1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2007
4  * Sascha Hauer, Pengutronix
5  *
6  * (C) Copyright 2009 Freescale Semiconductor, Inc.
7  */
8 
9 #include <bootm.h>
10 #include <common.h>
11 #include <dm.h>
12 #include <init.h>
13 #include <log.h>
14 #include <net.h>
15 #include <netdev.h>
16 #include <linux/errno.h>
17 #include <asm/io.h>
18 #include <asm/arch/imx-regs.h>
19 #include <asm/arch/clock.h>
20 #include <asm/arch/sys_proto.h>
21 #include <asm/arch/crm_regs.h>
22 #include <asm/mach-imx/boot_mode.h>
23 #include <imx_thermal.h>
24 #include <ipu_pixfmt.h>
25 #include <thermal.h>
26 #include <sata.h>
27 #include <dm/device-internal.h>
28 #include <dm/uclass-internal.h>
29 
30 #ifdef CONFIG_FSL_ESDHC_IMX
31 #include <fsl_esdhc_imx.h>
32 #endif
33 
34 static u32 reset_cause = -1;
35 
get_imx_reset_cause(void)36 u32 get_imx_reset_cause(void)
37 {
38 	struct src *src_regs = (struct src *)SRC_BASE_ADDR;
39 
40 	if (reset_cause == -1) {
41 		reset_cause = readl(&src_regs->srsr);
42 /* preserve the value for U-Boot proper */
43 #if !defined(CONFIG_SPL_BUILD)
44 		writel(reset_cause, &src_regs->srsr);
45 #endif
46 	}
47 
48 	return reset_cause;
49 }
50 
51 #if defined(CONFIG_DISPLAY_CPUINFO) && !defined(CONFIG_SPL_BUILD)
get_reset_cause(void)52 static char *get_reset_cause(void)
53 {
54 	switch (get_imx_reset_cause()) {
55 	case 0x00001:
56 	case 0x00011:
57 		return "POR";
58 	case 0x00004:
59 		return "CSU";
60 	case 0x00008:
61 		return "IPP USER";
62 	case 0x00010:
63 #ifdef	CONFIG_MX7
64 		return "WDOG1";
65 #else
66 		return "WDOG";
67 #endif
68 	case 0x00020:
69 		return "JTAG HIGH-Z";
70 	case 0x00040:
71 		return "JTAG SW";
72 	case 0x00080:
73 		return "WDOG3";
74 #ifdef CONFIG_MX7
75 	case 0x00100:
76 		return "WDOG4";
77 	case 0x00200:
78 		return "TEMPSENSE";
79 #elif defined(CONFIG_IMX8M)
80 	case 0x00100:
81 		return "WDOG2";
82 	case 0x00200:
83 		return "TEMPSENSE";
84 #else
85 	case 0x00100:
86 		return "TEMPSENSE";
87 	case 0x10000:
88 		return "WARM BOOT";
89 #endif
90 	default:
91 		return "unknown reset";
92 	}
93 }
94 #endif
95 
96 #if defined(CONFIG_DISPLAY_CPUINFO) && !defined(CONFIG_SPL_BUILD)
97 
get_imx_type(u32 imxtype)98 const char *get_imx_type(u32 imxtype)
99 {
100 	switch (imxtype) {
101 	case MXC_CPU_IMX8MP:
102 		return "8MP[8]";	/* Quad-core version of the imx8mp */
103 	case MXC_CPU_IMX8MPD:
104 		return "8MP Dual[3]";	/* Dual-core version of the imx8mp */
105 	case MXC_CPU_IMX8MPL:
106 		return "8MP Lite[4]";	/* Quad-core Lite version of the imx8mp */
107 	case MXC_CPU_IMX8MP6:
108 		return "8MP[6]";	/* Quad-core version of the imx8mp, NPU fused */
109 	case MXC_CPU_IMX8MPUL:
110 		return "8MP UltraLite";	/* Quad-core UltraLite version of the imx8mp */
111 	case MXC_CPU_IMX8MN:
112 		return "8MNano Quad"; /* Quad-core version */
113 	case MXC_CPU_IMX8MND:
114 		return "8MNano Dual"; /* Dual-core version */
115 	case MXC_CPU_IMX8MNS:
116 		return "8MNano Solo"; /* Single-core version */
117 	case MXC_CPU_IMX8MNL:
118 		return "8MNano QuadLite"; /* Quad-core Lite version */
119 	case MXC_CPU_IMX8MNDL:
120 		return "8MNano DualLite"; /* Dual-core Lite version */
121 	case MXC_CPU_IMX8MNSL:
122 		return "8MNano SoloLite";/* Single-core Lite version of the imx8mn */
123 	case MXC_CPU_IMX8MNUQ:
124 		return "8MNano UltraLite Quad";/* Quad-core UltraLite version of the imx8mn */
125 	case MXC_CPU_IMX8MNUD:
126 		return "8MNano UltraLite Dual";/* Dual-core UltraLite version of the imx8mn */
127 	case MXC_CPU_IMX8MNUS:
128 		return "8MNano UltraLite Solo";/* Single-core UltraLite version of the imx8mn */
129 	case MXC_CPU_IMX8MM:
130 		return "8MMQ";	/* Quad-core version of the imx8mm */
131 	case MXC_CPU_IMX8MML:
132 		return "8MMQL";	/* Quad-core Lite version of the imx8mm */
133 	case MXC_CPU_IMX8MMD:
134 		return "8MMD";	/* Dual-core version of the imx8mm */
135 	case MXC_CPU_IMX8MMDL:
136 		return "8MMDL";	/* Dual-core Lite version of the imx8mm */
137 	case MXC_CPU_IMX8MMS:
138 		return "8MMS";	/* Single-core version of the imx8mm */
139 	case MXC_CPU_IMX8MMSL:
140 		return "8MMSL";	/* Single-core Lite version of the imx8mm */
141 	case MXC_CPU_IMX8MQ:
142 		return "8MQ";	/* Quad-core version of the imx8mq */
143 	case MXC_CPU_IMX8MQL:
144 		return "8MQLite";	/* Quad-core Lite version of the imx8mq */
145 	case MXC_CPU_IMX8MD:
146 		return "8MD";	/* Dual-core version of the imx8mq */
147 	case MXC_CPU_MX7S:
148 		return "7S";	/* Single-core version of the mx7 */
149 	case MXC_CPU_MX7D:
150 		return "7D";	/* Dual-core version of the mx7 */
151 	case MXC_CPU_MX6QP:
152 		return "6QP";	/* Quad-Plus version of the mx6 */
153 	case MXC_CPU_MX6DP:
154 		return "6DP";	/* Dual-Plus version of the mx6 */
155 	case MXC_CPU_MX6Q:
156 		return "6Q";	/* Quad-core version of the mx6 */
157 	case MXC_CPU_MX6D:
158 		return "6D";	/* Dual-core version of the mx6 */
159 	case MXC_CPU_MX6DL:
160 		return "6DL";	/* Dual Lite version of the mx6 */
161 	case MXC_CPU_MX6SOLO:
162 		return "6SOLO";	/* Solo version of the mx6 */
163 	case MXC_CPU_MX6SL:
164 		return "6SL";	/* Solo-Lite version of the mx6 */
165 	case MXC_CPU_MX6SLL:
166 		return "6SLL";	/* SLL version of the mx6 */
167 	case MXC_CPU_MX6SX:
168 		return "6SX";   /* SoloX version of the mx6 */
169 	case MXC_CPU_MX6UL:
170 		return "6UL";   /* Ultra-Lite version of the mx6 */
171 	case MXC_CPU_MX6ULL:
172 		return "6ULL";	/* ULL version of the mx6 */
173 	case MXC_CPU_MX6ULZ:
174 		return "6ULZ";	/* ULZ version of the mx6 */
175 	case MXC_CPU_MX51:
176 		return "51";
177 	case MXC_CPU_MX53:
178 		return "53";
179 	default:
180 		return "??";
181 	}
182 }
183 
print_cpuinfo(void)184 int print_cpuinfo(void)
185 {
186 	u32 cpurev;
187 	__maybe_unused u32 max_freq;
188 
189 	cpurev = get_cpu_rev();
190 
191 #if defined(CONFIG_IMX_THERMAL) || defined(CONFIG_IMX_TMU)
192 	struct udevice *thermal_dev;
193 	int cpu_tmp, minc, maxc, ret;
194 
195 	printf("CPU:   Freescale i.MX%s rev%d.%d",
196 	       get_imx_type((cpurev & 0x1FF000) >> 12),
197 	       (cpurev & 0x000F0) >> 4,
198 	       (cpurev & 0x0000F) >> 0);
199 	max_freq = get_cpu_speed_grade_hz();
200 	if (!max_freq || max_freq == mxc_get_clock(MXC_ARM_CLK)) {
201 		printf(" at %dMHz\n", mxc_get_clock(MXC_ARM_CLK) / 1000000);
202 	} else {
203 		printf(" %d MHz (running at %d MHz)\n", max_freq / 1000000,
204 		       mxc_get_clock(MXC_ARM_CLK) / 1000000);
205 	}
206 #else
207 	printf("CPU:   Freescale i.MX%s rev%d.%d at %d MHz\n",
208 		get_imx_type((cpurev & 0x1FF000) >> 12),
209 		(cpurev & 0x000F0) >> 4,
210 		(cpurev & 0x0000F) >> 0,
211 		mxc_get_clock(MXC_ARM_CLK) / 1000000);
212 #endif
213 
214 #if defined(CONFIG_IMX_THERMAL) || defined(CONFIG_IMX_TMU)
215 	puts("CPU:   ");
216 	switch (get_cpu_temp_grade(&minc, &maxc)) {
217 	case TEMP_AUTOMOTIVE:
218 		puts("Automotive temperature grade ");
219 		break;
220 	case TEMP_INDUSTRIAL:
221 		puts("Industrial temperature grade ");
222 		break;
223 	case TEMP_EXTCOMMERCIAL:
224 		puts("Extended Commercial temperature grade ");
225 		break;
226 	default:
227 		puts("Commercial temperature grade ");
228 		break;
229 	}
230 	printf("(%dC to %dC)", minc, maxc);
231 	ret = uclass_get_device(UCLASS_THERMAL, 0, &thermal_dev);
232 	if (!ret) {
233 		ret = thermal_get_temp(thermal_dev, &cpu_tmp);
234 
235 		if (!ret)
236 			printf(" at %dC", cpu_tmp);
237 		else
238 			debug(" - invalid sensor data\n");
239 	} else {
240 		debug(" - invalid sensor device\n");
241 	}
242 	puts("\n");
243 #endif
244 
245 	printf("Reset cause: %s\n", get_reset_cause());
246 	return 0;
247 }
248 #endif
249 
cpu_eth_init(struct bd_info * bis)250 int cpu_eth_init(struct bd_info *bis)
251 {
252 	int rc = -ENODEV;
253 
254 #if defined(CONFIG_FEC_MXC)
255 	rc = fecmxc_initialize(bis);
256 #endif
257 
258 	return rc;
259 }
260 
261 #ifdef CONFIG_FSL_ESDHC_IMX
262 /*
263  * Initializes on-chip MMC controllers.
264  * to override, implement board_mmc_init()
265  */
cpu_mmc_init(struct bd_info * bis)266 int cpu_mmc_init(struct bd_info *bis)
267 {
268 	return fsl_esdhc_mmc_init(bis);
269 }
270 #endif
271 
272 #if !(defined(CONFIG_MX7) || defined(CONFIG_IMX8M))
get_ahb_clk(void)273 u32 get_ahb_clk(void)
274 {
275 	struct mxc_ccm_reg *imx_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
276 	u32 reg, ahb_podf;
277 
278 	reg = __raw_readl(&imx_ccm->cbcdr);
279 	reg &= MXC_CCM_CBCDR_AHB_PODF_MASK;
280 	ahb_podf = reg >> MXC_CCM_CBCDR_AHB_PODF_OFFSET;
281 
282 	return get_periph_clk() / (ahb_podf + 1);
283 }
284 #endif
285 
arch_preboot_os(void)286 void arch_preboot_os(void)
287 {
288 #if defined(CONFIG_IMX_AHCI)
289 	struct udevice *dev;
290 	int rc;
291 
292 	rc = uclass_find_device(UCLASS_AHCI, 0, &dev);
293 	if (!rc && dev) {
294 		rc = device_remove(dev, DM_REMOVE_NORMAL);
295 		if (rc)
296 			printf("Cannot remove SATA device '%s' (err=%d)\n",
297 				dev->name, rc);
298 	}
299 #endif
300 
301 #if defined(CONFIG_SATA)
302 	if (!is_mx6sdl()) {
303 		sata_remove(0);
304 #if defined(CONFIG_MX6)
305 		disable_sata_clock();
306 #endif
307 	}
308 #endif
309 #if defined(CONFIG_VIDEO_IPUV3)
310 	/* disable video before launching O/S */
311 	ipuv3_fb_shutdown();
312 #endif
313 #if defined(CONFIG_VIDEO_MXS) && !defined(CONFIG_VIDEO)
314 	lcdif_power_down();
315 #endif
316 }
317 
318 #ifndef CONFIG_IMX8M
set_chipselect_size(int const cs_size)319 void set_chipselect_size(int const cs_size)
320 {
321 	unsigned int reg;
322 	struct iomuxc *iomuxc_regs = (struct iomuxc *)IOMUXC_BASE_ADDR;
323 	reg = readl(&iomuxc_regs->gpr[1]);
324 
325 	switch (cs_size) {
326 	case CS0_128:
327 		reg &= ~0x7;	/* CS0=128MB, CS1=0, CS2=0, CS3=0 */
328 		reg |= 0x5;
329 		break;
330 	case CS0_64M_CS1_64M:
331 		reg &= ~0x3F;	/* CS0=64MB, CS1=64MB, CS2=0, CS3=0 */
332 		reg |= 0x1B;
333 		break;
334 	case CS0_64M_CS1_32M_CS2_32M:
335 		reg &= ~0x1FF;	/* CS0=64MB, CS1=32MB, CS2=32MB, CS3=0 */
336 		reg |= 0x4B;
337 		break;
338 	case CS0_32M_CS1_32M_CS2_32M_CS3_32M:
339 		reg &= ~0xFFF;  /* CS0=32MB, CS1=32MB, CS2=32MB, CS3=32MB */
340 		reg |= 0x249;
341 		break;
342 	default:
343 		printf("Unknown chip select size: %d\n", cs_size);
344 		break;
345 	}
346 
347 	writel(reg, &iomuxc_regs->gpr[1]);
348 }
349 #endif
350 
351 #if defined(CONFIG_MX7) || defined(CONFIG_IMX8M)
352 /*
353  * OCOTP_TESTER3[9:8] (see Fusemap Description Table offset 0x440)
354  * defines a 2-bit SPEED_GRADING
355  */
356 #define OCOTP_TESTER3_SPEED_SHIFT	8
357 enum cpu_speed {
358 	OCOTP_TESTER3_SPEED_GRADE0,
359 	OCOTP_TESTER3_SPEED_GRADE1,
360 	OCOTP_TESTER3_SPEED_GRADE2,
361 	OCOTP_TESTER3_SPEED_GRADE3,
362 	OCOTP_TESTER3_SPEED_GRADE4,
363 };
364 
get_cpu_speed_grade_hz(void)365 u32 get_cpu_speed_grade_hz(void)
366 {
367 	struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR;
368 	struct fuse_bank *bank = &ocotp->bank[1];
369 	struct fuse_bank1_regs *fuse =
370 		(struct fuse_bank1_regs *)bank->fuse_regs;
371 	uint32_t val;
372 
373 	val = readl(&fuse->tester3);
374 	val >>= OCOTP_TESTER3_SPEED_SHIFT;
375 
376 	if (is_imx8mn() || is_imx8mp()) {
377 		val &= 0xf;
378 		return 2300000000 - val * 100000000;
379 	}
380 
381 	if (is_imx8mm())
382 		val &= 0x7;
383 	else
384 		val &= 0x3;
385 
386 	switch(val) {
387 	case OCOTP_TESTER3_SPEED_GRADE0:
388 		return 800000000;
389 	case OCOTP_TESTER3_SPEED_GRADE1:
390 		return (is_mx7() ? 500000000 : (is_imx8mq() ? 1000000000 : 1200000000));
391 	case OCOTP_TESTER3_SPEED_GRADE2:
392 		return (is_mx7() ? 1000000000 : (is_imx8mq() ? 1300000000 : 1600000000));
393 	case OCOTP_TESTER3_SPEED_GRADE3:
394 		return (is_mx7() ? 1200000000 : (is_imx8mq() ? 1500000000 : 1800000000));
395 	case OCOTP_TESTER3_SPEED_GRADE4:
396 		return 2000000000;
397 	}
398 
399 	return 0;
400 }
401 
402 /*
403  * OCOTP_TESTER3[7:6] (see Fusemap Description Table offset 0x440)
404  * defines a 2-bit SPEED_GRADING
405  */
406 #define OCOTP_TESTER3_TEMP_SHIFT	6
407 
408 /* iMX8MP uses OCOTP_TESTER3[6:5] for Market segment */
409 #define IMX8MP_OCOTP_TESTER3_TEMP_SHIFT	5
410 
get_cpu_temp_grade(int * minc,int * maxc)411 u32 get_cpu_temp_grade(int *minc, int *maxc)
412 {
413 	struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR;
414 	struct fuse_bank *bank = &ocotp->bank[1];
415 	struct fuse_bank1_regs *fuse =
416 		(struct fuse_bank1_regs *)bank->fuse_regs;
417 	uint32_t val;
418 
419 	val = readl(&fuse->tester3);
420 	if (is_imx8mp())
421 		val >>= IMX8MP_OCOTP_TESTER3_TEMP_SHIFT;
422 	else
423 		val >>= OCOTP_TESTER3_TEMP_SHIFT;
424 	val &= 0x3;
425 
426 	if (minc && maxc) {
427 		if (val == TEMP_AUTOMOTIVE) {
428 			*minc = -40;
429 			*maxc = 125;
430 		} else if (val == TEMP_INDUSTRIAL) {
431 			*minc = -40;
432 			*maxc = 105;
433 		} else if (val == TEMP_EXTCOMMERCIAL) {
434 			*minc = -20;
435 			*maxc = 105;
436 		} else {
437 			*minc = 0;
438 			*maxc = 95;
439 		}
440 	}
441 	return val;
442 }
443 #endif
444 
445 #if defined(CONFIG_MX7) || defined(CONFIG_IMX8MQ) || defined(CONFIG_IMX8MM)
get_boot_device(void)446 enum boot_device get_boot_device(void)
447 {
448 	struct bootrom_sw_info **p =
449 		(struct bootrom_sw_info **)(ulong)ROM_SW_INFO_ADDR;
450 
451 	enum boot_device boot_dev = SD1_BOOT;
452 	u8 boot_type = (*p)->boot_dev_type;
453 	u8 boot_instance = (*p)->boot_dev_instance;
454 
455 	switch (boot_type) {
456 	case BOOT_TYPE_SD:
457 		boot_dev = boot_instance + SD1_BOOT;
458 		break;
459 	case BOOT_TYPE_MMC:
460 		boot_dev = boot_instance + MMC1_BOOT;
461 		break;
462 	case BOOT_TYPE_NAND:
463 		boot_dev = NAND_BOOT;
464 		break;
465 	case BOOT_TYPE_QSPI:
466 		boot_dev = QSPI_BOOT;
467 		break;
468 	case BOOT_TYPE_WEIM:
469 		boot_dev = WEIM_NOR_BOOT;
470 		break;
471 	case BOOT_TYPE_SPINOR:
472 		boot_dev = SPI_NOR_BOOT;
473 		break;
474 	case BOOT_TYPE_USB:
475 		boot_dev = USB_BOOT;
476 		break;
477 	default:
478 #ifdef CONFIG_IMX8M
479 		if (((readl(SRC_BASE_ADDR + 0x58) & 0x00007FFF) >> 12) == 0x4)
480 			boot_dev = QSPI_BOOT;
481 #endif
482 		break;
483 	}
484 
485 	return boot_dev;
486 }
487 #endif
488 
489 #ifdef CONFIG_NXP_BOARD_REVISION
nxp_board_rev(void)490 int nxp_board_rev(void)
491 {
492 	/*
493 	 * Get Board ID information from OCOTP_GP1[15:8]
494 	 * RevA: 0x1
495 	 * RevB: 0x2
496 	 * RevC: 0x3
497 	 */
498 	struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR;
499 	struct fuse_bank *bank = &ocotp->bank[4];
500 	struct fuse_bank4_regs *fuse =
501 			(struct fuse_bank4_regs *)bank->fuse_regs;
502 
503 	return (readl(&fuse->gp1) >> 8 & 0x0F);
504 }
505 
nxp_board_rev_string(void)506 char nxp_board_rev_string(void)
507 {
508 	const char *rev = "A";
509 
510 	return (*rev + nxp_board_rev() - 1);
511 }
512 #endif
513 
reset_cpu(void)514 __weak void reset_cpu(void)
515 {
516 }
517