1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2010-2015
4  * NVIDIA Corporation <www.nvidia.com>
5  */
6 
7 /* Tegra30 Clock control functions */
8 
9 #include <common.h>
10 #include <errno.h>
11 #include <init.h>
12 #include <log.h>
13 #include <asm/io.h>
14 #include <asm/arch/clock.h>
15 #include <asm/arch/tegra.h>
16 #include <asm/arch-tegra/clk_rst.h>
17 #include <asm/arch-tegra/timer.h>
18 #include <div64.h>
19 #include <fdtdec.h>
20 #include <linux/delay.h>
21 
22 #include <dt-bindings/clock/tegra30-car.h>
23 
24 /*
25  * Clock types that we can use as a source. The Tegra30 has muxes for the
26  * peripheral clocks, and in most cases there are four options for the clock
27  * source. This gives us a clock 'type' and exploits what commonality exists
28  * in the device.
29  *
30  * Letters are obvious, except for T which means CLK_M, and S which means the
31  * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
32  * datasheet) and PLL_M are different things. The former is the basic
33  * clock supplied to the SOC from an external oscillator. The latter is the
34  * memory clock PLL.
35  *
36  * See definitions in clock_id in the header file.
37  */
38 enum clock_type_id {
39 	CLOCK_TYPE_AXPT,	/* PLL_A, PLL_X, PLL_P, CLK_M */
40 	CLOCK_TYPE_MCPA,	/* and so on */
41 	CLOCK_TYPE_MCPT,
42 	CLOCK_TYPE_PCM,
43 	CLOCK_TYPE_PCMT,
44 	CLOCK_TYPE_PCMT16,
45 	CLOCK_TYPE_PDCT,
46 	CLOCK_TYPE_ACPT,
47 	CLOCK_TYPE_ASPTE,
48 	CLOCK_TYPE_PMDACD2T,
49 	CLOCK_TYPE_PCST,
50 
51 	CLOCK_TYPE_COUNT,
52 	CLOCK_TYPE_NONE = -1,   /* invalid clock type */
53 };
54 
55 enum {
56 	CLOCK_MAX_MUX   = 8     /* number of source options for each clock */
57 };
58 
59 /*
60  * Clock source mux for each clock type. This just converts our enum into
61  * a list of mux sources for use by the code.
62  *
63  * Note:
64  *  The extra column in each clock source array is used to store the mask
65  *  bits in its register for the source.
66  */
67 #define CLK(x) CLOCK_ID_ ## x
68 static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX+1] = {
69 	{ CLK(AUDIO),   CLK(XCPU),      CLK(PERIPH),    CLK(OSC),
70 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
71 		MASK_BITS_31_30},
72 	{ CLK(MEMORY),  CLK(CGENERAL),  CLK(PERIPH),    CLK(AUDIO),
73 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
74 		MASK_BITS_31_30},
75 	{ CLK(MEMORY),  CLK(CGENERAL),  CLK(PERIPH),    CLK(OSC),
76 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
77 		MASK_BITS_31_30},
78 	{ CLK(PERIPH),  CLK(CGENERAL),  CLK(MEMORY),    CLK(NONE),
79 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
80 		MASK_BITS_31_30},
81 	{ CLK(PERIPH),  CLK(CGENERAL),  CLK(MEMORY),    CLK(OSC),
82 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
83 		MASK_BITS_31_30},
84 	{ CLK(PERIPH),  CLK(CGENERAL),  CLK(MEMORY),    CLK(OSC),
85 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
86 		MASK_BITS_31_30},
87 	{ CLK(PERIPH),  CLK(DISPLAY),   CLK(CGENERAL),  CLK(OSC),
88 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
89 		MASK_BITS_31_30},
90 	{ CLK(AUDIO),   CLK(CGENERAL),  CLK(PERIPH),    CLK(OSC),
91 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
92 		MASK_BITS_31_30},
93 	{ CLK(AUDIO),   CLK(SFROM32KHZ),	CLK(PERIPH),   CLK(OSC),
94 		CLK(EPCI),      CLK(NONE),      CLK(NONE),      CLK(NONE),
95 		MASK_BITS_31_29},
96 	{ CLK(PERIPH),  CLK(MEMORY),    CLK(DISPLAY),   CLK(AUDIO),
97 		CLK(CGENERAL),  CLK(DISPLAY2),  CLK(OSC),       CLK(NONE),
98 		MASK_BITS_31_29},
99 	{ CLK(PERIPH),  CLK(CGENERAL),  CLK(SFROM32KHZ), CLK(OSC),
100 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
101 		MASK_BITS_31_28}
102 };
103 
104 /*
105  * Clock type for each peripheral clock source. We put the name in each
106  * record just so it is easy to match things up
107  */
108 #define TYPE(name, type) type
109 static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
110 	/* 0x00 */
111 	TYPE(PERIPHC_I2S1,	CLOCK_TYPE_AXPT),
112 	TYPE(PERIPHC_I2S2,      CLOCK_TYPE_AXPT),
113 	TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
114 	TYPE(PERIPHC_SPDIF_IN,  CLOCK_TYPE_PCM),
115 	TYPE(PERIPHC_PWM,       CLOCK_TYPE_PCST),  /* only PWM uses b29:28 */
116 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
117 	TYPE(PERIPHC_SBC2,      CLOCK_TYPE_PCMT),
118 	TYPE(PERIPHC_SBC3,      CLOCK_TYPE_PCMT),
119 
120 	/* 0x08 */
121 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
122 	TYPE(PERIPHC_I2C1,      CLOCK_TYPE_PCMT16),
123 	TYPE(PERIPHC_DVC_I2C,   CLOCK_TYPE_PCMT16),
124 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
125 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
126 	TYPE(PERIPHC_SBC1,      CLOCK_TYPE_PCMT),
127 	TYPE(PERIPHC_DISP1,     CLOCK_TYPE_PMDACD2T),
128 	TYPE(PERIPHC_DISP2,     CLOCK_TYPE_PMDACD2T),
129 
130 	/* 0x10 */
131 	TYPE(PERIPHC_CVE,       CLOCK_TYPE_PDCT),
132 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
133 	TYPE(PERIPHC_VI,	CLOCK_TYPE_MCPA),
134 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
135 	TYPE(PERIPHC_SDMMC1,    CLOCK_TYPE_PCMT),
136 	TYPE(PERIPHC_SDMMC2,	CLOCK_TYPE_PCMT),
137 	TYPE(PERIPHC_G3D,	CLOCK_TYPE_MCPA),
138 	TYPE(PERIPHC_G2D,	CLOCK_TYPE_MCPA),
139 
140 	/* 0x18 */
141 	TYPE(PERIPHC_NDFLASH,	CLOCK_TYPE_PCMT),
142 	TYPE(PERIPHC_SDMMC4,	CLOCK_TYPE_PCMT),
143 	TYPE(PERIPHC_VFIR,      CLOCK_TYPE_PCMT),
144 	TYPE(PERIPHC_EPP,       CLOCK_TYPE_MCPA),
145 	TYPE(PERIPHC_MPE,       CLOCK_TYPE_MCPA),
146 	TYPE(PERIPHC_MIPI,      CLOCK_TYPE_PCMT),       /* MIPI base-band HSI */
147 	TYPE(PERIPHC_UART1,     CLOCK_TYPE_PCMT),
148 	TYPE(PERIPHC_UART2,     CLOCK_TYPE_PCMT),
149 
150 	/* 0x20 */
151 	TYPE(PERIPHC_HOST1X,    CLOCK_TYPE_MCPA),
152 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
153 	TYPE(PERIPHC_TVO,       CLOCK_TYPE_PDCT),
154 	TYPE(PERIPHC_HDMI,      CLOCK_TYPE_PMDACD2T),
155 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
156 	TYPE(PERIPHC_TVDAC,     CLOCK_TYPE_PDCT),
157 	TYPE(PERIPHC_I2C2,      CLOCK_TYPE_PCMT16),
158 	TYPE(PERIPHC_EMC,	CLOCK_TYPE_MCPT),
159 
160 	/* 0x28 */
161 	TYPE(PERIPHC_UART3,	CLOCK_TYPE_PCMT),
162 	TYPE(PERIPHC_NONE,	CLOCK_TYPE_NONE),
163 	TYPE(PERIPHC_VI,	CLOCK_TYPE_MCPA),
164 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
165 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
166 	TYPE(PERIPHC_SBC4,      CLOCK_TYPE_PCMT),
167 	TYPE(PERIPHC_I2C3,      CLOCK_TYPE_PCMT16),
168 	TYPE(PERIPHC_SDMMC3,    CLOCK_TYPE_PCMT),
169 
170 	/* 0x30 */
171 	TYPE(PERIPHC_UART4,	CLOCK_TYPE_PCMT),
172 	TYPE(PERIPHC_UART5,	CLOCK_TYPE_PCMT),
173 	TYPE(PERIPHC_VDE,	CLOCK_TYPE_PCMT),
174 	TYPE(PERIPHC_OWR,       CLOCK_TYPE_PCMT),
175 	TYPE(PERIPHC_NOR,       CLOCK_TYPE_PCMT),
176 	TYPE(PERIPHC_CSITE,     CLOCK_TYPE_PCMT),
177 	TYPE(PERIPHC_I2S0,      CLOCK_TYPE_AXPT),
178 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
179 
180 	/* 0x38h */	     /* Jumps to reg offset 0x3B0h - new for T30 */
181 	TYPE(PERIPHC_G3D2,      CLOCK_TYPE_MCPA),
182 	TYPE(PERIPHC_MSELECT,   CLOCK_TYPE_PCMT),
183 	TYPE(PERIPHC_TSENSOR,   CLOCK_TYPE_PCST),       /* s/b PCTS */
184 	TYPE(PERIPHC_I2S3,      CLOCK_TYPE_AXPT),
185 	TYPE(PERIPHC_I2S4,      CLOCK_TYPE_AXPT),
186 	TYPE(PERIPHC_I2C4,      CLOCK_TYPE_PCMT16),
187 	TYPE(PERIPHC_SBC5,      CLOCK_TYPE_PCMT),
188 	TYPE(PERIPHC_SBC6,      CLOCK_TYPE_PCMT),
189 
190 	/* 0x40 */
191 	TYPE(PERIPHC_AUDIO,     CLOCK_TYPE_ACPT),
192 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
193 	TYPE(PERIPHC_DAM0,      CLOCK_TYPE_ACPT),
194 	TYPE(PERIPHC_DAM1,      CLOCK_TYPE_ACPT),
195 	TYPE(PERIPHC_DAM2,      CLOCK_TYPE_ACPT),
196 	TYPE(PERIPHC_HDA2CODEC2X, CLOCK_TYPE_PCMT),
197 	TYPE(PERIPHC_ACTMON,    CLOCK_TYPE_PCST),       /* MASK 31:30 */
198 	TYPE(PERIPHC_EXTPERIPH1, CLOCK_TYPE_ASPTE),
199 
200 	/* 0x48 */
201 	TYPE(PERIPHC_EXTPERIPH2, CLOCK_TYPE_ASPTE),
202 	TYPE(PERIPHC_EXTPERIPH3, CLOCK_TYPE_ASPTE),
203 	TYPE(PERIPHC_NANDSPEED, CLOCK_TYPE_PCMT),
204 	TYPE(PERIPHC_I2CSLOW,   CLOCK_TYPE_PCST),       /* MASK 31:30 */
205 	TYPE(PERIPHC_SYS,       CLOCK_TYPE_NONE),
206 	TYPE(PERIPHC_SPEEDO,    CLOCK_TYPE_PCMT),
207 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
208 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
209 
210 	/* 0x50 */
211 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
212 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
213 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
214 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
215 	TYPE(PERIPHC_SATAOOB,   CLOCK_TYPE_PCMT),       /* offset 0x420h */
216 	TYPE(PERIPHC_SATA,      CLOCK_TYPE_PCMT),
217 	TYPE(PERIPHC_HDA,       CLOCK_TYPE_PCMT),
218 };
219 
220 /*
221  * This array translates a periph_id to a periphc_internal_id
222  *
223  * Not present/matched up:
224  *	uint vi_sensor;	 _VI_SENSOR_0,		0x1A8
225  *	SPDIF - which is both 0x08 and 0x0c
226  *
227  */
228 #define NONE(name) (-1)
229 #define OFFSET(name, value) PERIPHC_ ## name
230 static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
231 	/* Low word: 31:0 */
232 	NONE(CPU),
233 	NONE(COP),
234 	NONE(TRIGSYS),
235 	NONE(RESERVED3),
236 	NONE(RESERVED4),
237 	NONE(TMR),
238 	PERIPHC_UART1,
239 	PERIPHC_UART2,  /* and vfir 0x68 */
240 
241 	/* 8 */
242 	NONE(GPIO),
243 	PERIPHC_SDMMC2,
244 	NONE(SPDIF),	    /* 0x08 and 0x0c, unclear which to use */
245 	PERIPHC_I2S1,
246 	PERIPHC_I2C1,
247 	PERIPHC_NDFLASH,
248 	PERIPHC_SDMMC1,
249 	PERIPHC_SDMMC4,
250 
251 	/* 16 */
252 	NONE(RESERVED16),
253 	PERIPHC_PWM,
254 	PERIPHC_I2S2,
255 	PERIPHC_EPP,
256 	PERIPHC_VI,
257 	PERIPHC_G2D,
258 	NONE(USBD),
259 	NONE(ISP),
260 
261 	/* 24 */
262 	PERIPHC_G3D,
263 	NONE(RESERVED25),
264 	PERIPHC_DISP2,
265 	PERIPHC_DISP1,
266 	PERIPHC_HOST1X,
267 	NONE(VCP),
268 	PERIPHC_I2S0,
269 	NONE(CACHE2),
270 
271 	/* Middle word: 63:32 */
272 	NONE(MEM),
273 	NONE(AHBDMA),
274 	NONE(APBDMA),
275 	NONE(RESERVED35),
276 	NONE(RESERVED36),
277 	NONE(STAT_MON),
278 	NONE(RESERVED38),
279 	NONE(RESERVED39),
280 
281 	/* 40 */
282 	NONE(KFUSE),
283 	PERIPHC_SBC1,
284 	PERIPHC_NOR,
285 	NONE(RESERVED43),
286 	PERIPHC_SBC2,
287 	NONE(RESERVED45),
288 	PERIPHC_SBC3,
289 	PERIPHC_DVC_I2C,
290 
291 	/* 48 */
292 	NONE(DSI),
293 	PERIPHC_TVO,    /* also CVE 0x40 */
294 	PERIPHC_MIPI,
295 	PERIPHC_HDMI,
296 	NONE(CSI),
297 	PERIPHC_TVDAC,
298 	PERIPHC_I2C2,
299 	PERIPHC_UART3,
300 
301 	/* 56 */
302 	NONE(RESERVED56),
303 	PERIPHC_EMC,
304 	NONE(USB2),
305 	NONE(USB3),
306 	PERIPHC_MPE,
307 	PERIPHC_VDE,
308 	NONE(BSEA),
309 	NONE(BSEV),
310 
311 	/* Upper word 95:64 */
312 	PERIPHC_SPEEDO,
313 	PERIPHC_UART4,
314 	PERIPHC_UART5,
315 	PERIPHC_I2C3,
316 	PERIPHC_SBC4,
317 	PERIPHC_SDMMC3,
318 	NONE(PCIE),
319 	PERIPHC_OWR,
320 
321 	/* 72 */
322 	NONE(AFI),
323 	PERIPHC_CSITE,
324 	NONE(PCIEXCLK),
325 	NONE(AVPUCQ),
326 	NONE(RESERVED76),
327 	NONE(RESERVED77),
328 	NONE(RESERVED78),
329 	NONE(DTV),
330 
331 	/* 80 */
332 	PERIPHC_NANDSPEED,
333 	PERIPHC_I2CSLOW,
334 	NONE(DSIB),
335 	NONE(RESERVED83),
336 	NONE(IRAMA),
337 	NONE(IRAMB),
338 	NONE(IRAMC),
339 	NONE(IRAMD),
340 
341 	/* 88 */
342 	NONE(CRAM2),
343 	NONE(RESERVED89),
344 	NONE(MDOUBLER),
345 	NONE(RESERVED91),
346 	NONE(SUSOUT),
347 	NONE(RESERVED93),
348 	NONE(RESERVED94),
349 	NONE(RESERVED95),
350 
351 	/* V word: 31:0 */
352 	NONE(CPUG),
353 	NONE(CPULP),
354 	PERIPHC_G3D2,
355 	PERIPHC_MSELECT,
356 	PERIPHC_TSENSOR,
357 	PERIPHC_I2S3,
358 	PERIPHC_I2S4,
359 	PERIPHC_I2C4,
360 
361 	/* 08 */
362 	PERIPHC_SBC5,
363 	PERIPHC_SBC6,
364 	PERIPHC_AUDIO,
365 	NONE(APBIF),
366 	PERIPHC_DAM0,
367 	PERIPHC_DAM1,
368 	PERIPHC_DAM2,
369 	PERIPHC_HDA2CODEC2X,
370 
371 	/* 16 */
372 	NONE(ATOMICS),
373 	NONE(RESERVED17),
374 	NONE(RESERVED18),
375 	NONE(RESERVED19),
376 	NONE(RESERVED20),
377 	NONE(RESERVED21),
378 	NONE(RESERVED22),
379 	PERIPHC_ACTMON,
380 
381 	/* 24 */
382 	PERIPHC_EXTPERIPH1,
383 	PERIPHC_EXTPERIPH2,
384 	PERIPHC_EXTPERIPH3,
385 	NONE(RESERVED27),
386 	PERIPHC_SATA,
387 	PERIPHC_HDA,
388 	NONE(RESERVED30),
389 	NONE(RESERVED31),
390 
391 	/* W word: 31:0 */
392 	NONE(HDA2HDMICODEC),
393 	NONE(SATACOLD),
394 	NONE(RESERVED0_PCIERX0),
395 	NONE(RESERVED1_PCIERX1),
396 	NONE(RESERVED2_PCIERX2),
397 	NONE(RESERVED3_PCIERX3),
398 	NONE(RESERVED4_PCIERX4),
399 	NONE(RESERVED5_PCIERX5),
400 
401 	/* 40 */
402 	NONE(CEC),
403 	NONE(RESERVED6_PCIE2),
404 	NONE(RESERVED7_EMC),
405 	NONE(RESERVED8_HDMI),
406 	NONE(RESERVED9_SATA),
407 	NONE(RESERVED10_MIPI),
408 	NONE(EX_RESERVED46),
409 	NONE(EX_RESERVED47),
410 };
411 
412 /*
413  * PLL divider shift/mask tables for all PLL IDs.
414  */
415 struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT] = {
416 	/*
417 	 * T30: some deviations from T2x.
418 	 * NOTE: If kcp_mask/kvco_mask == 0, they're not used in that PLL (PLLX, etc.)
419 	 *       If lock_ena or lock_det are >31, they're not used in that PLL.
420 	 */
421 
422 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0x3FF,  .p_shift = 20, .p_mask = 0x0F,
423 	  .lock_ena = 24, .lock_det = 27, .kcp_shift = 28, .kcp_mask = 3, .kvco_shift = 27, .kvco_mask = 1 },	/* PLLC */
424 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0x3FF,  .p_shift = 0,  .p_mask = 0,
425 	  .lock_ena = 0,  .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },	/* PLLM */
426 	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
427 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLP */
428 	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
429 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLA */
430 	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x01,
431 	  .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLU */
432 	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
433 	  .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLD */
434 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 20, .p_mask = 0x0F,
435 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 0, .kvco_mask = 0 },	/* PLLX */
436 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 0,  .p_mask = 0,
437 	  .lock_ena = 9,  .lock_det = 11, .kcp_shift = 6, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },	/* PLLE */
438 	{ .m_shift = 0, .m_mask = 0x0F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
439 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLS (RESERVED) */
440 };
441 
442 /*
443  * Get the oscillator frequency, from the corresponding hardware configuration
444  * field. Note that T30+ supports 3 new higher freqs.
445  */
clock_get_osc_freq(void)446 enum clock_osc_freq clock_get_osc_freq(void)
447 {
448 	struct clk_rst_ctlr *clkrst =
449 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
450 	u32 reg;
451 
452 	reg = readl(&clkrst->crc_osc_ctrl);
453 	return (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
454 }
455 
456 /* Returns a pointer to the clock source register for a peripheral */
get_periph_source_reg(enum periph_id periph_id)457 u32 *get_periph_source_reg(enum periph_id periph_id)
458 {
459 	struct clk_rst_ctlr *clkrst =
460 		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
461 	enum periphc_internal_id internal_id;
462 
463 	/* Coresight is a special case */
464 	if (periph_id == PERIPH_ID_CSI)
465 		return &clkrst->crc_clk_src[PERIPH_ID_CSI+1];
466 
467 	assert(periph_id >= PERIPH_ID_FIRST && periph_id < PERIPH_ID_COUNT);
468 	internal_id = periph_id_to_internal_id[periph_id];
469 	assert(internal_id != -1);
470 	if (internal_id >= PERIPHC_VW_FIRST) {
471 		internal_id -= PERIPHC_VW_FIRST;
472 		return &clkrst->crc_clk_src_vw[internal_id];
473 	} else
474 		return &clkrst->crc_clk_src[internal_id];
475 }
476 
get_periph_clock_info(enum periph_id periph_id,int * mux_bits,int * divider_bits,int * type)477 int get_periph_clock_info(enum periph_id periph_id, int *mux_bits,
478 			  int *divider_bits, int *type)
479 {
480 	enum periphc_internal_id internal_id;
481 
482 	if (!clock_periph_id_isvalid(periph_id))
483 		return -1;
484 
485 	internal_id = periph_id_to_internal_id[periph_id];
486 	if (!periphc_internal_id_isvalid(internal_id))
487 		return -1;
488 
489 	*type = clock_periph_type[internal_id];
490 	if (!clock_type_id_isvalid(*type))
491 		return -1;
492 
493 	*mux_bits = clock_source[*type][CLOCK_MAX_MUX];
494 
495 	if (*type == CLOCK_TYPE_PCMT16)
496 		*divider_bits = 16;
497 	else
498 		*divider_bits = 8;
499 
500 	return 0;
501 }
502 
get_periph_clock_id(enum periph_id periph_id,int source)503 enum clock_id get_periph_clock_id(enum periph_id periph_id, int source)
504 {
505 	enum periphc_internal_id internal_id;
506 	int type;
507 
508 	if (!clock_periph_id_isvalid(periph_id))
509 		return CLOCK_ID_NONE;
510 
511 	internal_id = periph_id_to_internal_id[periph_id];
512 	if (!periphc_internal_id_isvalid(internal_id))
513 		return CLOCK_ID_NONE;
514 
515 	type = clock_periph_type[internal_id];
516 	if (!clock_type_id_isvalid(type))
517 		return CLOCK_ID_NONE;
518 
519 	return clock_source[type][source];
520 }
521 
522 /**
523  * Given a peripheral ID and the required source clock, this returns which
524  * value should be programmed into the source mux for that peripheral.
525  *
526  * There is special code here to handle the one source type with 5 sources.
527  *
528  * @param periph_id	peripheral to start
529  * @param source	PLL id of required parent clock
530  * @param mux_bits	Set to number of bits in mux register: 2 or 4
531  * @param divider_bits  Set to number of divider bits (8 or 16)
532  * Return: mux value (0-4, or -1 if not found)
533  */
get_periph_clock_source(enum periph_id periph_id,enum clock_id parent,int * mux_bits,int * divider_bits)534 int get_periph_clock_source(enum periph_id periph_id,
535 	enum clock_id parent, int *mux_bits, int *divider_bits)
536 {
537 	enum clock_type_id type;
538 	int mux, err;
539 
540 	err = get_periph_clock_info(periph_id, mux_bits, divider_bits, &type);
541 	assert(!err);
542 
543 	for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
544 		if (clock_source[type][mux] == parent)
545 			return mux;
546 
547 	/* if we get here, either us or the caller has made a mistake */
548 	printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
549 		parent);
550 	return -1;
551 }
552 
clock_set_enable(enum periph_id periph_id,int enable)553 void clock_set_enable(enum periph_id periph_id, int enable)
554 {
555 	struct clk_rst_ctlr *clkrst =
556 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
557 	u32 *clk;
558 	u32 reg;
559 
560 	/* Enable/disable the clock to this peripheral */
561 	assert(clock_periph_id_isvalid(periph_id));
562 	if ((int)periph_id < (int)PERIPH_ID_VW_FIRST)
563 		clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
564 	else
565 		clk = &clkrst->crc_clk_out_enb_vw[PERIPH_REG(periph_id)];
566 	reg = readl(clk);
567 	if (enable)
568 		reg |= PERIPH_MASK(periph_id);
569 	else
570 		reg &= ~PERIPH_MASK(periph_id);
571 	writel(reg, clk);
572 }
573 
reset_set_enable(enum periph_id periph_id,int enable)574 void reset_set_enable(enum periph_id periph_id, int enable)
575 {
576 	struct clk_rst_ctlr *clkrst =
577 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
578 	u32 *reset;
579 	u32 reg;
580 
581 	/* Enable/disable reset to the peripheral */
582 	assert(clock_periph_id_isvalid(periph_id));
583 	if (periph_id < PERIPH_ID_VW_FIRST)
584 		reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
585 	else
586 		reset = &clkrst->crc_rst_dev_vw[PERIPH_REG(periph_id)];
587 	reg = readl(reset);
588 	if (enable)
589 		reg |= PERIPH_MASK(periph_id);
590 	else
591 		reg &= ~PERIPH_MASK(periph_id);
592 	writel(reg, reset);
593 }
594 
595 #if CONFIG_IS_ENABLED(OF_CONTROL)
596 /*
597  * Convert a device tree clock ID to our peripheral ID. They are mostly
598  * the same but we are very cautious so we check that a valid clock ID is
599  * provided.
600  *
601  * @param clk_id	Clock ID according to tegra30 device tree binding
602  * Return: peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
603  */
clk_id_to_periph_id(int clk_id)604 enum periph_id clk_id_to_periph_id(int clk_id)
605 {
606 	if (clk_id > PERIPH_ID_COUNT)
607 		return PERIPH_ID_NONE;
608 
609 	switch (clk_id) {
610 	case PERIPH_ID_RESERVED3:
611 	case PERIPH_ID_RESERVED4:
612 	case PERIPH_ID_RESERVED16:
613 	case PERIPH_ID_RESERVED24:
614 	case PERIPH_ID_RESERVED35:
615 	case PERIPH_ID_RESERVED43:
616 	case PERIPH_ID_RESERVED45:
617 	case PERIPH_ID_RESERVED56:
618 	case PERIPH_ID_PCIEXCLK:
619 	case PERIPH_ID_RESERVED76:
620 	case PERIPH_ID_RESERVED77:
621 	case PERIPH_ID_RESERVED78:
622 	case PERIPH_ID_RESERVED83:
623 	case PERIPH_ID_RESERVED89:
624 	case PERIPH_ID_RESERVED91:
625 	case PERIPH_ID_RESERVED93:
626 	case PERIPH_ID_RESERVED94:
627 	case PERIPH_ID_RESERVED95:
628 		return PERIPH_ID_NONE;
629 	default:
630 		return clk_id;
631 	}
632 }
633 
634 /*
635  * Convert a device tree clock ID to our PLL ID.
636  *
637  * @param clk_id	Clock ID according to tegra30 device tree binding
638  * Return: clock ID, or CLOCK_ID_NONE if the clock ID is invalid
639  */
clk_id_to_pll_id(int clk_id)640 enum clock_id clk_id_to_pll_id(int clk_id)
641 {
642 	switch (clk_id) {
643 	case TEGRA30_CLK_PLL_C:
644 		return CLOCK_ID_CGENERAL;
645 	case TEGRA30_CLK_PLL_M:
646 		return CLOCK_ID_MEMORY;
647 	case TEGRA30_CLK_PLL_P:
648 		return CLOCK_ID_PERIPH;
649 	case TEGRA30_CLK_PLL_A:
650 		return CLOCK_ID_AUDIO;
651 	case TEGRA30_CLK_PLL_U:
652 		return CLOCK_ID_USB;
653 	case TEGRA30_CLK_PLL_D:
654 	case TEGRA30_CLK_PLL_D_OUT0:
655 		return CLOCK_ID_DISPLAY;
656 	case TEGRA30_CLK_PLL_X:
657 		return CLOCK_ID_XCPU;
658 	case TEGRA30_CLK_PLL_E:
659 		return CLOCK_ID_EPCI;
660 	case TEGRA30_CLK_CLK_32K:
661 		return CLOCK_ID_32KHZ;
662 	case TEGRA30_CLK_CLK_M:
663 		return CLOCK_ID_CLK_M;
664 	default:
665 		return CLOCK_ID_NONE;
666 	}
667 }
668 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
669 
clock_early_init(void)670 void clock_early_init(void)
671 {
672 	struct clk_rst_ctlr *clkrst =
673 		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
674 	struct clk_pll_info *pllinfo;
675 	u32 data;
676 
677 	tegra30_set_up_pllp();
678 
679 	/*
680 	 * PLLD output frequency set to 925Mhz
681 	 */
682 	switch (clock_get_osc_freq()) {
683 	case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
684 	case CLOCK_OSC_FREQ_48_0: /* OSC is 48Mhz */
685 		clock_set_rate(CLOCK_ID_DISPLAY, 925, 12, 0, 12);
686 		break;
687 
688 	case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
689 		clock_set_rate(CLOCK_ID_DISPLAY, 925, 26, 0, 12);
690 		break;
691 
692 	case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
693 	case CLOCK_OSC_FREQ_16_8: /* OSC is 16.8Mhz */
694 		clock_set_rate(CLOCK_ID_DISPLAY, 925, 13, 0, 12);
695 		break;
696 
697 	case CLOCK_OSC_FREQ_19_2:
698 	case CLOCK_OSC_FREQ_38_4:
699 	default:
700 		/*
701 		 * These are not supported. It is too early to print a
702 		 * message and the UART likely won't work anyway due to the
703 		 * oscillator being wrong.
704 		 */
705 		break;
706 	}
707 
708 	/* PLLD_MISC: Set CLKENABLE, CPCON 12, LFCON 1, and enable lock */
709 	pllinfo = &tegra_pll_info_table[CLOCK_ID_DISPLAY];
710 	data = (12 << pllinfo->kcp_shift) | (1 << pllinfo->kvco_shift);
711 	data |= (1 << PLLD_CLKENABLE) | (1 << pllinfo->lock_ena);
712 	writel(data, &clkrst->crc_pll[CLOCK_ID_DISPLAY].pll_misc);
713 	udelay(2);
714 }
715 
arch_timer_init(void)716 void arch_timer_init(void)
717 {
718 }
719 
720 #define PMC_SATA_PWRGT 0x1ac
721 #define  PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE (1 << 5)
722 #define  PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL (1 << 4)
723 
724 #define PLLE_SS_CNTL 0x68
725 #define  PLLE_SS_CNTL_SSCINCINTRV(x) (((x) & 0x3f) << 24)
726 #define  PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
727 #define  PLLE_SS_CNTL_SSCBYP (1 << 12)
728 #define  PLLE_SS_CNTL_INTERP_RESET (1 << 11)
729 #define  PLLE_SS_CNTL_BYPASS_SS (1 << 10)
730 #define  PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
731 
732 #define PLLE_BASE 0x0e8
733 #define  PLLE_BASE_ENABLE_CML (1 << 31)
734 #define  PLLE_BASE_ENABLE (1 << 30)
735 #define  PLLE_BASE_PLDIV_CML(x) (((x) & 0xf) << 24)
736 #define  PLLE_BASE_PLDIV(x) (((x) & 0x3f) << 16)
737 #define  PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
738 #define  PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
739 
740 #define PLLE_MISC 0x0ec
741 #define  PLLE_MISC_SETUP_BASE(x) (((x) & 0xffff) << 16)
742 #define  PLLE_MISC_PLL_READY (1 << 15)
743 #define  PLLE_MISC_LOCK (1 << 11)
744 #define  PLLE_MISC_LOCK_ENABLE (1 << 9)
745 #define  PLLE_MISC_SETUP_EXT(x) (((x) & 0x3) << 2)
746 
tegra_plle_train(void)747 static int tegra_plle_train(void)
748 {
749 	unsigned int timeout = 2000;
750 	unsigned long value;
751 
752 	value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
753 	value |= PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE;
754 	writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
755 
756 	value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
757 	value |= PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL;
758 	writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
759 
760 	value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
761 	value &= ~PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE;
762 	writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
763 
764 	do {
765 		value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
766 		if (value & PLLE_MISC_PLL_READY)
767 			break;
768 
769 		udelay(100);
770 	} while (--timeout);
771 
772 	if (timeout == 0) {
773 		pr_err("timeout waiting for PLLE to become ready");
774 		return -ETIMEDOUT;
775 	}
776 
777 	return 0;
778 }
779 
tegra_plle_enable(void)780 int tegra_plle_enable(void)
781 {
782 	unsigned int cpcon = 11, p = 18, n = 150, m = 1, timeout = 1000;
783 	u32 value;
784 	int err;
785 
786 	/* disable PLLE clock */
787 	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
788 	value &= ~PLLE_BASE_ENABLE_CML;
789 	value &= ~PLLE_BASE_ENABLE;
790 	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
791 
792 	/* clear lock enable and setup field */
793 	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
794 	value &= ~PLLE_MISC_LOCK_ENABLE;
795 	value &= ~PLLE_MISC_SETUP_BASE(0xffff);
796 	value &= ~PLLE_MISC_SETUP_EXT(0x3);
797 	writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
798 
799 	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
800 	if ((value & PLLE_MISC_PLL_READY) == 0) {
801 		err = tegra_plle_train();
802 		if (err < 0) {
803 			pr_err("failed to train PLLE: %d", err);
804 			return err;
805 		}
806 	}
807 
808 	/* configure PLLE */
809 	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
810 
811 	value &= ~PLLE_BASE_PLDIV_CML(0x0f);
812 	value |= PLLE_BASE_PLDIV_CML(cpcon);
813 
814 	value &= ~PLLE_BASE_PLDIV(0x3f);
815 	value |= PLLE_BASE_PLDIV(p);
816 
817 	value &= ~PLLE_BASE_NDIV(0xff);
818 	value |= PLLE_BASE_NDIV(n);
819 
820 	value &= ~PLLE_BASE_MDIV(0xff);
821 	value |= PLLE_BASE_MDIV(m);
822 
823 	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
824 
825 	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
826 	value |= PLLE_MISC_SETUP_BASE(0x7);
827 	value |= PLLE_MISC_LOCK_ENABLE;
828 	value |= PLLE_MISC_SETUP_EXT(0);
829 	writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
830 
831 	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
832 	value |= PLLE_SS_CNTL_SSCBYP | PLLE_SS_CNTL_INTERP_RESET |
833 		 PLLE_SS_CNTL_BYPASS_SS;
834 	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
835 
836 	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
837 	value |= PLLE_BASE_ENABLE_CML | PLLE_BASE_ENABLE;
838 	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
839 
840 	do {
841 		value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
842 		if (value & PLLE_MISC_LOCK)
843 			break;
844 
845 		udelay(2);
846 	} while (--timeout);
847 
848 	if (timeout == 0) {
849 		pr_err("timeout waiting for PLLE to lock");
850 		return -ETIMEDOUT;
851 	}
852 
853 	udelay(50);
854 
855 	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
856 	value &= ~PLLE_SS_CNTL_SSCINCINTRV(0x3f);
857 	value |= PLLE_SS_CNTL_SSCINCINTRV(0x18);
858 
859 	value &= ~PLLE_SS_CNTL_SSCINC(0xff);
860 	value |= PLLE_SS_CNTL_SSCINC(0x01);
861 
862 	value &= ~PLLE_SS_CNTL_SSCBYP;
863 	value &= ~PLLE_SS_CNTL_INTERP_RESET;
864 	value &= ~PLLE_SS_CNTL_BYPASS_SS;
865 
866 	value &= ~PLLE_SS_CNTL_SSCMAX(0x1ff);
867 	value |= PLLE_SS_CNTL_SSCMAX(0x24);
868 	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
869 
870 	return 0;
871 }
872 
873 struct periph_clk_init periph_clk_init_table[] = {
874 	{ PERIPH_ID_SBC1, CLOCK_ID_PERIPH },
875 	{ PERIPH_ID_SBC2, CLOCK_ID_PERIPH },
876 	{ PERIPH_ID_SBC3, CLOCK_ID_PERIPH },
877 	{ PERIPH_ID_SBC4, CLOCK_ID_PERIPH },
878 	{ PERIPH_ID_SBC5, CLOCK_ID_PERIPH },
879 	{ PERIPH_ID_SBC6, CLOCK_ID_PERIPH },
880 	{ PERIPH_ID_HOST1X, CLOCK_ID_CGENERAL },
881 	{ PERIPH_ID_DISP1, CLOCK_ID_PERIPH },
882 	{ PERIPH_ID_NDFLASH, CLOCK_ID_PERIPH },
883 	{ PERIPH_ID_SDMMC1, CLOCK_ID_PERIPH },
884 	{ PERIPH_ID_SDMMC2, CLOCK_ID_PERIPH },
885 	{ PERIPH_ID_SDMMC3, CLOCK_ID_PERIPH },
886 	{ PERIPH_ID_SDMMC4, CLOCK_ID_PERIPH },
887 	{ PERIPH_ID_PWM, CLOCK_ID_PERIPH },
888 	{ PERIPH_ID_DVC_I2C, CLOCK_ID_PERIPH },
889 	{ PERIPH_ID_I2C1, CLOCK_ID_PERIPH },
890 	{ PERIPH_ID_I2C2, CLOCK_ID_PERIPH },
891 	{ PERIPH_ID_I2C3, CLOCK_ID_PERIPH },
892 	{ PERIPH_ID_I2C4, CLOCK_ID_PERIPH },
893 	{ -1, },
894 };
895