		if (i % 1024 == 0)
324 			schedule();
325 	}
326 
327 	return ret;
328 }
329 
memory_post_test3(unsigned long start,unsigned long size)330 static int memory_post_test3(unsigned long start, unsigned long size)
331 {
332 	unsigned long i;
333 	ulong *mem = (ulong *) start;
334 	ulong readback;
335 	int ret = 0;
336 
337 	for (i = 0; i < size / sizeof (ulong); i++) {
338 		mem[i] = i;
339 		if (i % 1024 == 0)
340 			schedule();
341 	}
342 
343 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
344 		readback = mem[i];
345 		if (readback != i) {
346 			post_log("Memory error at %p, wrote %08lx, read %08lx !\n",
347 				 mem + i, i, readback);
348 
349 			ret = -1;
350 			break;
351 		}
352 		if (i % 1024 == 0)
353 			schedule();
354 	}
355 
356 	return ret;
357 }
358 
memory_post_test4(unsigned long start,unsigned long size)359 static int memory_post_test4(unsigned long start, unsigned long size)
360 {
361 	unsigned long i;
362 	ulong *mem = (ulong *) start;
363 	ulong readback;
364 	int ret = 0;
365 
366 	for (i = 0; i < size / sizeof (ulong); i++) {
367 		mem[i] = ~i;
368 		if (i % 1024 == 0)
369 			schedule();
370 	}
371 
372 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
373 		readback = mem[i];
374 		if (readback != ~i) {
375 			post_log("Memory error at %p, wrote %08lx, read %08lx !\n",
376 				 mem + i, ~i, readback);
377 
378 			ret = -1;
379 			break;
380 		}
381 		if (i % 1024 == 0)
382 			schedule();
383 	}
384 
385 	return ret;
386 }
387 
memory_post_test_lines(unsigned long start,unsigned long size)388 static int memory_post_test_lines(unsigned long start, unsigned long size)
389 {
390 	int ret = 0;
391 
392 	ret = memory_post_dataline((unsigned long long *)start);
393 	schedule();
394 	if (!ret)
395 		ret = memory_post_addrline((ulong *)start, (ulong *)start,
396 				size);
397 	schedule();
398 	if (!ret)
399 		ret = memory_post_addrline((ulong *)(start+size-8),
400 				(ulong *)start, size);
401 	schedule();
402 
403 	return ret;
404 }
405 
memory_post_test_patterns(unsigned long start,unsigned long size)406 static int memory_post_test_patterns(unsigned long start, unsigned long size)
407 {
408 	int ret = 0;
409 
410 	ret = memory_post_test1(start, size, 0x00000000);
411 	schedule();
412 	if (!ret)
413 		ret = memory_post_test1(start, size, 0xffffffff);
414 	schedule();
415 	if (!ret)
416 		ret = memory_post_test1(start, size, 0x55555555);
417 	schedule();
418 	if (!ret)
419 		ret = memory_post_test1(start, size, 0xaaaaaaaa);
420 	schedule();
421 	if (!ret)
422 		ret = memory_post_test2(start, size);
423 	schedule();
424 	if (!ret)
425 		ret = memory_post_test3(start, size);
426 	schedule();
427 	if (!ret)
428 		ret = memory_post_test4(start, size);
429 	schedule();
430 
431 	return ret;
432 }
433 
memory_post_test_regions(unsigned long start,unsigned long size)434 static int memory_post_test_regions(unsigned long start, unsigned long size)
435 {
436 	unsigned long i;
437 	int ret = 0;
438 
439 	for (i = 0; i < (size >> 20) && (!ret); i++) {
440 		if (!ret)
441 			ret = memory_post_test_patterns(start + (i << 20),
442 				0x800);
443 		if (!ret)
444 			ret = memory_post_test_patterns(start + (i << 20) +
445 				0xff800, 0x800);
446 	}
447 
448 	return ret;
449 }
450 
memory_post_tests(unsigned long start,unsigned long size)451 static int memory_post_tests(unsigned long start, unsigned long size)
452 {
453 	int ret = 0;
454 
455 	ret = memory_post_test_lines(start, size);
456 	if (!ret)
457 		ret = memory_post_test_patterns(start, size);
458 
459 	return ret;
460 }
461 
462 /*
463  * !! this is only valid, if you have contiguous memory banks !!
464  */
465 __attribute__((weak))
arch_memory_test_prepare(u32 * vstart,u32 * size,phys_addr_t * phys_offset)466 int arch_memory_test_prepare(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
467 {
468 	struct bd_info *bd = gd->bd;
469 
470 	*vstart = CFG_SYS_SDRAM_BASE;
471 	*size = (gd->ram_size >= 256 << 20 ?
472 			256 << 20 : gd->ram_size) - (1 << 20);
473 
474 	/* Limit area to be tested with the board info struct */
475 	if ((*vstart) + (*size) > (ulong)bd)
476 		*size = (ulong)bd - *vstart;
477 
478 	return 0;
479 }
480 
481 __attribute__((weak))
arch_memory_test_advance(u32 * vstart,u32 * size,phys_addr_t * phys_offset)482 int arch_memory_test_advance(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
483 {
484 	return 1;
485 }
486 
487 __attribute__((weak))
arch_memory_test_cleanup(u32 * vstart,u32 * size,phys_addr_t * phys_offset)488 int arch_memory_test_cleanup(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
489 {
490 	return 0;
491 }
492 
493 __attribute__((weak))
arch_memory_failure_handle(void)494 void arch_memory_failure_handle(void)
495 {
496 	return;
497 }
498 
memory_regions_post_test(int flags)499 int memory_regions_post_test(int flags)
500 {
501 	int ret = 0;
502 	phys_addr_t phys_offset = 0;
503 	u32 memsize, vstart;
504 
505 	arch_memory_test_prepare(&vstart, &memsize, &phys_offset);
506 
507 	ret = memory_post_test_lines(vstart, memsize);
508 	if (!ret)
509 		ret = memory_post_test_regions(vstart, memsize);
510 
511 	return ret;
512 }
513 
memory_post_test(int flags)514 int memory_post_test(int flags)
515 {
516 	int ret = 0;
517 	phys_addr_t phys_offset = 0;
518 	u32 memsize, vstart;
519 
520 	arch_memory_test_prepare(&vstart, &memsize, &phys_offset);
521 
522 	do {
523 		if (flags & POST_SLOWTEST) {
524 			ret = memory_post_tests(vstart, memsize);
525 		} else {			/* POST_NORMAL */
526 			ret = memory_post_test_regions(vstart, memsize);
527 		}
528 	} while (!ret &&
529 		!arch_memory_test_advance(&vstart, &memsize, &phys_offset));
530 
531 	arch_memory_test_cleanup(&vstart, &memsize, &phys_offset);
532 	if (ret)
533 		arch_memory_failure_handle();
534 
535 	return ret;
536 }
537 
538 #endif /* CFG_POST&(CFG_SYS_POST_MEMORY|CFG_SYS_POST_MEM_REGIONS) */
539