1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
4  */
5 
6 #include <common.h>
7 #include <command.h>
8 #include <div64.h>
9 #include <log.h>
10 #include <asm/io.h>
11 #include <linux/errno.h>
12 #include <asm/arch/imx-regs.h>
13 #include <asm/arch/crm_regs.h>
14 #include <asm/arch/clock.h>
15 #include <asm/arch/sys_proto.h>
16 
17 enum pll_clocks {
18 	PLL_SYS,	/* System PLL */
19 	PLL_BUS,	/* System Bus PLL*/
20 	PLL_USBOTG,	/* OTG USB PLL */
21 	PLL_ENET,	/* ENET PLL */
22 	PLL_AUDIO,	/* AUDIO PLL */
23 	PLL_VIDEO,	/* VIDEO PLL */
24 };
25 
26 struct mxc_ccm_reg *imx_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
27 
28 #ifdef CONFIG_MXC_OCOTP
enable_ocotp_clk(unsigned char enable)29 void enable_ocotp_clk(unsigned char enable)
30 {
31 	u32 reg;
32 
33 	reg = __raw_readl(&imx_ccm->CCGR2);
34 	if (enable)
35 		reg |= MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
36 	else
37 		reg &= ~MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
38 	__raw_writel(reg, &imx_ccm->CCGR2);
39 }
40 #endif
41 
42 #ifdef CONFIG_NAND_MXS
setup_gpmi_io_clk(u32 cfg)43 void setup_gpmi_io_clk(u32 cfg)
44 {
45 	/* Disable clocks per ERR007177 from MX6 errata */
46 	clrbits_le32(&imx_ccm->CCGR4,
47 		     MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
48 		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
49 		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
50 		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
51 		     MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
52 
53 #if defined(CONFIG_MX6SX)
54 	clrbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK);
55 
56 	clrsetbits_le32(&imx_ccm->cs2cdr,
57 			MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK |
58 			MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK |
59 			MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK,
60 			cfg);
61 
62 	setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK);
63 #else
64 	clrbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
65 
66 	clrsetbits_le32(&imx_ccm->cs2cdr,
67 			MXC_CCM_CS2CDR_ENFC_CLK_PODF_MASK |
68 			MXC_CCM_CS2CDR_ENFC_CLK_PRED_MASK |
69 			MXC_CCM_CS2CDR_ENFC_CLK_SEL_MASK,
70 			cfg);
71 
72 	setbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
73 #endif
74 	setbits_le32(&imx_ccm->CCGR4,
75 		     MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
76 		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
77 		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
78 		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
79 		     MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
80 }
81 #endif
82 
enable_usboh3_clk(unsigned char enable)83 void enable_usboh3_clk(unsigned char enable)
84 {
85 	u32 reg;
86 
87 	reg = __raw_readl(&imx_ccm->CCGR6);
88 	if (enable)
89 		reg |= MXC_CCM_CCGR6_USBOH3_MASK;
90 	else
91 		reg &= ~(MXC_CCM_CCGR6_USBOH3_MASK);
92 	__raw_writel(reg, &imx_ccm->CCGR6);
93 
94 }
95 
96 #if defined(CONFIG_FEC_MXC) && !defined(CONFIG_MX6SX)
enable_enet_clk(unsigned char enable)97 void enable_enet_clk(unsigned char enable)
98 {
99 	u32 mask, *addr;
100 
101 	if (is_mx6ull()) {
102 		mask = MXC_CCM_CCGR0_ENET_CLK_ENABLE_MASK;
103 		addr = &imx_ccm->CCGR0;
104 	} else if (is_mx6ul()) {
105 		mask = MXC_CCM_CCGR3_ENET_MASK;
106 		addr = &imx_ccm->CCGR3;
107 	} else {
108 		mask = MXC_CCM_CCGR1_ENET_MASK;
109 		addr = &imx_ccm->CCGR1;
110 	}
111 
112 	if (enable)
113 		setbits_le32(addr, mask);
114 	else
115 		clrbits_le32(addr, mask);
116 }
117 #endif
118 
119 #ifdef CONFIG_MXC_UART
enable_uart_clk(unsigned char enable)120 void enable_uart_clk(unsigned char enable)
121 {
122 	u32 mask;
123 
124 	if (is_mx6ul() || is_mx6ull())
125 		mask = MXC_CCM_CCGR5_UART_MASK;
126 	else
127 		mask = MXC_CCM_CCGR5_UART_MASK | MXC_CCM_CCGR5_UART_SERIAL_MASK;
128 
129 	if (enable)
130 		setbits_le32(&imx_ccm->CCGR5, mask);
131 	else
132 		clrbits_le32(&imx_ccm->CCGR5, mask);
133 }
134 #endif
135 
136 #ifdef CONFIG_MMC
enable_usdhc_clk(unsigned char enable,unsigned bus_num)137 int enable_usdhc_clk(unsigned char enable, unsigned bus_num)
138 {
139 	u32 mask;
140 
141 	if (bus_num > 3)
142 		return -EINVAL;
143 
144 	mask = MXC_CCM_CCGR_CG_MASK << (bus_num * 2 + 2);
145 	if (enable)
146 		setbits_le32(&imx_ccm->CCGR6, mask);
147 	else
148 		clrbits_le32(&imx_ccm->CCGR6, mask);
149 
150 	return 0;
151 }
152 #endif
153 
154 #ifdef CONFIG_SYS_I2C_MXC
155 /* i2c_num can be from 0 - 3 */
enable_i2c_clk(unsigned char enable,unsigned i2c_num)156 int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
157 {
158 	u32 reg;
159 	u32 mask;
160 	u32 *addr;
161 
162 	if (i2c_num > 3)
163 		return -EINVAL;
164 	if (i2c_num < 3) {
165 		mask = MXC_CCM_CCGR_CG_MASK
166 			<< (MXC_CCM_CCGR2_I2C1_SERIAL_OFFSET
167 			+ (i2c_num << 1));
168 		reg = __raw_readl(&imx_ccm->CCGR2);
169 		if (enable)
170 			reg |= mask;
171 		else
172 			reg &= ~mask;
173 		__raw_writel(reg, &imx_ccm->CCGR2);
174 	} else {
175 		if (is_mx6sll())
176 			return -EINVAL;
177 		if (is_mx6sx() || is_mx6ul() || is_mx6ull()) {
178 			mask = MXC_CCM_CCGR6_I2C4_MASK;
179 			addr = &imx_ccm->CCGR6;
180 		} else {
181 			mask = MXC_CCM_CCGR1_I2C4_SERIAL_MASK;
182 			addr = &imx_ccm->CCGR1;
183 		}
184 		reg = __raw_readl(addr);
185 		if (enable)
186 			reg |= mask;
187 		else
188 			reg &= ~mask;
189 		__raw_writel(reg, addr);
190 	}
191 	return 0;
192 }
193 #endif
194 
195 /* spi_num can be from 0 - SPI_MAX_NUM */
enable_spi_clk(unsigned char enable,unsigned spi_num)196 int enable_spi_clk(unsigned char enable, unsigned spi_num)
197 {
198 	u32 reg;
199 	u32 mask;
200 
201 	if (spi_num > SPI_MAX_NUM)
202 		return -EINVAL;
203 
204 	mask = MXC_CCM_CCGR_CG_MASK << (spi_num << 1);
205 	reg = __raw_readl(&imx_ccm->CCGR1);
206 	if (enable)
207 		reg |= mask;
208 	else
209 		reg &= ~mask;
210 	__raw_writel(reg, &imx_ccm->CCGR1);
211 	return 0;
212 }
decode_pll(enum pll_clocks pll,u32 infreq)213 static u32 decode_pll(enum pll_clocks pll, u32 infreq)
214 {
215 	u32 div, test_div, pll_num, pll_denom;
216 	u64 temp64;
217 
218 	switch (pll) {
219 	case PLL_SYS:
220 		div = __raw_readl(&imx_ccm->analog_pll_sys);
221 		div &= BM_ANADIG_PLL_SYS_DIV_SELECT;
222 
223 		return (infreq * div) >> 1;
224 	case PLL_BUS:
225 		div = __raw_readl(&imx_ccm->analog_pll_528);
226 		div &= BM_ANADIG_PLL_528_DIV_SELECT;
227 
228 		return infreq * (20 + (div << 1));
229 	case PLL_USBOTG:
230 		div = __raw_readl(&imx_ccm->analog_usb1_pll_480_ctrl);
231 		div &= BM_ANADIG_USB1_PLL_480_CTRL_DIV_SELECT;
232 
233 		return infreq * (20 + (div << 1));
234 	case PLL_ENET:
235 		div = __raw_readl(&imx_ccm->analog_pll_enet);
236 		div &= BM_ANADIG_PLL_ENET_DIV_SELECT;
237 
238 		return 25000000 * (div + (div >> 1) + 1);
239 	case PLL_AUDIO:
240 		div = __raw_readl(&imx_ccm->analog_pll_audio);
241 		if (!(div & BM_ANADIG_PLL_AUDIO_ENABLE))
242 			return 0;
243 		/* BM_ANADIG_PLL_AUDIO_BYPASS_CLK_SRC is ignored */
244 		if (div & BM_ANADIG_PLL_AUDIO_BYPASS)
245 			return MXC_HCLK;
246 		pll_num = __raw_readl(&imx_ccm->analog_pll_audio_num);
247 		pll_denom = __raw_readl(&imx_ccm->analog_pll_audio_denom);
248 		test_div = (div & BM_ANADIG_PLL_AUDIO_TEST_DIV_SELECT) >>
249 			BP_ANADIG_PLL_AUDIO_TEST_DIV_SELECT;
250 		div &= BM_ANADIG_PLL_AUDIO_DIV_SELECT;
251 		if (test_div == 3) {
252 			debug("Error test_div\n");
253 			return 0;
254 		}
255 		test_div = 1 << (2 - test_div);
256 
257 		return infreq * (div + pll_num / pll_denom) / test_div;
258 	case PLL_VIDEO:
259 		div = __raw_readl(&imx_ccm->analog_pll_video);
260 		if (!(div & BM_ANADIG_PLL_VIDEO_ENABLE))
261 			return 0;
262 		/* BM_ANADIG_PLL_AUDIO_BYPASS_CLK_SRC is ignored */
263 		if (div & BM_ANADIG_PLL_VIDEO_BYPASS)
264 			return MXC_HCLK;
265 		pll_num = __raw_readl(&imx_ccm->analog_pll_video_num);
266 		pll_denom = __raw_readl(&imx_ccm->analog_pll_video_denom);
267 		test_div = (div & BM_ANADIG_PLL_VIDEO_POST_DIV_SELECT) >>
268 			BP_ANADIG_PLL_VIDEO_POST_DIV_SELECT;
269 		div &= BM_ANADIG_PLL_VIDEO_DIV_SELECT;
270 		if (test_div == 3) {
271 			debug("Error test_div\n");
272 			return 0;
273 		}
274 		test_div = 1 << (2 - test_div);
275 
276 		temp64 = (u64)infreq;
277 		temp64 *= pll_num;
278 		do_div(temp64, pll_denom);
279 		return infreq * div + (unsigned long)temp64;
280 	default:
281 		return 0;
282 	}
283 	/* NOTREACHED */
284 }
mxc_get_pll_pfd(enum pll_clocks pll,int pfd_num)285 static u32 mxc_get_pll_pfd(enum pll_clocks pll, int pfd_num)
286 {
287 	u32 div;
288 	u64 freq;
289 
290 	switch (pll) {
291 	case PLL_BUS:
292 		if (!is_mx6ul() && !is_mx6ull()) {
293 			if (pfd_num == 3) {
294 				/* No PFD3 on PLL2 */
295 				return 0;
296 			}
297 		}
298 		div = __raw_readl(&imx_ccm->analog_pfd_528);
299 		freq = (u64)decode_pll(PLL_BUS, MXC_HCLK);
300 		break;
301 	case PLL_USBOTG:
302 		div = __raw_readl(&imx_ccm->analog_pfd_480);
303 		freq = (u64)decode_pll(PLL_USBOTG, MXC_HCLK);
304 		break;
305 	default:
306 		/* No PFD on other PLL					     */
307 		return 0;
308 	}
309 
310 	return lldiv(freq * 18, (div & ANATOP_PFD_FRAC_MASK(pfd_num)) >>
311 			      ANATOP_PFD_FRAC_SHIFT(pfd_num));
312 }
313 
get_mcu_main_clk(void)314 static u32 get_mcu_main_clk(void)
315 {
316 	u32 reg, freq;
317 
318 	reg = __raw_readl(&imx_ccm->cacrr);
319 	reg &= MXC_CCM_CACRR_ARM_PODF_MASK;
320 	reg >>= MXC_CCM_CACRR_ARM_PODF_OFFSET;
321 	freq = decode_pll(PLL_SYS, MXC_HCLK);
322 
323 	return freq / (reg + 1);
324 }
325 
get_periph_clk(void)326 u32 get_periph_clk(void)
327 {
328 	u32 reg, div = 0, freq = 0;
329 
330 	reg = __raw_readl(&imx_ccm->cbcdr);
331 	if (reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
332 		div = (reg & MXC_CCM_CBCDR_PERIPH_CLK2_PODF_MASK) >>
333 		       MXC_CCM_CBCDR_PERIPH_CLK2_PODF_OFFSET;
334 		reg = __raw_readl(&imx_ccm->cbcmr);
335 		reg &= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_MASK;
336 		reg >>= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_OFFSET;
337 
338 		switch (reg) {
339 		case 0:
340 			freq = decode_pll(PLL_USBOTG, MXC_HCLK);
341 			break;
342 		case 1:
343 		case 2:
344 			freq = MXC_HCLK;
345 			break;
346 		default:
347 			break;
348 		}
349 	} else {
350 		reg = __raw_readl(&imx_ccm->cbcmr);
351 		reg &= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK;
352 		reg >>= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_OFFSET;
353 
354 		switch (reg) {
355 		case 0:
356 			freq = decode_pll(PLL_BUS, MXC_HCLK);
357 			break;
358 		case 1:
359 			freq = mxc_get_pll_pfd(PLL_BUS, 2);
360 			break;
361 		case 2:
362 			freq = mxc_get_pll_pfd(PLL_BUS, 0);
363 			break;
364 		case 3:
365 			/* static / 2 divider */
366 			freq = mxc_get_pll_pfd(PLL_BUS, 2) / 2;
367 			break;
368 		default:
369 			break;
370 		}
371 	}
372 
373 	return freq / (div + 1);
374 }
375 
get_ipg_clk(void)376 static u32 get_ipg_clk(void)
377 {
378 	u32 reg, ipg_podf;
379 
380 	reg = __raw_readl(&imx_ccm->cbcdr);
381 	reg &= MXC_CCM_CBCDR_IPG_PODF_MASK;
382 	ipg_podf = reg >> MXC_CCM_CBCDR_IPG_PODF_OFFSET;
383 
384 	return get_ahb_clk() / (ipg_podf + 1);
385 }
386 
get_ipg_per_clk(void)387 static u32 get_ipg_per_clk(void)
388 {
389 	u32 reg, perclk_podf;
390 
391 	reg = __raw_readl(&imx_ccm->cscmr1);
392 	if (is_mx6sll() || is_mx6sl() || is_mx6sx() ||
393 	    is_mx6dqp() || is_mx6ul() || is_mx6ull()) {
394 		if (reg & MXC_CCM_CSCMR1_PER_CLK_SEL_MASK)
395 			return MXC_HCLK; /* OSC 24Mhz */
396 	}
397 
398 	perclk_podf = reg & MXC_CCM_CSCMR1_PERCLK_PODF_MASK;
399 
400 	return get_ipg_clk() / (perclk_podf + 1);
401 }
402 
get_uart_clk(void)403 static u32 get_uart_clk(void)
404 {
405 	u32 reg, uart_podf;
406 	u32 freq = decode_pll(PLL_USBOTG, MXC_HCLK) / 6; /* static divider */
407 	reg = __raw_readl(&imx_ccm->cscdr1);
408 
409 	if (is_mx6sl() || is_mx6sx() || is_mx6dqp() || is_mx6ul() ||
410 	    is_mx6sll() || is_mx6ull()) {
411 		if (reg & MXC_CCM_CSCDR1_UART_CLK_SEL)
412 			freq = MXC_HCLK;
413 	}
414 
415 	reg &= MXC_CCM_CSCDR1_UART_CLK_PODF_MASK;
416 	uart_podf = reg >> MXC_CCM_CSCDR1_UART_CLK_PODF_OFFSET;
417 
418 	return freq / (uart_podf + 1);
419 }
420 
get_lcd_clk(unsigned int ifnum)421 static u32 get_lcd_clk(unsigned int ifnum)
422 {
423 	u32 pll_rate;
424 	u32 pred, postd;
425 
426 	if (!is_mx6sx() && !is_mx6ul() && !is_mx6ull() && !is_mx6sl() &&
427 	    !is_mx6sll()) {
428 		debug("This chip does't support lcd\n");
429 		return 0;
430 	}
431 
432 	pll_rate = decode_pll(PLL_VIDEO, MXC_HCLK);
433 	if (ifnum == 1) {
434 		if (!is_mx6sl()) {
435 			pred = __raw_readl(&imx_ccm->cscdr2);
436 			pred &= MXC_CCM_CSCDR2_LCDIF1_PRE_DIV_MASK;
437 			pred = pred >> MXC_CCM_CSCDR2_LCDIF1_PRE_DIV_OFFSET;
438 
439 			postd = readl(&imx_ccm->cbcmr);
440 			postd &= MXC_CCM_CBCMR_LCDIF1_PODF_MASK;
441 			postd = postd >> MXC_CCM_CBCMR_LCDIF1_PODF_OFFSET;
442 		} else {
443 			pred = __raw_readl(&imx_ccm->cscdr2);
444 			pred &= MXC_CCM_CSCDR2_LCDIF_PIX_PRE_DIV_MASK;
445 			pred = pred >> MXC_CCM_CSCDR2_LCDIF_PIX_PRE_DIV_OFFSET;
446 
447 			postd = readl(&imx_ccm->cscmr1);
448 			postd &= MXC_CCM_CSCMR1_LCDIF_PIX_PODF_OFFSET;
449 			postd = postd >> MXC_CCM_CBCMR_LCDIF1_PODF_OFFSET;
450 		}
451 	} else if (ifnum == 2) {
452 		if (is_mx6sx()) {
453 			pred = __raw_readl(&imx_ccm->cscdr2);
454 			pred &= MXC_CCM_CSCDR2_LCDIF2_PRE_DIV_MASK;
455 			pred = pred >> MXC_CCM_CSCDR2_LCDIF2_PRE_DIV_OFFSET;
456 
457 			postd = readl(&imx_ccm->cscmr1);
458 			postd &= MXC_CCM_CSCMR1_LCDIF2_PODF_MASK;
459 			postd = postd >> MXC_CCM_CSCMR1_LCDIF2_PODF_OFFSET;
460 
461 		} else {
462 			goto if_err;
463 		}
464 	} else {
465 		goto if_err;
466 	}
467 
468 	return DIV_ROUND_UP_ULL((u64)pll_rate, (postd + 1) * (pred + 1));
469 
470 if_err:
471 	debug("This chip not support lcd iterface %d\n", ifnum);
472 	return 0;
473 }
474 
get_cspi_clk(void)475 static u32 get_cspi_clk(void)
476 {
477 	u32 reg, cspi_podf;
478 
479 	reg = __raw_readl(&imx_ccm->cscdr2);
480 	cspi_podf = (reg & MXC_CCM_CSCDR2_ECSPI_CLK_PODF_MASK) >>
481 		     MXC_CCM_CSCDR2_ECSPI_CLK_PODF_OFFSET;
482 
483 	if (is_mx6dqp() || is_mx6sl() || is_mx6sx() || is_mx6ul() ||
484 	    is_mx6sll() || is_mx6ull()) {
485 		if (reg & MXC_CCM_CSCDR2_ECSPI_CLK_SEL_MASK)
486 			return MXC_HCLK / (cspi_podf + 1);
487 	}
488 
489 	return	decode_pll(PLL_USBOTG, MXC_HCLK) / (8 * (cspi_podf + 1));
490 }
491 
get_axi_clk(void)492 static u32 get_axi_clk(void)
493 {
494 	u32 root_freq, axi_podf;
495 	u32 cbcdr =  __raw_readl(&imx_ccm->cbcdr);
496 
497 	axi_podf = cbcdr & MXC_CCM_CBCDR_AXI_PODF_MASK;
498 	axi_podf >>= MXC_CCM_CBCDR_AXI_PODF_OFFSET;
499 
500 	if (cbcdr & MXC_CCM_CBCDR_AXI_SEL) {
501 		if (cbcdr & MXC_CCM_CBCDR_AXI_ALT_SEL)
502 			root_freq = mxc_get_pll_pfd(PLL_USBOTG, 1);
503 		else
504 			root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
505 	} else
506 		root_freq = get_periph_clk();
507 
508 	return  root_freq / (axi_podf + 1);
509 }
510 
get_emi_slow_clk(void)511 static u32 get_emi_slow_clk(void)
512 {
513 	u32 emi_clk_sel, emi_slow_podf, cscmr1, root_freq = 0;
514 
515 	cscmr1 =  __raw_readl(&imx_ccm->cscmr1);
516 	emi_clk_sel = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_MASK;
517 	emi_clk_sel >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_OFFSET;
518 	emi_slow_podf = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_MASK;
519 	emi_slow_podf >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_OFFSET;
520 
521 	switch (emi_clk_sel) {
522 	case 0:
523 		root_freq = get_axi_clk();
524 		break;
525 	case 1:
526 		root_freq = decode_pll(PLL_USBOTG, MXC_HCLK);
527 		break;
528 	case 2:
529 		root_freq =  mxc_get_pll_pfd(PLL_BUS, 2);
530 		break;
531 	case 3:
532 		root_freq =  mxc_get_pll_pfd(PLL_BUS, 0);
533 		break;
534 	}
535 
536 	return root_freq / (emi_slow_podf + 1);
537 }
538 
get_mmdc_ch0_clk(void)539 static u32 get_mmdc_ch0_clk(void)
540 {
541 	u32 cbcmr = __raw_readl(&imx_ccm->cbcmr);
542 	u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
543 
544 	u32 freq, podf, per2_clk2_podf, pmu_misc2_audio_div;
545 
546 	if (is_mx6sx() || is_mx6ul() || is_mx6ull() || is_mx6sl() ||
547 	    is_mx6sll()) {
548 		podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH1_PODF_MASK) >>
549 			MXC_CCM_CBCDR_MMDC_CH1_PODF_OFFSET;
550 		if (cbcdr & MXC_CCM_CBCDR_PERIPH2_CLK_SEL) {
551 			per2_clk2_podf = (cbcdr & MXC_CCM_CBCDR_PERIPH2_CLK2_PODF_MASK) >>
552 				MXC_CCM_CBCDR_PERIPH2_CLK2_PODF_OFFSET;
553 			if (is_mx6sl()) {
554 				if (cbcmr & MXC_CCM_CBCMR_PERIPH2_CLK2_SEL)
555 					freq = MXC_HCLK;
556 				else
557 					freq = decode_pll(PLL_USBOTG, MXC_HCLK);
558 			} else {
559 				if (cbcmr & MXC_CCM_CBCMR_PERIPH2_CLK2_SEL)
560 					freq = decode_pll(PLL_BUS, MXC_HCLK);
561 				else
562 					freq = decode_pll(PLL_USBOTG, MXC_HCLK);
563 			}
564 		} else {
565 			per2_clk2_podf = 0;
566 			switch ((cbcmr &
567 				MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_MASK) >>
568 				MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_OFFSET) {
569 			case 0:
570 				freq = decode_pll(PLL_BUS, MXC_HCLK);
571 				break;
572 			case 1:
573 				freq = mxc_get_pll_pfd(PLL_BUS, 2);
574 				break;
575 			case 2:
576 				freq = mxc_get_pll_pfd(PLL_BUS, 0);
577 				break;
578 			case 3:
579 				if (is_mx6sl()) {
580 					freq = mxc_get_pll_pfd(PLL_BUS, 2) >> 1;
581 					break;
582 				}
583 
584 				pmu_misc2_audio_div = PMU_MISC2_AUDIO_DIV(__raw_readl(&imx_ccm->pmu_misc2));
585 				switch (pmu_misc2_audio_div) {
586 				case 0:
587 				case 2:
588 					pmu_misc2_audio_div = 1;
589 					break;
590 				case 1:
591 					pmu_misc2_audio_div = 2;
592 					break;
593 				case 3:
594 					pmu_misc2_audio_div = 4;
595 					break;
596 				}
597 				freq = decode_pll(PLL_AUDIO, MXC_HCLK) /
598 					pmu_misc2_audio_div;
599 				break;
600 			}
601 		}
602 		return freq / (podf + 1) / (per2_clk2_podf + 1);
603 	} else {
604 		podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH0_PODF_MASK) >>
605 			MXC_CCM_CBCDR_MMDC_CH0_PODF_OFFSET;
606 		return get_periph_clk() / (podf + 1);
607 	}
608 }
609 
610 #if defined(CONFIG_VIDEO_MXS)
enable_pll_video(u32 pll_div,u32 pll_num,u32 pll_denom,u32 post_div)611 static int enable_pll_video(u32 pll_div, u32 pll_num, u32 pll_denom,
612 			    u32 post_div)
613 {
614 	u32 reg = 0;
615 	ulong start;
616 
617 	debug("pll5 div = %d, num = %d, denom = %d\n",
618 	      pll_div, pll_num, pll_denom);
619 
620 	/* Power up PLL5 video */
621 	writel(BM_ANADIG_PLL_VIDEO_POWERDOWN |
622 	       BM_ANADIG_PLL_VIDEO_BYPASS |
623 	       BM_ANADIG_PLL_VIDEO_DIV_SELECT |
624 	       BM_ANADIG_PLL_VIDEO_POST_DIV_SELECT,
625 	       &imx_ccm->analog_pll_video_clr);
626 
627 	/* Set div, num and denom */
628 	switch (post_div) {
629 	case 1:
630 		writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
631 		       BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x2),
632 		       &imx_ccm->analog_pll_video_set);
633 		break;
634 	case 2:
635 		writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
636 		       BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x1),
637 		       &imx_ccm->analog_pll_video_set);
638 		break;
639 	case 4:
640 		writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
641 		       BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x0),
642 		       &imx_ccm->analog_pll_video_set);
643 		break;
644 	default:
645 		puts("Wrong test_div!\n");
646 		return -EINVAL;
647 	}
648 
649 	writel(BF_ANADIG_PLL_VIDEO_NUM_A(pll_num),
650 	       &imx_ccm->analog_pll_video_num);
651 	writel(BF_ANADIG_PLL_VIDEO_DENOM_B(pll_denom),
652 	       &imx_ccm->analog_pll_video_denom);
653 
654 	/* Wait PLL5 lock */
655 	start = get_timer(0);	/* Get current timestamp */
656 
657 	do {
658 		reg = readl(&imx_ccm->analog_pll_video);
659 		if (reg & BM_ANADIG_PLL_VIDEO_LOCK) {
660 			/* Enable PLL out */
661 			writel(BM_ANADIG_PLL_VIDEO_ENABLE,
662 			       &imx_ccm->analog_pll_video_set);
663 			return 0;
664 		}
665 	} while (get_timer(0) < (start + 10)); /* Wait 10ms */
666 
667 	puts("Lock PLL5 timeout\n");
668 
669 	return -ETIME;
670 }
671 
672 /*
673  * 24M--> PLL_VIDEO -> LCDIFx_PRED -> LCDIFx_PODF -> LCD
674  *
675  * 'freq' using KHz as unit, see driver/video/mxsfb.c.
676  */
mxs_set_lcdclk(u32 base_addr,u32 freq)677 void mxs_set_lcdclk(u32 base_addr, u32 freq)
678 {
679 	u32 reg = 0;
680 	u32 hck = MXC_HCLK / 1000;
681 	/* DIV_SELECT ranges from 27 to 54 */
682 	u32 min = hck * 27;
683 	u32 max = hck * 54;
684 	u32 temp, best = 0;
685 	u32 i, j, max_pred = 8, max_postd = 8, pred = 1, postd = 1;
686 	u32 pll_div, pll_num, pll_denom, post_div = 1;
687 
688 	debug("mxs_set_lcdclk, freq = %dKHz\n", freq);
689 
690 	if (!is_mx6sx() && !is_mx6ul() && !is_mx6ull() && !is_mx6sl() &&
691 	    !is_mx6sll()) {
692 		debug("This chip not support lcd!\n");
693 		return;
694 	}
695 
696 	if (!is_mx6sl()) {
697 		if (base_addr == LCDIF1_BASE_ADDR) {
698 			reg = readl(&imx_ccm->cscdr2);
699 			/* Can't change clocks when clock not from pre-mux */
700 			if ((reg & MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK) != 0)
701 				return;
702 		}
703 	}
704 
705 	if (is_mx6sx()) {
706 		reg = readl(&imx_ccm->cscdr2);
707 		/* Can't change clocks when clock not from pre-mux */
708 		if ((reg & MXC_CCM_CSCDR2_LCDIF2_CLK_SEL_MASK) != 0)
709 			return;
710 	}
711 
712 	temp = freq * max_pred * max_postd;
713 	if (temp < min) {
714 		/*
715 		 * Register: PLL_VIDEO
716 		 * Bit Field: POST_DIV_SELECT
717 		 * 00 — Divide by 4.
718 		 * 01 — Divide by 2.
719 		 * 10 — Divide by 1.
720 		 * 11 — Reserved
721 		 * No need to check post_div(1)
722 		 */
723 		for (post_div = 2; post_div <= 4; post_div <<= 1) {
724 			if ((temp * post_div) > min) {
725 				freq *= post_div;
726 				break;
727 			}
728 		}
729 
730 		if (post_div > 4) {
731 			printf("Fail to set rate to %dkhz", freq);
732 			return;
733 		}
734 	}
735 
736 	/* Choose the best pred and postd to match freq for lcd */
737 	for (i = 1; i <= max_pred; i++) {
738 		for (j = 1; j <= max_postd; j++) {
739 			temp = freq * i * j;
740 			if (temp > max || temp < min)
741 				continue;
742 			if (best == 0 || temp < best) {
743 				best = temp;
744 				pred = i;
745 				postd = j;
746 			}
747 		}
748 	}
749 
750 	if (best == 0) {
751 		printf("Fail to set rate to %dKHz", freq);
752 		return;
753 	}
754 
755 	debug("best %d, pred = %d, postd = %d\n", best, pred, postd);
756 
757 	pll_div = best / hck;
758 	pll_denom = 1000000;
759 	pll_num = (best - hck * pll_div) * pll_denom / hck;
760 
761 	/*
762 	 *                                  pll_num
763 	 *             (24MHz * (pll_div + --------- ))
764 	 *                                 pll_denom
765 	 *freq KHz =  --------------------------------
766 	 *             post_div * pred * postd * 1000
767 	 */
768 
769 	if (base_addr == LCDIF1_BASE_ADDR) {
770 		if (enable_pll_video(pll_div, pll_num, pll_denom, post_div))
771 			return;
772 
773 		enable_lcdif_clock(base_addr, 0);
774 		if (!is_mx6sl()) {
775 			/* Select pre-lcd clock to PLL5 and set pre divider */
776 			clrsetbits_le32(&imx_ccm->cscdr2,
777 					MXC_CCM_CSCDR2_LCDIF1_PRED_SEL_MASK |
778 					MXC_CCM_CSCDR2_LCDIF1_PRE_DIV_MASK,
779 					(0x2 << MXC_CCM_CSCDR2_LCDIF1_PRED_SEL_OFFSET) |
780 					((pred - 1) <<
781 					 MXC_CCM_CSCDR2_LCDIF1_PRE_DIV_OFFSET));
782 
783 			/* Set the post divider */
784 			clrsetbits_le32(&imx_ccm->cbcmr,
785 					MXC_CCM_CBCMR_LCDIF1_PODF_MASK,
786 					((postd - 1) <<
787 					MXC_CCM_CBCMR_LCDIF1_PODF_OFFSET));
788 		} else {
789 			/* Select pre-lcd clock to PLL5 and set pre divider */
790 			clrsetbits_le32(&imx_ccm->cscdr2,
791 					MXC_CCM_CSCDR2_LCDIF_PIX_CLK_SEL_MASK |
792 					MXC_CCM_CSCDR2_LCDIF_PIX_PRE_DIV_MASK,
793 					(0x2 << MXC_CCM_CSCDR2_LCDIF_PIX_CLK_SEL_OFFSET) |
794 					((pred - 1) <<
795 					 MXC_CCM_CSCDR2_LCDIF_PIX_PRE_DIV_OFFSET));
796 
797 			/* Set the post divider */
798 			clrsetbits_le32(&imx_ccm->cscmr1,
799 					MXC_CCM_CSCMR1_LCDIF_PIX_PODF_MASK,
800 					(((postd - 1)^0x6) <<
801 					 MXC_CCM_CSCMR1_LCDIF_PIX_PODF_OFFSET));
802 		}
803 
804 		enable_lcdif_clock(base_addr, 1);
805 		debug("pixel clock = %u\n", mxc_get_clock(MXC_LCDIF1_CLK));
806 	} else if (is_mx6sx()) {
807 		/* Setting LCDIF2 for i.MX6SX */
808 		if (enable_pll_video(pll_div, pll_num, pll_denom, post_div))
809 			return;
810 
811 		enable_lcdif_clock(base_addr, 0);
812 		/* Select pre-lcd clock to PLL5 and set pre divider */
813 		clrsetbits_le32(&imx_ccm->cscdr2,
814 				MXC_CCM_CSCDR2_LCDIF2_PRED_SEL_MASK |
815 				MXC_CCM_CSCDR2_LCDIF2_PRE_DIV_MASK,
816 				(0x2 << MXC_CCM_CSCDR2_LCDIF2_PRED_SEL_OFFSET) |
817 				((pred - 1) <<
818 				 MXC_CCM_CSCDR2_LCDIF2_PRE_DIV_OFFSET));
819 
820 		/* Set the post divider */
821 		clrsetbits_le32(&imx_ccm->cscmr1,
822 				MXC_CCM_CSCMR1_LCDIF2_PODF_MASK,
823 				((postd - 1) <<
824 				 MXC_CCM_CSCMR1_LCDIF2_PODF_OFFSET));
825 
826 		enable_lcdif_clock(base_addr, 1);
827 		debug("pixel clock = %u\n", mxc_get_clock(MXC_LCDIF2_CLK));
828 	}
829 }
830 
enable_lcdif_clock(u32 base_addr,bool enable)831 int enable_lcdif_clock(u32 base_addr, bool enable)
832 {
833 	u32 reg = 0;
834 	u32 lcdif_clk_sel_mask, lcdif_ccgr3_mask;
835 
836 	if (is_mx6sx()) {
837 		if ((base_addr != LCDIF1_BASE_ADDR) &&
838 		    (base_addr != LCDIF2_BASE_ADDR)) {
839 			puts("Wrong LCD interface!\n");
840 			return -EINVAL;
841 		}
842 		/* Set to pre-mux clock at default */
843 		lcdif_clk_sel_mask = (base_addr == LCDIF2_BASE_ADDR) ?
844 			MXC_CCM_CSCDR2_LCDIF2_CLK_SEL_MASK :
845 			MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK;
846 		lcdif_ccgr3_mask = (base_addr == LCDIF2_BASE_ADDR) ?
847 			(MXC_CCM_CCGR3_LCDIF2_PIX_MASK |
848 			 MXC_CCM_CCGR3_DISP_AXI_MASK) :
849 			(MXC_CCM_CCGR3_LCDIF1_PIX_MASK |
850 			 MXC_CCM_CCGR3_DISP_AXI_MASK);
851 	} else if (is_mx6ul() || is_mx6ull() || is_mx6sll()) {
852 		if (base_addr != LCDIF1_BASE_ADDR) {
853 			puts("Wrong LCD interface!\n");
854 			return -EINVAL;
855 		}
856 		/* Set to pre-mux clock at default */
857 		lcdif_clk_sel_mask = MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK;
858 		lcdif_ccgr3_mask =  MXC_CCM_CCGR3_LCDIF1_PIX_MASK;
859 	} else if (is_mx6sl()) {
860 		if (base_addr != LCDIF1_BASE_ADDR) {
861 			puts("Wrong LCD interface!\n");
862 			return -EINVAL;
863 		}
864 
865 		reg = readl(&imx_ccm->CCGR3);
866 		reg &= ~(MXC_CCM_CCGR3_LCDIF_AXI_MASK |
867 			 MXC_CCM_CCGR3_LCDIF_PIX_MASK);
868 		writel(reg, &imx_ccm->CCGR3);
869 
870 		if (enable) {
871 			reg = readl(&imx_ccm->cscdr3);
872 			reg &= ~MXC_CCM_CSCDR3_LCDIF_AXI_CLK_SEL_MASK;
873 			reg |= 1 << MXC_CCM_CSCDR3_LCDIF_AXI_CLK_SEL_OFFSET;
874 			writel(reg, &imx_ccm->cscdr3);
875 
876 			reg = readl(&imx_ccm->CCGR3);
877 			reg |= MXC_CCM_CCGR3_LCDIF_AXI_MASK |
878 				MXC_CCM_CCGR3_LCDIF_PIX_MASK;
879 			writel(reg, &imx_ccm->CCGR3);
880 		}
881 
882 		return 0;
883 	} else {
884 		return 0;
885 	}
886 
887 	/* Gate LCDIF clock first */
888 	reg = readl(&imx_ccm->CCGR3);
889 	reg &= ~lcdif_ccgr3_mask;
890 	writel(reg, &imx_ccm->CCGR3);
891 
892 	reg = readl(&imx_ccm->CCGR2);
893 	reg &= ~MXC_CCM_CCGR2_LCD_MASK;
894 	writel(reg, &imx_ccm->CCGR2);
895 
896 	if (enable) {
897 		/* Select pre-mux */
898 		reg = readl(&imx_ccm->cscdr2);
899 		reg &= ~lcdif_clk_sel_mask;
900 		writel(reg, &imx_ccm->cscdr2);
901 
902 		/* Enable the LCDIF pix clock */
903 		reg = readl(&imx_ccm->CCGR3);
904 		reg |= lcdif_ccgr3_mask;
905 		writel(reg, &imx_ccm->CCGR3);
906 
907 		reg = readl(&imx_ccm->CCGR2);
908 		reg |= MXC_CCM_CCGR2_LCD_MASK;
909 		writel(reg, &imx_ccm->CCGR2);
910 	}
911 
912 	return 0;
913 }
914 #endif
915 
916 #ifdef CONFIG_FSL_QSPI
917 /* qspi_num can be from 0 - 1 */
enable_qspi_clk(int qspi_num)918 void enable_qspi_clk(int qspi_num)
919 {
920 	u32 reg = 0;
921 	/* Enable QuadSPI clock */
922 	switch (qspi_num) {
923 	case 0:
924 		/* disable the clock gate */
925 		clrbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_QSPI1_MASK);
926 
927 		/* set 50M  : (50 = 396 / 2 / 4) */
928 		reg = readl(&imx_ccm->cscmr1);
929 		reg &= ~(MXC_CCM_CSCMR1_QSPI1_PODF_MASK |
930 			 MXC_CCM_CSCMR1_QSPI1_CLK_SEL_MASK);
931 		reg |= ((1 << MXC_CCM_CSCMR1_QSPI1_PODF_OFFSET) |
932 			(2 << MXC_CCM_CSCMR1_QSPI1_CLK_SEL_OFFSET));
933 		writel(reg, &imx_ccm->cscmr1);
934 
935 		/* enable the clock gate */
936 		setbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_QSPI1_MASK);
937 		break;
938 	case 1:
939 		/*
940 		 * disable the clock gate
941 		 * QSPI2 and GPMI_BCH_INPUT_GPMI_IO share the same clock gate,
942 		 * disable both of them.
943 		 */
944 		clrbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK |
945 			     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK);
946 
947 		/* set 50M  : (50 = 396 / 2 / 4) */
948 		reg = readl(&imx_ccm->cs2cdr);
949 		reg &= ~(MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK |
950 			 MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK |
951 			 MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK);
952 		reg |= (MXC_CCM_CS2CDR_QSPI2_CLK_PRED(0x1) |
953 			MXC_CCM_CS2CDR_QSPI2_CLK_SEL(0x3));
954 		writel(reg, &imx_ccm->cs2cdr);
955 
956 		/*enable the clock gate*/
957 		setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK |
958 			     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK);
959 		break;
960 	default:
961 		break;
962 	}
963 }
964 #endif
965 
966 #ifdef CONFIG_FEC_MXC
enable_fec_anatop_clock(int fec_id,enum enet_freq freq)967 int enable_fec_anatop_clock(int fec_id, enum enet_freq freq)
968 {
969 	u32 reg = 0;
970 	s32 timeout = 100000;
971 
972 	struct anatop_regs __iomem *anatop =
973 		(struct anatop_regs __iomem *)ANATOP_BASE_ADDR;
974 
975 	if (freq < ENET_25MHZ || freq > ENET_125MHZ)
976 		return -EINVAL;
977 
978 	reg = readl(&anatop->pll_enet);
979 
980 	if (fec_id == 0) {
981 		reg &= ~BM_ANADIG_PLL_ENET_DIV_SELECT;
982 		reg |= BF_ANADIG_PLL_ENET_DIV_SELECT(freq);
983 	} else if (fec_id == 1) {
984 		/* Only i.MX6SX/UL support ENET2 */
985 		if (!(is_mx6sx() || is_mx6ul() || is_mx6ull()))
986 			return -EINVAL;
987 		reg &= ~BM_ANADIG_PLL_ENET2_DIV_SELECT;
988 		reg |= BF_ANADIG_PLL_ENET2_DIV_SELECT(freq);
989 	} else {
990 		return -EINVAL;
991 	}
992 
993 	if ((reg & BM_ANADIG_PLL_ENET_POWERDOWN) ||
994 	    (!(reg & BM_ANADIG_PLL_ENET_LOCK))) {
995 		reg &= ~BM_ANADIG_PLL_ENET_POWERDOWN;
996 		writel(reg, &anatop->pll_enet);
997 		while (timeout--) {
998 			if (readl(&anatop->pll_enet) & BM_ANADIG_PLL_ENET_LOCK)
999 				break;
1000 		}
1001 		if (timeout < 0)
1002 			return -ETIMEDOUT;
1003 	}
1004 
1005 	/* Enable FEC clock */
1006 	if (fec_id == 0)
1007 		reg |= BM_ANADIG_PLL_ENET_ENABLE;
1008 	else
1009 		reg |= BM_ANADIG_PLL_ENET2_ENABLE;
1010 	reg &= ~BM_ANADIG_PLL_ENET_BYPASS;
1011 	writel(reg, &anatop->pll_enet);
1012 
1013 #ifdef CONFIG_MX6SX
1014 	/* Disable enet system clcok before switching clock parent */
1015 	reg = readl(&imx_ccm->CCGR3);
1016 	reg &= ~MXC_CCM_CCGR3_ENET_MASK;
1017 	writel(reg, &imx_ccm->CCGR3);
1018 
1019 	/*
1020 	 * Set enet ahb clock to 200MHz
1021 	 * pll2_pfd2_396m-> ENET_PODF-> ENET_AHB
1022 	 */
1023 	reg = readl(&imx_ccm->chsccdr);
1024 	reg &= ~(MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_MASK
1025 		 | MXC_CCM_CHSCCDR_ENET_PODF_MASK
1026 		 | MXC_CCM_CHSCCDR_ENET_CLK_SEL_MASK);
1027 	/* PLL2 PFD2 */
1028 	reg |= (4 << MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_OFFSET);
1029 	/* Div = 2*/
1030 	reg |= (1 << MXC_CCM_CHSCCDR_ENET_PODF_OFFSET);
1031 	reg |= (0 << MXC_CCM_CHSCCDR_ENET_CLK_SEL_OFFSET);
1032 	writel(reg, &imx_ccm->chsccdr);
1033 
1034 	/* Enable enet system clock */
1035 	reg = readl(&imx_ccm->CCGR3);
1036 	reg |= MXC_CCM_CCGR3_ENET_MASK;
1037 	writel(reg, &imx_ccm->CCGR3);
1038 #endif
1039 	return 0;
1040 }
1041 #endif
1042 
get_usdhc_clk(u32 port)1043 static u32 get_usdhc_clk(u32 port)
1044 {
1045 	u32 root_freq = 0, usdhc_podf = 0, clk_sel = 0;
1046 	u32 cscmr1 = __raw_readl(&imx_ccm->cscmr1);
1047 	u32 cscdr1 = __raw_readl(&imx_ccm->cscdr1);
1048 
1049 	if (is_mx6ul() || is_mx6ull()) {
1050 		if (port > 1)
1051 			return 0;
1052 	}
1053 
1054 	if (is_mx6sll()) {
1055 		if (port > 2)
1056 			return 0;
1057 	}
1058 
1059 	switch (port) {
1060 	case 0:
1061 		usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC1_PODF_MASK) >>
1062 					MXC_CCM_CSCDR1_USDHC1_PODF_OFFSET;
1063 		clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC1_CLK_SEL;
1064 
1065 		break;
1066 	case 1:
1067 		usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC2_PODF_MASK) >>
1068 					MXC_CCM_CSCDR1_USDHC2_PODF_OFFSET;
1069 		clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC2_CLK_SEL;
1070 
1071 		break;
1072 	case 2:
1073 		usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC3_PODF_MASK) >>
1074 					MXC_CCM_CSCDR1_USDHC3_PODF_OFFSET;
1075 		clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC3_CLK_SEL;
1076 
1077 		break;
1078 	case 3:
1079 		usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC4_PODF_MASK) >>
1080 					MXC_CCM_CSCDR1_USDHC4_PODF_OFFSET;
1081 		clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC4_CLK_SEL;
1082 
1083 		break;
1084 	default:
1085 		break;
1086 	}
1087 
1088 	if (clk_sel)
1089 		root_freq = mxc_get_pll_pfd(PLL_BUS, 0);
1090 	else
1091 		root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
1092 
1093 	return root_freq / (usdhc_podf + 1);
1094 }
1095 
imx_get_uartclk(void)1096 u32 imx_get_uartclk(void)
1097 {
1098 	return get_uart_clk();
1099 }
1100 
imx_get_fecclk(void)1101 u32 imx_get_fecclk(void)
1102 {
1103 	return mxc_get_clock(MXC_IPG_CLK);
1104 }
1105 
1106 #if defined(CONFIG_SATA) || defined(CONFIG_PCIE_IMX)
enable_enet_pll(uint32_t en)1107 static int enable_enet_pll(uint32_t en)
1108 {
1109 	struct mxc_ccm_reg *const imx_ccm
1110 		= (struct mxc_ccm_reg *) CCM_BASE_ADDR;
1111 	s32 timeout = 100000;
1112 	u32 reg = 0;
1113 
1114 	/* Enable PLLs */
1115 	reg = readl(&imx_ccm->analog_pll_enet);
1116 	reg &= ~BM_ANADIG_PLL_SYS_POWERDOWN;
1117 	writel(reg, &imx_ccm->analog_pll_enet);
1118 	reg |= BM_ANADIG_PLL_SYS_ENABLE;
1119 	while (timeout--) {
1120 		if (readl(&imx_ccm->analog_pll_enet) & BM_ANADIG_PLL_SYS_LOCK)
1121 			break;
1122 	}
1123 	if (timeout <= 0)
1124 		return -EIO;
1125 	reg &= ~BM_ANADIG_PLL_SYS_BYPASS;
1126 	writel(reg, &imx_ccm->analog_pll_enet);
1127 	reg |= en;
1128 	writel(reg, &imx_ccm->analog_pll_enet);
1129 	return 0;
1130 }
1131 #endif
1132 
1133 #ifdef CONFIG_SATA
ungate_sata_clock(void)1134 static void ungate_sata_clock(void)
1135 {
1136 	struct mxc_ccm_reg *const imx_ccm =
1137 		(struct mxc_ccm_reg *)CCM_BASE_ADDR;
1138 
1139 	/* Enable SATA clock. */
1140 	setbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK);
1141 }
1142 
enable_sata_clock(void)1143 int enable_sata_clock(void)
1144 {
1145 	ungate_sata_clock();
1146 	return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA);
1147 }
1148 
disable_sata_clock(void)1149 void disable_sata_clock(void)
1150 {
1151 	struct mxc_ccm_reg *const imx_ccm =
1152 		(struct mxc_ccm_reg *)CCM_BASE_ADDR;
1153 
1154 	clrbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK);
1155 }
1156 #endif
1157 
1158 #ifdef CONFIG_PCIE_IMX
ungate_pcie_clock(void)1159 static void ungate_pcie_clock(void)
1160 {
1161 	struct mxc_ccm_reg *const imx_ccm =
1162 		(struct mxc_ccm_reg *)CCM_BASE_ADDR;
1163 
1164 	/* Enable PCIe clock. */
1165 	setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_PCIE_MASK);
1166 }
1167 
enable_pcie_clock(void)1168 int enable_pcie_clock(void)
1169 {
1170 	struct anatop_regs *anatop_regs =
1171 		(struct anatop_regs *)ANATOP_BASE_ADDR;
1172 	struct mxc_ccm_reg *ccm_regs = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1173 	u32 lvds1_clk_sel;
1174 
1175 	/*
1176 	 * Here be dragons!
1177 	 *
1178 	 * The register ANATOP_MISC1 is not documented in the Freescale
1179 	 * MX6RM. The register that is mapped in the ANATOP space and
1180 	 * marked as ANATOP_MISC1 is actually documented in the PMU section
1181 	 * of the datasheet as PMU_MISC1.
1182 	 *
1183 	 * Switch LVDS clock source to SATA (0xb) on mx6q/dl or PCI (0xa) on
1184 	 * mx6sx, disable clock INPUT and enable clock OUTPUT. This is important
1185 	 * for PCI express link that is clocked from the i.MX6.
1186 	 */
1187 #define ANADIG_ANA_MISC1_LVDSCLK1_IBEN		(1 << 12)
1188 #define ANADIG_ANA_MISC1_LVDSCLK1_OBEN		(1 << 10)
1189 #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK	0x0000001F
1190 #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF	0xa
1191 #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF	0xb
1192 
1193 	if (is_mx6sx())
1194 		lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF;
1195 	else
1196 		lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF;
1197 
1198 	clrsetbits_le32(&anatop_regs->ana_misc1,
1199 			ANADIG_ANA_MISC1_LVDSCLK1_IBEN |
1200 			ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK,
1201 			ANADIG_ANA_MISC1_LVDSCLK1_OBEN | lvds1_clk_sel);
1202 
1203 	/* PCIe reference clock sourced from AXI. */
1204 	clrbits_le32(&ccm_regs->cbcmr, MXC_CCM_CBCMR_PCIE_AXI_CLK_SEL);
1205 
1206 	/* Party time! Ungate the clock to the PCIe. */
1207 #ifdef CONFIG_SATA
1208 	ungate_sata_clock();
1209 #endif
1210 	ungate_pcie_clock();
1211 
1212 	return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA |
1213 			       BM_ANADIG_PLL_ENET_ENABLE_PCIE);
1214 }
1215 #endif
1216 
1217 #ifdef CONFIG_IMX_HAB
hab_caam_clock_enable(unsigned char enable)1218 void hab_caam_clock_enable(unsigned char enable)
1219 {
1220 	u32 reg;
1221 
1222 	if (is_mx6ull() || is_mx6sll()) {
1223 		/* CG5, DCP clock */
1224 		reg = __raw_readl(&imx_ccm->CCGR0);
1225 		if (enable)
1226 			reg |= MXC_CCM_CCGR0_DCP_CLK_MASK;
1227 		else
1228 			reg &= ~MXC_CCM_CCGR0_DCP_CLK_MASK;
1229 		__raw_writel(reg, &imx_ccm->CCGR0);
1230 	} else {
1231 		/* CG4 ~ CG6, CAAM clocks */
1232 		reg = __raw_readl(&imx_ccm->CCGR0);
1233 		if (enable)
1234 			reg |= (MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK |
1235 				MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK |
1236 				MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK);
1237 		else
1238 			reg &= ~(MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK |
1239 				MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK |
1240 				MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK);
1241 		__raw_writel(reg, &imx_ccm->CCGR0);
1242 	}
1243 
1244 	/* EMI slow clk */
1245 	reg = __raw_readl(&imx_ccm->CCGR6);
1246 	if (enable)
1247 		reg |= MXC_CCM_CCGR6_EMI_SLOW_MASK;
1248 	else
1249 		reg &= ~MXC_CCM_CCGR6_EMI_SLOW_MASK;
1250 	__raw_writel(reg, &imx_ccm->CCGR6);
1251 }
1252 #endif
1253 
enable_pll3(void)1254 static void enable_pll3(void)
1255 {
1256 	struct anatop_regs __iomem *anatop =
1257 		(struct anatop_regs __iomem *)ANATOP_BASE_ADDR;
1258 
1259 	/* make sure pll3 is enabled */
1260 	if ((readl(&anatop->usb1_pll_480_ctrl) &
1261 			BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0) {
1262 		/* enable pll's power */
1263 		writel(BM_ANADIG_USB1_PLL_480_CTRL_POWER,
1264 		       &anatop->usb1_pll_480_ctrl_set);
1265 		writel(0x80, &anatop->ana_misc2_clr);
1266 		/* wait for pll lock */
1267 		while ((readl(&anatop->usb1_pll_480_ctrl) &
1268 			BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0)
1269 			;
1270 		/* disable bypass */
1271 		writel(BM_ANADIG_USB1_PLL_480_CTRL_BYPASS,
1272 		       &anatop->usb1_pll_480_ctrl_clr);
1273 		/* enable pll output */
1274 		writel(BM_ANADIG_USB1_PLL_480_CTRL_ENABLE,
1275 		       &anatop->usb1_pll_480_ctrl_set);
1276 	}
1277 }
1278 
enable_thermal_clk(void)1279 void enable_thermal_clk(void)
1280 {
1281 	enable_pll3();
1282 }
1283 
1284 #ifdef CONFIG_MTD_NOR_FLASH
enable_eim_clk(unsigned char enable)1285 void enable_eim_clk(unsigned char enable)
1286 {
1287 	u32 reg;
1288 
1289 	reg = __raw_readl(&imx_ccm->CCGR6);
1290 	if (enable)
1291 		reg |= MXC_CCM_CCGR6_EMI_SLOW_MASK;
1292 	else
1293 		reg &= ~MXC_CCM_CCGR6_EMI_SLOW_MASK;
1294 	__raw_writel(reg, &imx_ccm->CCGR6);
1295 }
1296 #endif
1297 
mxc_get_clock(enum mxc_clock clk)1298 unsigned int mxc_get_clock(enum mxc_clock clk)
1299 {
1300 	switch (clk) {
1301 	case MXC_ARM_CLK:
1302 		return get_mcu_main_clk();
1303 	case MXC_PER_CLK:
1304 		return get_periph_clk();
1305 	case MXC_AHB_CLK:
1306 		return get_ahb_clk();
1307 	case MXC_IPG_CLK:
1308 		return get_ipg_clk();
1309 	case MXC_IPG_PERCLK:
1310 	case MXC_I2C_CLK:
1311 		return get_ipg_per_clk();
1312 	case MXC_UART_CLK:
1313 		return get_uart_clk();
1314 	case MXC_CSPI_CLK:
1315 		return get_cspi_clk();
1316 	case MXC_AXI_CLK:
1317 		return get_axi_clk();
1318 	case MXC_EMI_SLOW_CLK:
1319 		return get_emi_slow_clk();
1320 	case MXC_DDR_CLK:
1321 		return get_mmdc_ch0_clk();
1322 	case MXC_ESDHC_CLK:
1323 		return get_usdhc_clk(0);
1324 	case MXC_ESDHC2_CLK:
1325 		return get_usdhc_clk(1);
1326 	case MXC_ESDHC3_CLK:
1327 		return get_usdhc_clk(2);
1328 	case MXC_ESDHC4_CLK:
1329 		return get_usdhc_clk(3);
1330 	case MXC_SATA_CLK:
1331 		return get_ahb_clk();
1332 	case MXC_LCDIF1_CLK:
1333 		return get_lcd_clk(1);
1334 	case MXC_LCDIF2_CLK:
1335 		return get_lcd_clk(2);
1336 	default:
1337 		printf("Unsupported MXC CLK: %d\n", clk);
1338 		break;
1339 	}
1340 
1341 	return 0;
1342 }
1343 
1344 #ifndef CONFIG_MX6SX
enable_ipu_clock(void)1345 void enable_ipu_clock(void)
1346 {
1347 	struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1348 
1349 	setbits_le32(&mxc_ccm->CCGR3, MXC_CCM_CCGR3_IPU1_IPU_MASK);
1350 
1351 	if (is_mx6dqp()) {
1352 		setbits_le32(&mxc_ccm->CCGR6, MXC_CCM_CCGR6_PRG_CLK0_MASK);
1353 		setbits_le32(&mxc_ccm->CCGR3, MXC_CCM_CCGR3_IPU2_IPU_MASK);
1354 	}
1355 }
1356 
disable_ipu_clock(void)1357 void disable_ipu_clock(void)
1358 {
1359 	struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1360 
1361 	clrbits_le32(&mxc_ccm->CCGR3, MXC_CCM_CCGR3_IPU1_IPU_MASK);
1362 
1363 	if (is_mx6dqp()) {
1364 		clrbits_le32(&mxc_ccm->CCGR6, MXC_CCM_CCGR6_PRG_CLK0_MASK);
1365 		clrbits_le32(&mxc_ccm->CCGR3, MXC_CCM_CCGR3_IPU2_IPU_MASK);
1366 	}
1367 }
1368 #endif
1369 
1370 #ifndef CONFIG_SPL_BUILD
1371 /*
1372  * Dump some core clockes.
1373  */
do_mx6_showclocks(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1374 int do_mx6_showclocks(struct cmd_tbl *cmdtp, int flag, int argc,
1375 		      char *const argv[])
1376 {
1377 	u32 freq;
1378 	freq = decode_pll(PLL_SYS, MXC_HCLK);
1379 	printf("PLL_SYS    %8d MHz\n", freq / 1000000);
1380 	freq = decode_pll(PLL_BUS, MXC_HCLK);
1381 	printf("PLL_BUS    %8d MHz\n", freq / 1000000);
1382 	freq = decode_pll(PLL_USBOTG, MXC_HCLK);
1383 	printf("PLL_OTG    %8d MHz\n", freq / 1000000);
1384 	freq = decode_pll(PLL_ENET, MXC_HCLK);
1385 	printf("PLL_NET    %8d MHz\n", freq / 1000000);
1386 
1387 	printf("\n");
1388 	printf("ARM        %8d kHz\n", mxc_get_clock(MXC_ARM_CLK) / 1000);
1389 	printf("IPG        %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
1390 	printf("UART       %8d kHz\n", mxc_get_clock(MXC_UART_CLK) / 1000);
1391 #ifdef CONFIG_MXC_SPI
1392 	printf("CSPI       %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
1393 #endif
1394 	printf("AHB        %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
1395 	printf("AXI        %8d kHz\n", mxc_get_clock(MXC_AXI_CLK) / 1000);
1396 	printf("DDR        %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
1397 	printf("USDHC1     %8d kHz\n", mxc_get_clock(MXC_ESDHC_CLK) / 1000);
1398 	printf("USDHC2     %8d kHz\n", mxc_get_clock(MXC_ESDHC2_CLK) / 1000);
1399 	printf("USDHC3     %8d kHz\n", mxc_get_clock(MXC_ESDHC3_CLK) / 1000);
1400 	printf("USDHC4     %8d kHz\n", mxc_get_clock(MXC_ESDHC4_CLK) / 1000);
1401 	printf("EMI SLOW   %8d kHz\n", mxc_get_clock(MXC_EMI_SLOW_CLK) / 1000);
1402 	printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
1403 
1404 	return 0;
1405 }
1406 
1407 #if defined(CONFIG_MX6Q) || defined(CONFIG_MX6D) || defined(CONFIG_MX6DL) || \
1408 	defined(CONFIG_MX6S) || defined(CONFIG_MX6QDL)
disable_ldb_di_clock_sources(void)1409 static void disable_ldb_di_clock_sources(void)
1410 {
1411 	struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1412 	int reg;
1413 
1414 	/* Make sure PFDs are disabled at boot. */
1415 	reg = readl(&mxc_ccm->analog_pfd_528);
1416 	/* Cannot disable pll2_pfd2_396M, as it is the MMDC clock in iMX6DL */
1417 	if (is_mx6sdl())
1418 		reg |= 0x80008080;
1419 	else
1420 		reg |= 0x80808080;
1421 	writel(reg, &mxc_ccm->analog_pfd_528);
1422 
1423 	/* Disable PLL3 PFDs */
1424 	reg = readl(&mxc_ccm->analog_pfd_480);
1425 	reg |= 0x80808080;
1426 	writel(reg, &mxc_ccm->analog_pfd_480);
1427 
1428 	/* Disable PLL5 */
1429 	reg = readl(&mxc_ccm->analog_pll_video);
1430 	reg &= ~(1 << 13);
1431 	writel(reg, &mxc_ccm->analog_pll_video);
1432 }
1433 
enable_ldb_di_clock_sources(void)1434 static void enable_ldb_di_clock_sources(void)
1435 {
1436 	struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1437 	int reg;
1438 
1439 	reg = readl(&mxc_ccm->analog_pfd_528);
1440 	if (is_mx6sdl())
1441 		reg &= ~(0x80008080);
1442 	else
1443 		reg &= ~(0x80808080);
1444 	writel(reg, &mxc_ccm->analog_pfd_528);
1445 
1446 	reg = readl(&mxc_ccm->analog_pfd_480);
1447 	reg &= ~(0x80808080);
1448 	writel(reg, &mxc_ccm->analog_pfd_480);
1449 }
1450 
1451 /*
1452  * Try call this function as early in the boot process as possible since the
1453  * function temporarily disables PLL2 PFD's, PLL3 PFD's and PLL5.
1454  */
select_ldb_di_clock_source(enum ldb_di_clock clk)1455 void select_ldb_di_clock_source(enum ldb_di_clock clk)
1456 {
1457 	struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1458 	int reg;
1459 
1460 	/*
1461 	 * Need to follow a strict procedure when changing the LDB
1462 	 * clock, else we can introduce a glitch. Things to keep in
1463 	 * mind:
1464 	 * 1. The current and new parent clocks must be disabled.
1465 	 * 2. The default clock for ldb_dio_clk is mmdc_ch1 which has
1466 	 * no CG bit.
1467 	 * 3. In the RTL implementation of the LDB_DI_CLK_SEL mux
1468 	 * the top four options are in one mux and the PLL3 option along
1469 	 * with another option is in the second mux. There is third mux
1470 	 * used to decide between the first and second mux.
1471 	 * The code below switches the parent to the bottom mux first
1472 	 * and then manipulates the top mux. This ensures that no glitch
1473 	 * will enter the divider.
1474 	 *
1475 	 * Need to disable MMDC_CH1 clock manually as there is no CG bit
1476 	 * for this clock. The only way to disable this clock is to move
1477 	 * it to pll3_sw_clk and then to disable pll3_sw_clk
1478 	 * Make sure periph2_clk2_sel is set to pll3_sw_clk
1479 	 */
1480 
1481 	/* Disable all ldb_di clock parents */
1482 	disable_ldb_di_clock_sources();
1483 
1484 	/* Set MMDC_CH1 mask bit */
1485 	reg = readl(&mxc_ccm->ccdr);
1486 	reg |= MXC_CCM_CCDR_MMDC_CH1_HS_MASK;
1487 	writel(reg, &mxc_ccm->ccdr);
1488 
1489 	/* Set periph2_clk2_sel to be sourced from PLL3_sw_clk */
1490 	reg = readl(&mxc_ccm->cbcmr);
1491 	reg &= ~MXC_CCM_CBCMR_PERIPH2_CLK2_SEL;
1492 	writel(reg, &mxc_ccm->cbcmr);
1493 
1494 	/*
1495 	 * Set the periph2_clk_sel to the top mux so that
1496 	 * mmdc_ch1 is from pll3_sw_clk.
1497 	 */
1498 	reg = readl(&mxc_ccm->cbcdr);
1499 	reg |= MXC_CCM_CBCDR_PERIPH2_CLK_SEL;
1500 	writel(reg, &mxc_ccm->cbcdr);
1501 
1502 	/* Wait for the clock switch */
1503 	while (readl(&mxc_ccm->cdhipr))
1504 		;
1505 	/* Disable pll3_sw_clk by selecting bypass clock source */
1506 	reg = readl(&mxc_ccm->ccsr);
1507 	reg |= MXC_CCM_CCSR_PLL3_SW_CLK_SEL;
1508 	writel(reg, &mxc_ccm->ccsr);
1509 
1510 	/* Set the ldb_di0_clk and ldb_di1_clk to 111b */
1511 	reg = readl(&mxc_ccm->cs2cdr);
1512 	reg |= ((7 << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
1513 	      | (7 << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
1514 	writel(reg, &mxc_ccm->cs2cdr);
1515 
1516 	/* Set the ldb_di0_clk and ldb_di1_clk to 100b */
1517 	reg = readl(&mxc_ccm->cs2cdr);
1518 	reg &= ~(MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_MASK
1519 	      | MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_MASK);
1520 	reg |= ((4 << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
1521 	      | (4 << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
1522 	writel(reg, &mxc_ccm->cs2cdr);
1523 
1524 	/* Set the ldb_di0_clk and ldb_di1_clk to desired source */
1525 	reg = readl(&mxc_ccm->cs2cdr);
1526 	reg &= ~(MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_MASK
1527 	      | MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_MASK);
1528 	reg |= ((clk << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
1529 	      | (clk << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
1530 	writel(reg, &mxc_ccm->cs2cdr);
1531 
1532 	/* Unbypass pll3_sw_clk */
1533 	reg = readl(&mxc_ccm->ccsr);
1534 	reg &= ~MXC_CCM_CCSR_PLL3_SW_CLK_SEL;
1535 	writel(reg, &mxc_ccm->ccsr);
1536 
1537 	/*
1538 	 * Set the periph2_clk_sel back to the bottom mux so that
1539 	 * mmdc_ch1 is from its original parent.
1540 	 */
1541 	reg = readl(&mxc_ccm->cbcdr);
1542 	reg &= ~MXC_CCM_CBCDR_PERIPH2_CLK_SEL;
1543 	writel(reg, &mxc_ccm->cbcdr);
1544 
1545 	/* Wait for the clock switch */
1546 	while (readl(&mxc_ccm->cdhipr))
1547 		;
1548 	/* Clear MMDC_CH1 mask bit */
1549 	reg = readl(&mxc_ccm->ccdr);
1550 	reg &= ~MXC_CCM_CCDR_MMDC_CH1_HS_MASK;
1551 	writel(reg, &mxc_ccm->ccdr);
1552 
1553 	enable_ldb_di_clock_sources();
1554 }
1555 #endif
1556 
1557 /***************************************************/
1558 
1559 U_BOOT_CMD(
1560 	clocks,	CONFIG_SYS_MAXARGS, 1, do_mx6_showclocks,
1561 	"display clocks",
1562 	""
1563 );
1564 #endif
1565