1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2017 NXP
4  *
5  * Peng Fan <peng.fan@nxp.com>
6  */
7 
8 #include <common.h>
9 #include <command.h>
10 #include <asm/arch/clock.h>
11 #include <asm/arch/imx-regs.h>
12 #include <asm/io.h>
13 #include <asm/arch/sys_proto.h>
14 #include <errno.h>
15 #include <linux/delay.h>
16 #include <linux/iopoll.h>
17 
18 static struct anamix_pll *ana_pll = (struct anamix_pll *)ANATOP_BASE_ADDR;
19 
20 static u32 get_root_clk(enum clk_root_index clock_id);
21 
decode_frac_pll(enum clk_root_src frac_pll)22 static u32 decode_frac_pll(enum clk_root_src frac_pll)
23 {
24 	u32 pll_cfg0, pll_cfg1, pllout;
25 	u32 pll_refclk_sel, pll_refclk;
26 	u32 divr_val, divq_val, divf_val, divff, divfi;
27 	u32 pllout_div_shift, pllout_div_mask, pllout_div;
28 
29 	switch (frac_pll) {
30 	case ARM_PLL_CLK:
31 		pll_cfg0 = readl(&ana_pll->arm_pll_cfg0);
32 		pll_cfg1 = readl(&ana_pll->arm_pll_cfg1);
33 		pllout_div_shift = HW_FRAC_ARM_PLL_DIV_SHIFT;
34 		pllout_div_mask = HW_FRAC_ARM_PLL_DIV_MASK;
35 		break;
36 	default:
37 		printf("Frac PLL %d not supporte\n", frac_pll);
38 		return 0;
39 	}
40 
41 	pllout_div = readl(&ana_pll->frac_pllout_div_cfg);
42 	pllout_div = (pllout_div & pllout_div_mask) >> pllout_div_shift;
43 
44 	/* Power down */
45 	if (pll_cfg0 & FRAC_PLL_PD_MASK)
46 		return 0;
47 
48 	/* output not enabled */
49 	if ((pll_cfg0 & FRAC_PLL_CLKE_MASK) == 0)
50 		return 0;
51 
52 	pll_refclk_sel = pll_cfg0 & FRAC_PLL_REFCLK_SEL_MASK;
53 
54 	if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_OSC_25M)
55 		pll_refclk = 25000000u;
56 	else if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_OSC_27M)
57 		pll_refclk = 27000000u;
58 	else if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_HDMI_PHY_27M)
59 		pll_refclk = 27000000u;
60 	else
61 		pll_refclk = 0;
62 
63 	if (pll_cfg0 & FRAC_PLL_BYPASS_MASK)
64 		return pll_refclk;
65 
66 	divr_val = (pll_cfg0 & FRAC_PLL_REFCLK_DIV_VAL_MASK) >>
67 		FRAC_PLL_REFCLK_DIV_VAL_SHIFT;
68 	divq_val = pll_cfg0 & FRAC_PLL_OUTPUT_DIV_VAL_MASK;
69 
70 	divff = (pll_cfg1 & FRAC_PLL_FRAC_DIV_CTL_MASK) >>
71 		FRAC_PLL_FRAC_DIV_CTL_SHIFT;
72 	divfi = pll_cfg1 & FRAC_PLL_INT_DIV_CTL_MASK;
73 
74 	divf_val = 1 + divfi + divff / (1 << 24);
75 
76 	pllout = pll_refclk / (divr_val + 1) * 8 * divf_val /
77 		((divq_val + 1) * 2);
78 
79 	return pllout / (pllout_div + 1);
80 }
81 
decode_sscg_pll(enum clk_root_src sscg_pll)82 static u32 decode_sscg_pll(enum clk_root_src sscg_pll)
83 {
84 	u32 pll_cfg0, pll_cfg1, pll_cfg2;
85 	u32 pll_refclk_sel, pll_refclk;
86 	u32 divr1, divr2, divf1, divf2, divq, div;
87 	u32 sse;
88 	u32 pll_clke;
89 	u32 pllout_div_shift, pllout_div_mask, pllout_div;
90 	u32 pllout;
91 
92 	switch (sscg_pll) {
93 	case SYSTEM_PLL1_800M_CLK:
94 	case SYSTEM_PLL1_400M_CLK:
95 	case SYSTEM_PLL1_266M_CLK:
96 	case SYSTEM_PLL1_200M_CLK:
97 	case SYSTEM_PLL1_160M_CLK:
98 	case SYSTEM_PLL1_133M_CLK:
99 	case SYSTEM_PLL1_100M_CLK:
100 	case SYSTEM_PLL1_80M_CLK:
101 	case SYSTEM_PLL1_40M_CLK:
102 		pll_cfg0 = readl(&ana_pll->sys_pll1_cfg0);
103 		pll_cfg1 = readl(&ana_pll->sys_pll1_cfg1);
104 		pll_cfg2 = readl(&ana_pll->sys_pll1_cfg2);
105 		pllout_div_shift = HW_SSCG_SYSTEM_PLL1_DIV_SHIFT;
106 		pllout_div_mask = HW_SSCG_SYSTEM_PLL1_DIV_MASK;
107 		break;
108 	case SYSTEM_PLL2_1000M_CLK:
109 	case SYSTEM_PLL2_500M_CLK:
110 	case SYSTEM_PLL2_333M_CLK:
111 	case SYSTEM_PLL2_250M_CLK:
112 	case SYSTEM_PLL2_200M_CLK:
113 	case SYSTEM_PLL2_166M_CLK:
114 	case SYSTEM_PLL2_125M_CLK:
115 	case SYSTEM_PLL2_100M_CLK:
116 	case SYSTEM_PLL2_50M_CLK:
117 		pll_cfg0 = readl(&ana_pll->sys_pll2_cfg0);
118 		pll_cfg1 = readl(&ana_pll->sys_pll2_cfg1);
119 		pll_cfg2 = readl(&ana_pll->sys_pll2_cfg2);
120 		pllout_div_shift = HW_SSCG_SYSTEM_PLL2_DIV_SHIFT;
121 		pllout_div_mask = HW_SSCG_SYSTEM_PLL2_DIV_MASK;
122 		break;
123 	case SYSTEM_PLL3_CLK:
124 		pll_cfg0 = readl(&ana_pll->sys_pll3_cfg0);
125 		pll_cfg1 = readl(&ana_pll->sys_pll3_cfg1);
126 		pll_cfg2 = readl(&ana_pll->sys_pll3_cfg2);
127 		pllout_div_shift = HW_SSCG_SYSTEM_PLL3_DIV_SHIFT;
128 		pllout_div_mask = HW_SSCG_SYSTEM_PLL3_DIV_MASK;
129 		break;
130 	case DRAM_PLL1_CLK:
131 		pll_cfg0 = readl(&ana_pll->dram_pll_cfg0);
132 		pll_cfg1 = readl(&ana_pll->dram_pll_cfg1);
133 		pll_cfg2 = readl(&ana_pll->dram_pll_cfg2);
134 		pllout_div_shift = HW_SSCG_DRAM_PLL_DIV_SHIFT;
135 		pllout_div_mask = HW_SSCG_DRAM_PLL_DIV_MASK;
136 		break;
137 	default:
138 		printf("sscg pll %d not supporte\n", sscg_pll);
139 		return 0;
140 	}
141 
142 	switch (sscg_pll) {
143 	case DRAM_PLL1_CLK:
144 		pll_clke = SSCG_PLL_DRAM_PLL_CLKE_MASK;
145 		div = 1;
146 		break;
147 	case SYSTEM_PLL3_CLK:
148 		pll_clke = SSCG_PLL_PLL3_CLKE_MASK;
149 		div = 1;
150 		break;
151 	case SYSTEM_PLL2_1000M_CLK:
152 	case SYSTEM_PLL1_800M_CLK:
153 		pll_clke = SSCG_PLL_CLKE_MASK;
154 		div = 1;
155 		break;
156 	case SYSTEM_PLL2_500M_CLK:
157 	case SYSTEM_PLL1_400M_CLK:
158 		pll_clke = SSCG_PLL_DIV2_CLKE_MASK;
159 		div = 2;
160 		break;
161 	case SYSTEM_PLL2_333M_CLK:
162 	case SYSTEM_PLL1_266M_CLK:
163 		pll_clke = SSCG_PLL_DIV3_CLKE_MASK;
164 		div = 3;
165 		break;
166 	case SYSTEM_PLL2_250M_CLK:
167 	case SYSTEM_PLL1_200M_CLK:
168 		pll_clke = SSCG_PLL_DIV4_CLKE_MASK;
169 		div = 4;
170 		break;
171 	case SYSTEM_PLL2_200M_CLK:
172 	case SYSTEM_PLL1_160M_CLK:
173 		pll_clke = SSCG_PLL_DIV5_CLKE_MASK;
174 		div = 5;
175 		break;
176 	case SYSTEM_PLL2_166M_CLK:
177 	case SYSTEM_PLL1_133M_CLK:
178 		pll_clke = SSCG_PLL_DIV6_CLKE_MASK;
179 		div = 6;
180 		break;
181 	case SYSTEM_PLL2_125M_CLK:
182 	case SYSTEM_PLL1_100M_CLK:
183 		pll_clke = SSCG_PLL_DIV8_CLKE_MASK;
184 		div = 8;
185 		break;
186 	case SYSTEM_PLL2_100M_CLK:
187 	case SYSTEM_PLL1_80M_CLK:
188 		pll_clke = SSCG_PLL_DIV10_CLKE_MASK;
189 		div = 10;
190 		break;
191 	case SYSTEM_PLL2_50M_CLK:
192 	case SYSTEM_PLL1_40M_CLK:
193 		pll_clke = SSCG_PLL_DIV20_CLKE_MASK;
194 		div = 20;
195 		break;
196 	default:
197 		printf("sscg pll %d not supporte\n", sscg_pll);
198 		return 0;
199 	}
200 
201 	/* Power down */
202 	if (pll_cfg0 & SSCG_PLL_PD_MASK)
203 		return 0;
204 
205 	/* output not enabled */
206 	if ((pll_cfg0 & pll_clke) == 0)
207 		return 0;
208 
209 	pllout_div = readl(&ana_pll->sscg_pllout_div_cfg);
210 	pllout_div = (pllout_div & pllout_div_mask) >> pllout_div_shift;
211 
212 	pll_refclk_sel = pll_cfg0 & SSCG_PLL_REFCLK_SEL_MASK;
213 
214 	if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_OSC_25M)
215 		pll_refclk = 25000000u;
216 	else if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_OSC_27M)
217 		pll_refclk = 27000000u;
218 	else if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_HDMI_PHY_27M)
219 		pll_refclk = 27000000u;
220 	else
221 		pll_refclk = 0;
222 
223 	/* We assume bypass1/2 are the same value */
224 	if ((pll_cfg0 & SSCG_PLL_BYPASS1_MASK) ||
225 	    (pll_cfg0 & SSCG_PLL_BYPASS2_MASK))
226 		return pll_refclk;
227 
228 	divr1 = (pll_cfg2 & SSCG_PLL_REF_DIVR1_MASK) >>
229 		SSCG_PLL_REF_DIVR1_SHIFT;
230 	divr2 = (pll_cfg2 & SSCG_PLL_REF_DIVR2_MASK) >>
231 		SSCG_PLL_REF_DIVR2_SHIFT;
232 	divf1 = (pll_cfg2 & SSCG_PLL_FEEDBACK_DIV_F1_MASK) >>
233 		SSCG_PLL_FEEDBACK_DIV_F1_SHIFT;
234 	divf2 = (pll_cfg2 & SSCG_PLL_FEEDBACK_DIV_F2_MASK) >>
235 		SSCG_PLL_FEEDBACK_DIV_F2_SHIFT;
236 	divq = (pll_cfg2 & SSCG_PLL_OUTPUT_DIV_VAL_MASK) >>
237 		SSCG_PLL_OUTPUT_DIV_VAL_SHIFT;
238 	sse = pll_cfg1 & SSCG_PLL_SSE_MASK;
239 
240 	if (sse)
241 		sse = 8;
242 	else
243 		sse = 2;
244 
245 	pllout = pll_refclk / (divr1 + 1) * sse * (divf1 + 1) /
246 		(divr2 + 1) * (divf2 + 1) / (divq + 1);
247 
248 	return pllout / (pllout_div + 1) / div;
249 }
250 
get_root_src_clk(enum clk_root_src root_src)251 static u32 get_root_src_clk(enum clk_root_src root_src)
252 {
253 	switch (root_src) {
254 	case OSC_25M_CLK:
255 		return 25000000;
256 	case OSC_27M_CLK:
257 		return 27000000;
258 	case OSC_32K_CLK:
259 		return 32768;
260 	case ARM_PLL_CLK:
261 		return decode_frac_pll(root_src);
262 	case SYSTEM_PLL1_800M_CLK:
263 	case SYSTEM_PLL1_400M_CLK:
264 	case SYSTEM_PLL1_266M_CLK:
265 	case SYSTEM_PLL1_200M_CLK:
266 	case SYSTEM_PLL1_160M_CLK:
267 	case SYSTEM_PLL1_133M_CLK:
268 	case SYSTEM_PLL1_100M_CLK:
269 	case SYSTEM_PLL1_80M_CLK:
270 	case SYSTEM_PLL1_40M_CLK:
271 	case SYSTEM_PLL2_1000M_CLK:
272 	case SYSTEM_PLL2_500M_CLK:
273 	case SYSTEM_PLL2_333M_CLK:
274 	case SYSTEM_PLL2_250M_CLK:
275 	case SYSTEM_PLL2_200M_CLK:
276 	case SYSTEM_PLL2_166M_CLK:
277 	case SYSTEM_PLL2_125M_CLK:
278 	case SYSTEM_PLL2_100M_CLK:
279 	case SYSTEM_PLL2_50M_CLK:
280 	case SYSTEM_PLL3_CLK:
281 		return decode_sscg_pll(root_src);
282 	case ARM_A53_ALT_CLK:
283 		return get_root_clk(ARM_A53_CLK_ROOT);
284 	default:
285 		return 0;
286 	}
287 
288 	return 0;
289 }
290 
get_root_clk(enum clk_root_index clock_id)291 static u32 get_root_clk(enum clk_root_index clock_id)
292 {
293 	enum clk_root_src root_src;
294 	u32 post_podf, pre_podf, root_src_clk;
295 
296 	if (clock_root_enabled(clock_id) <= 0)
297 		return 0;
298 
299 	if (clock_get_prediv(clock_id, &pre_podf) < 0)
300 		return 0;
301 
302 	if (clock_get_postdiv(clock_id, &post_podf) < 0)
303 		return 0;
304 
305 	if (clock_get_src(clock_id, &root_src) < 0)
306 		return 0;
307 
308 	root_src_clk = get_root_src_clk(root_src);
309 
310 	return root_src_clk / (post_podf + 1) / (pre_podf + 1);
311 }
312 
313 #ifdef CONFIG_IMX_HAB
hab_caam_clock_enable(unsigned char enable)314 void hab_caam_clock_enable(unsigned char enable)
315 {
316 	/* The CAAM clock is always on for iMX8M */
317 }
318 #endif
319 
320 #ifdef CONFIG_MXC_OCOTP
enable_ocotp_clk(unsigned char enable)321 void enable_ocotp_clk(unsigned char enable)
322 {
323 	clock_enable(CCGR_OCOTP, !!enable);
324 }
325 #endif
326 
enable_i2c_clk(unsigned char enable,unsigned int i2c_num)327 int enable_i2c_clk(unsigned char enable, unsigned int i2c_num)
328 {
329 	/* 0 - 3 is valid i2c num */
330 	if (i2c_num > 3)
331 		return -EINVAL;
332 
333 	clock_enable(CCGR_I2C1 + i2c_num, !!enable);
334 
335 	return 0;
336 }
337 
get_arm_core_clk(void)338 u32 get_arm_core_clk(void)
339 {
340 	enum clk_root_src root_src;
341 	u32 root_src_clk;
342 
343 	if (clock_get_src(CORE_SEL_CFG, &root_src) < 0)
344 		return 0;
345 
346 	root_src_clk = get_root_src_clk(root_src);
347 
348 	return root_src_clk;
349 }
350 
mxc_get_clock(enum mxc_clock clk)351 unsigned int mxc_get_clock(enum mxc_clock clk)
352 {
353 	u32 val;
354 
355 	switch (clk) {
356 	case MXC_ARM_CLK:
357 		return get_arm_core_clk();
358 	case MXC_IPG_CLK:
359 		clock_get_target_val(IPG_CLK_ROOT, &val);
360 		val = val & 0x3;
361 		return get_root_clk(AHB_CLK_ROOT) / (val + 1);
362 	case MXC_CSPI_CLK:
363 		return get_root_clk(ECSPI1_CLK_ROOT);
364 	case MXC_ESDHC_CLK:
365 		return get_root_clk(USDHC1_CLK_ROOT);
366 	case MXC_ESDHC2_CLK:
367 		return get_root_clk(USDHC2_CLK_ROOT);
368 	case MXC_I2C_CLK:
369 		return get_root_clk(I2C1_CLK_ROOT);
370 	case MXC_UART_CLK:
371 		return get_root_clk(UART1_CLK_ROOT);
372 	case MXC_QSPI_CLK:
373 		return get_root_clk(QSPI_CLK_ROOT);
374 	default:
375 		return get_root_clk(clk);
376 	}
377 }
378 
imx_get_uartclk(void)379 u32 imx_get_uartclk(void)
380 {
381 	return mxc_get_clock(UART1_CLK_ROOT);
382 }
383 
mxs_set_lcdclk(u32 base_addr,u32 freq)384 void mxs_set_lcdclk(u32 base_addr, u32 freq)
385 {
386 	/*
387 	 * LCDIF_PIXEL_CLK: select 800MHz root clock,
388 	 * select pre divider 8, output is 100 MHz
389 	 */
390 	clock_set_target_val(LCDIF_PIXEL_CLK_ROOT, CLK_ROOT_ON |
391 			     CLK_ROOT_SOURCE_SEL(4) |
392 			     CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV8));
393 }
394 
init_wdog_clk(void)395 void init_wdog_clk(void)
396 {
397 	clock_enable(CCGR_WDOG1, 0);
398 	clock_enable(CCGR_WDOG2, 0);
399 	clock_enable(CCGR_WDOG3, 0);
400 	clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
401 			     CLK_ROOT_SOURCE_SEL(0));
402 	clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
403 			     CLK_ROOT_SOURCE_SEL(0));
404 	clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
405 			     CLK_ROOT_SOURCE_SEL(0));
406 	clock_enable(CCGR_WDOG1, 1);
407 	clock_enable(CCGR_WDOG2, 1);
408 	clock_enable(CCGR_WDOG3, 1);
409 }
410 
init_usb_clk(void)411 void init_usb_clk(void)
412 {
413 	if (!is_usb_boot()) {
414 		clock_enable(CCGR_USB_CTRL1, 0);
415 		clock_enable(CCGR_USB_CTRL2, 0);
416 		clock_enable(CCGR_USB_PHY1, 0);
417 		clock_enable(CCGR_USB_PHY2, 0);
418 		/* 500MHz */
419 		clock_set_target_val(USB_BUS_CLK_ROOT, CLK_ROOT_ON |
420 				     CLK_ROOT_SOURCE_SEL(1));
421 		/* 100MHz */
422 		clock_set_target_val(USB_CORE_REF_CLK_ROOT, CLK_ROOT_ON |
423 				     CLK_ROOT_SOURCE_SEL(1));
424 		/* 100MHz */
425 		clock_set_target_val(USB_PHY_REF_CLK_ROOT, CLK_ROOT_ON |
426 				     CLK_ROOT_SOURCE_SEL(1));
427 		clock_enable(CCGR_USB_CTRL1, 1);
428 		clock_enable(CCGR_USB_CTRL2, 1);
429 		clock_enable(CCGR_USB_PHY1, 1);
430 		clock_enable(CCGR_USB_PHY2, 1);
431 	}
432 }
433 
init_nand_clk(void)434 void init_nand_clk(void)
435 {
436 	clock_enable(CCGR_RAWNAND, 0);
437 	clock_set_target_val(NAND_CLK_ROOT,
438 			     CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(3) |
439 			     CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4));
440 	clock_enable(CCGR_RAWNAND, 1);
441 }
442 
init_uart_clk(u32 index)443 void init_uart_clk(u32 index)
444 {
445 	/* Set uart clock root 25M OSC */
446 	switch (index) {
447 	case 0:
448 		clock_enable(CCGR_UART1, 0);
449 		clock_set_target_val(UART1_CLK_ROOT, CLK_ROOT_ON |
450 				     CLK_ROOT_SOURCE_SEL(0));
451 		clock_enable(CCGR_UART1, 1);
452 		return;
453 	case 1:
454 		clock_enable(CCGR_UART2, 0);
455 		clock_set_target_val(UART2_CLK_ROOT, CLK_ROOT_ON |
456 				     CLK_ROOT_SOURCE_SEL(0));
457 		clock_enable(CCGR_UART2, 1);
458 		return;
459 	case 2:
460 		clock_enable(CCGR_UART3, 0);
461 		clock_set_target_val(UART3_CLK_ROOT, CLK_ROOT_ON |
462 				     CLK_ROOT_SOURCE_SEL(0));
463 		clock_enable(CCGR_UART3, 1);
464 		return;
465 	case 3:
466 		clock_enable(CCGR_UART4, 0);
467 		clock_set_target_val(UART4_CLK_ROOT, CLK_ROOT_ON |
468 				     CLK_ROOT_SOURCE_SEL(0));
469 		clock_enable(CCGR_UART4, 1);
470 		return;
471 	default:
472 		printf("Invalid uart index\n");
473 		return;
474 	}
475 }
476 
init_clk_usdhc(u32 index)477 void init_clk_usdhc(u32 index)
478 {
479 	/*
480 	 * set usdhc clock root
481 	 * sys pll1 400M
482 	 */
483 	switch (index) {
484 	case 0:
485 		clock_enable(CCGR_USDHC1, 0);
486 		clock_set_target_val(USDHC1_CLK_ROOT, CLK_ROOT_ON |
487 				     CLK_ROOT_SOURCE_SEL(1));
488 		clock_enable(CCGR_USDHC1, 1);
489 		return;
490 	case 1:
491 		clock_enable(CCGR_USDHC2, 0);
492 		clock_set_target_val(USDHC2_CLK_ROOT, CLK_ROOT_ON |
493 				     CLK_ROOT_SOURCE_SEL(1));
494 		clock_enable(CCGR_USDHC2, 1);
495 		return;
496 	default:
497 		printf("Invalid usdhc index\n");
498 		return;
499 	}
500 }
501 
set_clk_qspi(void)502 int set_clk_qspi(void)
503 {
504 	/*
505 	 * set qspi root
506 	 * sys pll1 100M
507 	 */
508 	clock_enable(CCGR_QSPI, 0);
509 	clock_set_target_val(QSPI_CLK_ROOT, CLK_ROOT_ON |
510 			     CLK_ROOT_SOURCE_SEL(7));
511 	clock_enable(CCGR_QSPI, 1);
512 
513 	return 0;
514 }
515 
516 #ifdef CONFIG_FEC_MXC
set_clk_enet(enum enet_freq type)517 int set_clk_enet(enum enet_freq type)
518 {
519 	u32 target;
520 	u32 enet1_ref;
521 
522 	switch (type) {
523 	case ENET_125MHZ:
524 		enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_125M_CLK;
525 		break;
526 	case ENET_50MHZ:
527 		enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_50M_CLK;
528 		break;
529 	case ENET_25MHZ:
530 		enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK;
531 		break;
532 	default:
533 		return -EINVAL;
534 	}
535 
536 	/* disable the clock first */
537 	clock_enable(CCGR_ENET1, 0);
538 	clock_enable(CCGR_SIM_ENET, 0);
539 
540 	/* set enet axi clock 266Mhz */
541 	target = CLK_ROOT_ON | ENET_AXI_CLK_ROOT_FROM_SYS1_PLL_266M |
542 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
543 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
544 	clock_set_target_val(ENET_AXI_CLK_ROOT, target);
545 
546 	target = CLK_ROOT_ON | enet1_ref |
547 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
548 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
549 	clock_set_target_val(ENET_REF_CLK_ROOT, target);
550 
551 	target = CLK_ROOT_ON |
552 		ENET1_TIME_CLK_ROOT_FROM_PLL_ENET_MAIN_100M_CLK |
553 		CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
554 		CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
555 	clock_set_target_val(ENET_TIMER_CLK_ROOT, target);
556 
557 	/* enable clock */
558 	clock_enable(CCGR_SIM_ENET, 1);
559 	clock_enable(CCGR_ENET1, 1);
560 
561 	return 0;
562 }
563 #endif
564 
imx_get_fecclk(void)565 u32 imx_get_fecclk(void)
566 {
567 	return get_root_clk(ENET_AXI_CLK_ROOT);
568 }
569 
570 static struct dram_bypass_clk_setting imx8mq_dram_bypass_tbl[] = {
571 	DRAM_BYPASS_ROOT_CONFIG(MHZ(100), 2, CLK_ROOT_PRE_DIV1, 2,
572 				CLK_ROOT_PRE_DIV2),
573 	DRAM_BYPASS_ROOT_CONFIG(MHZ(250), 3, CLK_ROOT_PRE_DIV2, 2,
574 				CLK_ROOT_PRE_DIV2),
575 	DRAM_BYPASS_ROOT_CONFIG(MHZ(400), 1, CLK_ROOT_PRE_DIV2, 3,
576 				CLK_ROOT_PRE_DIV2),
577 };
578 
dram_enable_bypass(ulong clk_val)579 void dram_enable_bypass(ulong clk_val)
580 {
581 	int i;
582 	struct dram_bypass_clk_setting *config;
583 
584 	for (i = 0; i < ARRAY_SIZE(imx8mq_dram_bypass_tbl); i++) {
585 		if (clk_val == imx8mq_dram_bypass_tbl[i].clk)
586 			break;
587 	}
588 
589 	if (i == ARRAY_SIZE(imx8mq_dram_bypass_tbl)) {
590 		printf("No matched freq table %lu\n", clk_val);
591 		return;
592 	}
593 
594 	config = &imx8mq_dram_bypass_tbl[i];
595 
596 	clock_set_target_val(DRAM_ALT_CLK_ROOT, CLK_ROOT_ON |
597 			     CLK_ROOT_SOURCE_SEL(config->alt_root_sel) |
598 			     CLK_ROOT_PRE_DIV(config->alt_pre_div));
599 	clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON |
600 			     CLK_ROOT_SOURCE_SEL(config->apb_root_sel) |
601 			     CLK_ROOT_PRE_DIV(config->apb_pre_div));
602 	clock_set_target_val(DRAM_SEL_CFG, CLK_ROOT_ON |
603 			     CLK_ROOT_SOURCE_SEL(1));
604 }
605 
dram_disable_bypass(void)606 void dram_disable_bypass(void)
607 {
608 	clock_set_target_val(DRAM_SEL_CFG, CLK_ROOT_ON |
609 			     CLK_ROOT_SOURCE_SEL(0));
610 	clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON |
611 			     CLK_ROOT_SOURCE_SEL(4) |
612 			     CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV5));
613 }
614 
615 #ifdef CONFIG_SPL_BUILD
dram_pll_init(ulong pll_val)616 void dram_pll_init(ulong pll_val)
617 {
618 	u32 val;
619 	void __iomem *pll_control_reg = &ana_pll->dram_pll_cfg0;
620 	void __iomem *pll_cfg_reg2 = &ana_pll->dram_pll_cfg2;
621 
622 	/* Bypass */
623 	setbits_le32(pll_control_reg, SSCG_PLL_BYPASS1_MASK);
624 	setbits_le32(pll_control_reg, SSCG_PLL_BYPASS2_MASK);
625 
626 	switch (pll_val) {
627 	case MHZ(800):
628 		val = readl(pll_cfg_reg2);
629 		val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
630 			 SSCG_PLL_FEEDBACK_DIV_F2_MASK |
631 			 SSCG_PLL_FEEDBACK_DIV_F1_MASK |
632 			 SSCG_PLL_REF_DIVR2_MASK);
633 		val |= SSCG_PLL_OUTPUT_DIV_VAL(0);
634 		val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(11);
635 		val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(39);
636 		val |= SSCG_PLL_REF_DIVR2_VAL(29);
637 		writel(val, pll_cfg_reg2);
638 		break;
639 	case MHZ(600):
640 		val = readl(pll_cfg_reg2);
641 		val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
642 			 SSCG_PLL_FEEDBACK_DIV_F2_MASK |
643 			 SSCG_PLL_FEEDBACK_DIV_F1_MASK |
644 			 SSCG_PLL_REF_DIVR2_MASK);
645 		val |= SSCG_PLL_OUTPUT_DIV_VAL(1);
646 		val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(17);
647 		val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(39);
648 		val |= SSCG_PLL_REF_DIVR2_VAL(29);
649 		writel(val, pll_cfg_reg2);
650 		break;
651 	case MHZ(400):
652 		val = readl(pll_cfg_reg2);
653 		val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
654 			 SSCG_PLL_FEEDBACK_DIV_F2_MASK |
655 			 SSCG_PLL_FEEDBACK_DIV_F1_MASK |
656 			 SSCG_PLL_REF_DIVR2_MASK);
657 		val |= SSCG_PLL_OUTPUT_DIV_VAL(1);
658 		val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(11);
659 		val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(39);
660 		val |= SSCG_PLL_REF_DIVR2_VAL(29);
661 		writel(val, pll_cfg_reg2);
662 		break;
663 	case MHZ(167):
664 		val = readl(pll_cfg_reg2);
665 		val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
666 			 SSCG_PLL_FEEDBACK_DIV_F2_MASK |
667 			 SSCG_PLL_FEEDBACK_DIV_F1_MASK |
668 			 SSCG_PLL_REF_DIVR2_MASK);
669 		val |= SSCG_PLL_OUTPUT_DIV_VAL(3);
670 		val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(8);
671 		val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(45);
672 		val |= SSCG_PLL_REF_DIVR2_VAL(30);
673 		writel(val, pll_cfg_reg2);
674 		break;
675 	default:
676 		break;
677 	}
678 
679 	/* Clear power down bit */
680 	clrbits_le32(pll_control_reg, SSCG_PLL_PD_MASK);
681 	/* Eanble ARM_PLL/SYS_PLL  */
682 	setbits_le32(pll_control_reg, SSCG_PLL_DRAM_PLL_CLKE_MASK);
683 
684 	/* Clear bypass */
685 	clrbits_le32(pll_control_reg, SSCG_PLL_BYPASS1_MASK);
686 	__udelay(100);
687 	clrbits_le32(pll_control_reg, SSCG_PLL_BYPASS2_MASK);
688 	/* Wait lock */
689 	while (!(readl(pll_control_reg) & SSCG_PLL_LOCK_MASK))
690 		;
691 }
692 
frac_pll_init(u32 pll,enum frac_pll_out_val val)693 static int frac_pll_init(u32 pll, enum frac_pll_out_val val)
694 {
695 	void __iomem *pll_cfg0, __iomem *pll_cfg1;
696 	u32 val_cfg0, val_cfg1, divq;
697 	int ret;
698 
699 	switch (pll) {
700 	case ANATOP_ARM_PLL:
701 		pll_cfg0 = &ana_pll->arm_pll_cfg0;
702 		pll_cfg1 = &ana_pll->arm_pll_cfg1;
703 
704 		if (val == FRAC_PLL_OUT_1000M) {
705 			val_cfg1 = FRAC_PLL_INT_DIV_CTL_VAL(49);
706 			divq = 0;
707 		} else {
708 			val_cfg1 = FRAC_PLL_INT_DIV_CTL_VAL(79);
709 			divq = 1;
710 		}
711 		val_cfg0 = FRAC_PLL_CLKE_MASK | FRAC_PLL_REFCLK_SEL_OSC_25M |
712 			FRAC_PLL_LOCK_SEL_MASK | FRAC_PLL_NEWDIV_VAL_MASK |
713 			FRAC_PLL_REFCLK_DIV_VAL(4) |
714 			FRAC_PLL_OUTPUT_DIV_VAL(divq);
715 		break;
716 	default:
717 		return -EINVAL;
718 	}
719 
720 	/* bypass the clock */
721 	setbits_le32(pll_cfg0, FRAC_PLL_BYPASS_MASK);
722 	/* Set the value */
723 	writel(val_cfg1, pll_cfg1);
724 	writel(val_cfg0 | FRAC_PLL_BYPASS_MASK, pll_cfg0);
725 	val_cfg0 = readl(pll_cfg0);
726 	/* unbypass the clock */
727 	clrbits_le32(pll_cfg0, FRAC_PLL_BYPASS_MASK);
728 	ret = readl_poll_timeout(pll_cfg0, val_cfg0,
729 				 val_cfg0 & FRAC_PLL_LOCK_MASK, 1);
730 	if (ret)
731 		printf("%s timeout\n", __func__);
732 	clrbits_le32(pll_cfg0, FRAC_PLL_NEWDIV_VAL_MASK);
733 
734 	return 0;
735 }
736 
737 
clock_init(void)738 int clock_init(void)
739 {
740 	u32 grade;
741 
742 	clock_set_target_val(ARM_A53_CLK_ROOT, CLK_ROOT_ON |
743 			     CLK_ROOT_SOURCE_SEL(0));
744 
745 	/*
746 	 * 8MQ only supports two grades: consumer and industrial.
747 	 * We set ARM clock to 1Ghz for consumer, 800Mhz for industrial
748 	 */
749 	grade = get_cpu_temp_grade(NULL, NULL);
750 	if (!grade)
751 		frac_pll_init(ANATOP_ARM_PLL, FRAC_PLL_OUT_1000M);
752 	else
753 		frac_pll_init(ANATOP_ARM_PLL, FRAC_PLL_OUT_800M);
754 
755 	/* Bypass CCM A53 ROOT, Switch to ARM PLL -> MUX-> CPU */
756 	clock_set_target_val(CORE_SEL_CFG, CLK_ROOT_SOURCE_SEL(1));
757 
758 	/*
759 	 * According to ANAMIX SPEC
760 	 * sys pll1 fixed at 800MHz
761 	 * sys pll2 fixed at 1GHz
762 	 * Here we only enable the outputs.
763 	 */
764 	setbits_le32(&ana_pll->sys_pll1_cfg0, SSCG_PLL_CLKE_MASK |
765 		     SSCG_PLL_DIV2_CLKE_MASK | SSCG_PLL_DIV3_CLKE_MASK |
766 		     SSCG_PLL_DIV4_CLKE_MASK | SSCG_PLL_DIV5_CLKE_MASK |
767 		     SSCG_PLL_DIV6_CLKE_MASK | SSCG_PLL_DIV8_CLKE_MASK |
768 		     SSCG_PLL_DIV10_CLKE_MASK | SSCG_PLL_DIV20_CLKE_MASK);
769 
770 	setbits_le32(&ana_pll->sys_pll2_cfg0, SSCG_PLL_CLKE_MASK |
771 		     SSCG_PLL_DIV2_CLKE_MASK | SSCG_PLL_DIV3_CLKE_MASK |
772 		     SSCG_PLL_DIV4_CLKE_MASK | SSCG_PLL_DIV5_CLKE_MASK |
773 		     SSCG_PLL_DIV6_CLKE_MASK | SSCG_PLL_DIV8_CLKE_MASK |
774 		     SSCG_PLL_DIV10_CLKE_MASK | SSCG_PLL_DIV20_CLKE_MASK);
775 
776 	clock_set_target_val(NAND_USDHC_BUS_CLK_ROOT, CLK_ROOT_ON |
777 			     CLK_ROOT_SOURCE_SEL(1));
778 
779 	init_wdog_clk();
780 	clock_enable(CCGR_TSENSOR, 1);
781 	clock_enable(CCGR_OCOTP, 1);
782 
783 	/* config GIC ROOT to sys_pll2_200m */
784 	clock_enable(CCGR_GIC, 0);
785 	clock_set_target_val(GIC_CLK_ROOT,
786 			     CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(1));
787 	clock_enable(CCGR_GIC, 1);
788 
789 	return 0;
790 }
791 #endif
792 
793 /*
794  * Dump some clockes.
795  */
796 #ifndef CONFIG_SPL_BUILD
do_imx8m_showclocks(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])797 static int do_imx8m_showclocks(struct cmd_tbl *cmdtp, int flag, int argc,
798 			       char *const argv[])
799 {
800 	u32 freq;
801 
802 	freq = decode_frac_pll(ARM_PLL_CLK);
803 	printf("ARM_PLL    %8d MHz\n", freq / 1000000);
804 	freq = decode_sscg_pll(DRAM_PLL1_CLK);
805 	printf("DRAM_PLL    %8d MHz\n", freq / 1000000);
806 	freq = decode_sscg_pll(SYSTEM_PLL1_800M_CLK);
807 	printf("SYS_PLL1_800    %8d MHz\n", freq / 1000000);
808 	freq = decode_sscg_pll(SYSTEM_PLL1_400M_CLK);
809 	printf("SYS_PLL1_400    %8d MHz\n", freq / 1000000);
810 	freq = decode_sscg_pll(SYSTEM_PLL1_266M_CLK);
811 	printf("SYS_PLL1_266    %8d MHz\n", freq / 1000000);
812 	freq = decode_sscg_pll(SYSTEM_PLL1_200M_CLK);
813 	printf("SYS_PLL1_200    %8d MHz\n", freq / 1000000);
814 	freq = decode_sscg_pll(SYSTEM_PLL1_160M_CLK);
815 	printf("SYS_PLL1_160    %8d MHz\n", freq / 1000000);
816 	freq = decode_sscg_pll(SYSTEM_PLL1_133M_CLK);
817 	printf("SYS_PLL1_133    %8d MHz\n", freq / 1000000);
818 	freq = decode_sscg_pll(SYSTEM_PLL1_100M_CLK);
819 	printf("SYS_PLL1_100    %8d MHz\n", freq / 1000000);
820 	freq = decode_sscg_pll(SYSTEM_PLL1_80M_CLK);
821 	printf("SYS_PLL1_80    %8d MHz\n", freq / 1000000);
822 	freq = decode_sscg_pll(SYSTEM_PLL1_40M_CLK);
823 	printf("SYS_PLL1_40    %8d MHz\n", freq / 1000000);
824 	freq = decode_sscg_pll(SYSTEM_PLL2_1000M_CLK);
825 	printf("SYS_PLL2_1000    %8d MHz\n", freq / 1000000);
826 	freq = decode_sscg_pll(SYSTEM_PLL2_500M_CLK);
827 	printf("SYS_PLL2_500    %8d MHz\n", freq / 1000000);
828 	freq = decode_sscg_pll(SYSTEM_PLL2_333M_CLK);
829 	printf("SYS_PLL2_333    %8d MHz\n", freq / 1000000);
830 	freq = decode_sscg_pll(SYSTEM_PLL2_250M_CLK);
831 	printf("SYS_PLL2_250    %8d MHz\n", freq / 1000000);
832 	freq = decode_sscg_pll(SYSTEM_PLL2_200M_CLK);
833 	printf("SYS_PLL2_200    %8d MHz\n", freq / 1000000);
834 	freq = decode_sscg_pll(SYSTEM_PLL2_166M_CLK);
835 	printf("SYS_PLL2_166    %8d MHz\n", freq / 1000000);
836 	freq = decode_sscg_pll(SYSTEM_PLL2_125M_CLK);
837 	printf("SYS_PLL2_125    %8d MHz\n", freq / 1000000);
838 	freq = decode_sscg_pll(SYSTEM_PLL2_100M_CLK);
839 	printf("SYS_PLL2_100    %8d MHz\n", freq / 1000000);
840 	freq = decode_sscg_pll(SYSTEM_PLL2_50M_CLK);
841 	printf("SYS_PLL2_50    %8d MHz\n", freq / 1000000);
842 	freq = decode_sscg_pll(SYSTEM_PLL3_CLK);
843 	printf("SYS_PLL3       %8d MHz\n", freq / 1000000);
844 	freq = mxc_get_clock(UART1_CLK_ROOT);
845 	printf("UART1          %8d MHz\n", freq / 1000000);
846 	freq = mxc_get_clock(USDHC1_CLK_ROOT);
847 	printf("USDHC1         %8d MHz\n", freq / 1000000);
848 	freq = mxc_get_clock(QSPI_CLK_ROOT);
849 	printf("QSPI           %8d MHz\n", freq / 1000000);
850 	return 0;
851 }
852 
853 U_BOOT_CMD(
854 	clocks,	CONFIG_SYS_MAXARGS, 1, do_imx8m_showclocks,
855 	"display clocks",
856 	""
857 );
858 #endif
859