1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3  * Copyright (C) 2018, STMicroelectronics - All Rights Reserved
4  */
5 
6 #define LOG_CATEGORY UCLASS_CLK
7 
8 #include <common.h>
9 #include <clk-uclass.h>
10 #include <div64.h>
11 #include <dm.h>
12 #include <init.h>
13 #include <log.h>
14 #include <regmap.h>
15 #include <spl.h>
16 #include <syscon.h>
17 #include <time.h>
18 #include <vsprintf.h>
19 #include <asm/arch/sys_proto.h>
20 #include <asm/global_data.h>
21 #include <dm/device_compat.h>
22 #include <dt-bindings/clock/stm32mp1-clks.h>
23 #include <dt-bindings/clock/stm32mp1-clksrc.h>
24 #include <linux/bitops.h>
25 #include <linux/io.h>
26 #include <linux/iopoll.h>
27 
28 DECLARE_GLOBAL_DATA_PTR;
29 
30 #if defined(CONFIG_SPL_BUILD)
31 /* activate clock tree initialization in the driver */
32 #define STM32MP1_CLOCK_TREE_INIT
33 #endif
34 
35 #define MAX_HSI_HZ		64000000
36 
37 /* TIMEOUT */
38 #define TIMEOUT_200MS		200000
39 #define TIMEOUT_1S		1000000
40 
41 /* STGEN registers */
42 #define STGENC_CNTCR		0x00
43 #define STGENC_CNTSR		0x04
44 #define STGENC_CNTCVL		0x08
45 #define STGENC_CNTCVU		0x0C
46 #define STGENC_CNTFID0		0x20
47 
48 #define STGENC_CNTCR_EN		BIT(0)
49 
50 /* RCC registers */
51 #define RCC_OCENSETR		0x0C
52 #define RCC_OCENCLRR		0x10
53 #define RCC_HSICFGR		0x18
54 #define RCC_MPCKSELR		0x20
55 #define RCC_ASSCKSELR		0x24
56 #define RCC_RCK12SELR		0x28
57 #define RCC_MPCKDIVR		0x2C
58 #define RCC_AXIDIVR		0x30
59 #define RCC_APB4DIVR		0x3C
60 #define RCC_APB5DIVR		0x40
61 #define RCC_RTCDIVR		0x44
62 #define RCC_MSSCKSELR		0x48
63 #define RCC_PLL1CR		0x80
64 #define RCC_PLL1CFGR1		0x84
65 #define RCC_PLL1CFGR2		0x88
66 #define RCC_PLL1FRACR		0x8C
67 #define RCC_PLL1CSGR		0x90
68 #define RCC_PLL2CR		0x94
69 #define RCC_PLL2CFGR1		0x98
70 #define RCC_PLL2CFGR2		0x9C
71 #define RCC_PLL2FRACR		0xA0
72 #define RCC_PLL2CSGR		0xA4
73 #define RCC_I2C46CKSELR		0xC0
74 #define RCC_SPI6CKSELR		0xC4
75 #define RCC_CPERCKSELR		0xD0
76 #define RCC_STGENCKSELR		0xD4
77 #define RCC_DDRITFCR		0xD8
78 #define RCC_BDCR		0x140
79 #define RCC_RDLSICR		0x144
80 #define RCC_MP_APB4ENSETR	0x200
81 #define RCC_MP_APB5ENSETR	0x208
82 #define RCC_MP_AHB5ENSETR	0x210
83 #define RCC_MP_AHB6ENSETR	0x218
84 #define RCC_OCRDYR		0x808
85 #define RCC_DBGCFGR		0x80C
86 #define RCC_RCK3SELR		0x820
87 #define RCC_RCK4SELR		0x824
88 #define RCC_MCUDIVR		0x830
89 #define RCC_APB1DIVR		0x834
90 #define RCC_APB2DIVR		0x838
91 #define RCC_APB3DIVR		0x83C
92 #define RCC_PLL3CR		0x880
93 #define RCC_PLL3CFGR1		0x884
94 #define RCC_PLL3CFGR2		0x888
95 #define RCC_PLL3FRACR		0x88C
96 #define RCC_PLL3CSGR		0x890
97 #define RCC_PLL4CR		0x894
98 #define RCC_PLL4CFGR1		0x898
99 #define RCC_PLL4CFGR2		0x89C
100 #define RCC_PLL4FRACR		0x8A0
101 #define RCC_PLL4CSGR		0x8A4
102 #define RCC_I2C12CKSELR		0x8C0
103 #define RCC_I2C35CKSELR		0x8C4
104 #define RCC_SPI2S1CKSELR	0x8D8
105 #define RCC_SPI2S23CKSELR	0x8DC
106 #define RCC_SPI45CKSELR		0x8E0
107 #define RCC_UART6CKSELR		0x8E4
108 #define RCC_UART24CKSELR	0x8E8
109 #define RCC_UART35CKSELR	0x8EC
110 #define RCC_UART78CKSELR	0x8F0
111 #define RCC_SDMMC12CKSELR	0x8F4
112 #define RCC_SDMMC3CKSELR	0x8F8
113 #define RCC_ETHCKSELR		0x8FC
114 #define RCC_QSPICKSELR		0x900
115 #define RCC_FMCCKSELR		0x904
116 #define RCC_USBCKSELR		0x91C
117 #define RCC_DSICKSELR		0x924
118 #define RCC_ADCCKSELR		0x928
119 #define RCC_MP_APB1ENSETR	0xA00
120 #define RCC_MP_APB2ENSETR	0XA08
121 #define RCC_MP_APB3ENSETR	0xA10
122 #define RCC_MP_AHB2ENSETR	0xA18
123 #define RCC_MP_AHB3ENSETR	0xA20
124 #define RCC_MP_AHB4ENSETR	0xA28
125 
126 /* used for most of SELR register */
127 #define RCC_SELR_SRC_MASK	GENMASK(2, 0)
128 #define RCC_SELR_SRCRDY		BIT(31)
129 
130 /* Values of RCC_MPCKSELR register */
131 #define RCC_MPCKSELR_HSI	0
132 #define RCC_MPCKSELR_HSE	1
133 #define RCC_MPCKSELR_PLL	2
134 #define RCC_MPCKSELR_PLL_MPUDIV	3
135 
136 /* Values of RCC_ASSCKSELR register */
137 #define RCC_ASSCKSELR_HSI	0
138 #define RCC_ASSCKSELR_HSE	1
139 #define RCC_ASSCKSELR_PLL	2
140 
141 /* Values of RCC_MSSCKSELR register */
142 #define RCC_MSSCKSELR_HSI	0
143 #define RCC_MSSCKSELR_HSE	1
144 #define RCC_MSSCKSELR_CSI	2
145 #define RCC_MSSCKSELR_PLL	3
146 
147 /* Values of RCC_CPERCKSELR register */
148 #define RCC_CPERCKSELR_HSI	0
149 #define RCC_CPERCKSELR_CSI	1
150 #define RCC_CPERCKSELR_HSE	2
151 
152 /* used for most of DIVR register : max div for RTC */
153 #define RCC_DIVR_DIV_MASK	GENMASK(5, 0)
154 #define RCC_DIVR_DIVRDY		BIT(31)
155 
156 /* Masks for specific DIVR registers */
157 #define RCC_APBXDIV_MASK	GENMASK(2, 0)
158 #define RCC_MPUDIV_MASK		GENMASK(2, 0)
159 #define RCC_AXIDIV_MASK		GENMASK(2, 0)
160 #define RCC_MCUDIV_MASK		GENMASK(3, 0)
161 
162 /*  offset between RCC_MP_xxxENSETR and RCC_MP_xxxENCLRR registers */
163 #define RCC_MP_ENCLRR_OFFSET	4
164 
165 /* Fields of RCC_BDCR register */
166 #define RCC_BDCR_LSEON		BIT(0)
167 #define RCC_BDCR_LSEBYP		BIT(1)
168 #define RCC_BDCR_LSERDY		BIT(2)
169 #define RCC_BDCR_DIGBYP		BIT(3)
170 #define RCC_BDCR_LSEDRV_MASK	GENMASK(5, 4)
171 #define RCC_BDCR_LSEDRV_SHIFT	4
172 #define RCC_BDCR_LSECSSON	BIT(8)
173 #define RCC_BDCR_RTCCKEN	BIT(20)
174 #define RCC_BDCR_RTCSRC_MASK	GENMASK(17, 16)
175 #define RCC_BDCR_RTCSRC_SHIFT	16
176 
177 /* Fields of RCC_RDLSICR register */
178 #define RCC_RDLSICR_LSION	BIT(0)
179 #define RCC_RDLSICR_LSIRDY	BIT(1)
180 
181 /* used for ALL PLLNCR registers */
182 #define RCC_PLLNCR_PLLON	BIT(0)
183 #define RCC_PLLNCR_PLLRDY	BIT(1)
184 #define RCC_PLLNCR_SSCG_CTRL	BIT(2)
185 #define RCC_PLLNCR_DIVPEN	BIT(4)
186 #define RCC_PLLNCR_DIVQEN	BIT(5)
187 #define RCC_PLLNCR_DIVREN	BIT(6)
188 #define RCC_PLLNCR_DIVEN_SHIFT	4
189 
190 /* used for ALL PLLNCFGR1 registers */
191 #define RCC_PLLNCFGR1_DIVM_SHIFT	16
192 #define RCC_PLLNCFGR1_DIVM_MASK		GENMASK(21, 16)
193 #define RCC_PLLNCFGR1_DIVN_SHIFT	0
194 #define RCC_PLLNCFGR1_DIVN_MASK		GENMASK(8, 0)
195 /* only for PLL3 and PLL4 */
196 #define RCC_PLLNCFGR1_IFRGE_SHIFT	24
197 #define RCC_PLLNCFGR1_IFRGE_MASK	GENMASK(25, 24)
198 
199 /* used for ALL PLLNCFGR2 registers , using stm32mp1_div_id */
200 #define RCC_PLLNCFGR2_SHIFT(div_id)	((div_id) * 8)
201 #define RCC_PLLNCFGR2_DIVX_MASK		GENMASK(6, 0)
202 #define RCC_PLLNCFGR2_DIVP_SHIFT	RCC_PLLNCFGR2_SHIFT(_DIV_P)
203 #define RCC_PLLNCFGR2_DIVP_MASK		GENMASK(6, 0)
204 #define RCC_PLLNCFGR2_DIVQ_SHIFT	RCC_PLLNCFGR2_SHIFT(_DIV_Q)
205 #define RCC_PLLNCFGR2_DIVQ_MASK		GENMASK(14, 8)
206 #define RCC_PLLNCFGR2_DIVR_SHIFT	RCC_PLLNCFGR2_SHIFT(_DIV_R)
207 #define RCC_PLLNCFGR2_DIVR_MASK		GENMASK(22, 16)
208 
209 /* used for ALL PLLNFRACR registers */
210 #define RCC_PLLNFRACR_FRACV_SHIFT	3
211 #define RCC_PLLNFRACR_FRACV_MASK	GENMASK(15, 3)
212 #define RCC_PLLNFRACR_FRACLE		BIT(16)
213 
214 /* used for ALL PLLNCSGR registers */
215 #define RCC_PLLNCSGR_INC_STEP_SHIFT	16
216 #define RCC_PLLNCSGR_INC_STEP_MASK	GENMASK(30, 16)
217 #define RCC_PLLNCSGR_MOD_PER_SHIFT	0
218 #define RCC_PLLNCSGR_MOD_PER_MASK	GENMASK(12, 0)
219 #define RCC_PLLNCSGR_SSCG_MODE_SHIFT	15
220 #define RCC_PLLNCSGR_SSCG_MODE_MASK	BIT(15)
221 
222 /* used for RCC_OCENSETR and RCC_OCENCLRR registers */
223 #define RCC_OCENR_HSION			BIT(0)
224 #define RCC_OCENR_CSION			BIT(4)
225 #define RCC_OCENR_DIGBYP		BIT(7)
226 #define RCC_OCENR_HSEON			BIT(8)
227 #define RCC_OCENR_HSEBYP		BIT(10)
228 #define RCC_OCENR_HSECSSON		BIT(11)
229 
230 /* Fields of RCC_OCRDYR register */
231 #define RCC_OCRDYR_HSIRDY		BIT(0)
232 #define RCC_OCRDYR_HSIDIVRDY		BIT(2)
233 #define RCC_OCRDYR_CSIRDY		BIT(4)
234 #define RCC_OCRDYR_HSERDY		BIT(8)
235 
236 /* Fields of DDRITFCR register */
237 #define RCC_DDRITFCR_DDRCKMOD_MASK	GENMASK(22, 20)
238 #define RCC_DDRITFCR_DDRCKMOD_SHIFT	20
239 #define RCC_DDRITFCR_DDRCKMOD_SSR	0
240 
241 /* Fields of RCC_HSICFGR register */
242 #define RCC_HSICFGR_HSIDIV_MASK		GENMASK(1, 0)
243 
244 /* used for MCO related operations */
245 #define RCC_MCOCFG_MCOON		BIT(12)
246 #define RCC_MCOCFG_MCODIV_MASK		GENMASK(7, 4)
247 #define RCC_MCOCFG_MCODIV_SHIFT		4
248 #define RCC_MCOCFG_MCOSRC_MASK		GENMASK(2, 0)
249 
250 enum stm32mp1_parent_id {
251 /*
252  * _HSI, _HSE, _CSI, _LSI, _LSE should not be moved
253  * they are used as index in osc_clk[] as clock reference
254  */
255 	_HSI,
256 	_HSE,
257 	_CSI,
258 	_LSI,
259 	_LSE,
260 	_I2S_CKIN,
261 	NB_OSC,
262 
263 /* other parent source */
264 	_HSI_KER = NB_OSC,
265 	_HSE_KER,
266 	_HSE_KER_DIV2,
267 	_CSI_KER,
268 	_PLL1_P,
269 	_PLL1_Q,
270 	_PLL1_R,
271 	_PLL2_P,
272 	_PLL2_Q,
273 	_PLL2_R,
274 	_PLL3_P,
275 	_PLL3_Q,
276 	_PLL3_R,
277 	_PLL4_P,
278 	_PLL4_Q,
279 	_PLL4_R,
280 	_ACLK,
281 	_PCLK1,
282 	_PCLK2,
283 	_PCLK3,
284 	_PCLK4,
285 	_PCLK5,
286 	_HCLK6,
287 	_HCLK2,
288 	_CK_PER,
289 	_CK_MPU,
290 	_CK_MCU,
291 	_DSI_PHY,
292 	_USB_PHY_48,
293 	_PARENT_NB,
294 	_UNKNOWN_ID = 0xff,
295 };
296 
297 enum stm32mp1_parent_sel {
298 	_I2C12_SEL,
299 	_I2C35_SEL,
300 	_I2C46_SEL,
301 	_UART6_SEL,
302 	_UART24_SEL,
303 	_UART35_SEL,
304 	_UART78_SEL,
305 	_SDMMC12_SEL,
306 	_SDMMC3_SEL,
307 	_ETH_SEL,
308 	_QSPI_SEL,
309 	_FMC_SEL,
310 	_USBPHY_SEL,
311 	_USBO_SEL,
312 	_STGEN_SEL,
313 	_DSI_SEL,
314 	_ADC12_SEL,
315 	_SPI1_SEL,
316 	_SPI23_SEL,
317 	_SPI45_SEL,
318 	_SPI6_SEL,
319 	_RTC_SEL,
320 	_PARENT_SEL_NB,
321 	_UNKNOWN_SEL = 0xff,
322 };
323 
324 enum stm32mp1_pll_id {
325 	_PLL1,
326 	_PLL2,
327 	_PLL3,
328 	_PLL4,
329 	_PLL_NB
330 };
331 
332 enum stm32mp1_div_id {
333 	_DIV_P,
334 	_DIV_Q,
335 	_DIV_R,
336 	_DIV_NB,
337 };
338 
339 enum stm32mp1_clksrc_id {
340 	CLKSRC_MPU,
341 	CLKSRC_AXI,
342 	CLKSRC_MCU,
343 	CLKSRC_PLL12,
344 	CLKSRC_PLL3,
345 	CLKSRC_PLL4,
346 	CLKSRC_RTC,
347 	CLKSRC_MCO1,
348 	CLKSRC_MCO2,
349 	CLKSRC_NB
350 };
351 
352 enum stm32mp1_clkdiv_id {
353 	CLKDIV_MPU,
354 	CLKDIV_AXI,
355 	CLKDIV_MCU,
356 	CLKDIV_APB1,
357 	CLKDIV_APB2,
358 	CLKDIV_APB3,
359 	CLKDIV_APB4,
360 	CLKDIV_APB5,
361 	CLKDIV_RTC,
362 	CLKDIV_MCO1,
363 	CLKDIV_MCO2,
364 	CLKDIV_NB
365 };
366 
367 enum stm32mp1_pllcfg {
368 	PLLCFG_M,
369 	PLLCFG_N,
370 	PLLCFG_P,
371 	PLLCFG_Q,
372 	PLLCFG_R,
373 	PLLCFG_O,
374 	PLLCFG_NB
375 };
376 
377 enum stm32mp1_pllcsg {
378 	PLLCSG_MOD_PER,
379 	PLLCSG_INC_STEP,
380 	PLLCSG_SSCG_MODE,
381 	PLLCSG_NB
382 };
383 
384 enum stm32mp1_plltype {
385 	PLL_800,
386 	PLL_1600,
387 	PLL_TYPE_NB
388 };
389 
390 struct stm32mp1_pll {
391 	u8 refclk_min;
392 	u8 refclk_max;
393 	u8 divn_max;
394 };
395 
396 struct stm32mp1_clk_gate {
397 	u16 offset;
398 	u8 bit;
399 	u8 index;
400 	u8 set_clr;
401 	u8 sel;
402 	u8 fixed;
403 };
404 
405 struct stm32mp1_clk_sel {
406 	u16 offset;
407 	u8 src;
408 	u8 msk;
409 	u8 nb_parent;
410 	const u8 *parent;
411 };
412 
413 #define REFCLK_SIZE 4
414 struct stm32mp1_clk_pll {
415 	enum stm32mp1_plltype plltype;
416 	u16 rckxselr;
417 	u16 pllxcfgr1;
418 	u16 pllxcfgr2;
419 	u16 pllxfracr;
420 	u16 pllxcr;
421 	u16 pllxcsgr;
422 	u8 refclk[REFCLK_SIZE];
423 };
424 
425 struct stm32mp1_clk_data {
426 	const struct stm32mp1_clk_gate *gate;
427 	const struct stm32mp1_clk_sel *sel;
428 	const struct stm32mp1_clk_pll *pll;
429 	const int nb_gate;
430 };
431 
432 struct stm32mp1_clk_priv {
433 	fdt_addr_t base;
434 	const struct stm32mp1_clk_data *data;
435 	struct clk osc_clk[NB_OSC];
436 };
437 
438 #define STM32MP1_CLK(off, b, idx, s)		\
439 	{					\
440 		.offset = (off),		\
441 		.bit = (b),			\
442 		.index = (idx),			\
443 		.set_clr = 0,			\
444 		.sel = (s),			\
445 		.fixed = _UNKNOWN_ID,		\
446 	}
447 
448 #define STM32MP1_CLK_F(off, b, idx, f)		\
449 	{					\
450 		.offset = (off),		\
451 		.bit = (b),			\
452 		.index = (idx),			\
453 		.set_clr = 0,			\
454 		.sel = _UNKNOWN_SEL,		\
455 		.fixed = (f),			\
456 	}
457 
458 #define STM32MP1_CLK_SET_CLR(off, b, idx, s)	\
459 	{					\
460 		.offset = (off),		\
461 		.bit = (b),			\
462 		.index = (idx),			\
463 		.set_clr = 1,			\
464 		.sel = (s),			\
465 		.fixed = _UNKNOWN_ID,		\
466 	}
467 
468 #define STM32MP1_CLK_SET_CLR_F(off, b, idx, f)	\
469 	{					\
470 		.offset = (off),		\
471 		.bit = (b),			\
472 		.index = (idx),			\
473 		.set_clr = 1,			\
474 		.sel = _UNKNOWN_SEL,		\
475 		.fixed = (f),			\
476 	}
477 
478 #define STM32MP1_CLK_PARENT(idx, off, s, m, p)   \
479 	[(idx)] = {				\
480 		.offset = (off),		\
481 		.src = (s),			\
482 		.msk = (m),			\
483 		.parent = (p),			\
484 		.nb_parent = ARRAY_SIZE((p))	\
485 	}
486 
487 #define STM32MP1_CLK_PLL(idx, type, off1, off2, off3, off4, off5, off6,\
488 			p1, p2, p3, p4) \
489 	[(idx)] = {				\
490 		.plltype = (type),			\
491 		.rckxselr = (off1),		\
492 		.pllxcfgr1 = (off2),		\
493 		.pllxcfgr2 = (off3),		\
494 		.pllxfracr = (off4),		\
495 		.pllxcr = (off5),		\
496 		.pllxcsgr = (off6),		\
497 		.refclk[0] = (p1),		\
498 		.refclk[1] = (p2),		\
499 		.refclk[2] = (p3),		\
500 		.refclk[3] = (p4),		\
501 	}
502 
503 static const u8 stm32mp1_clks[][2] = {
504 	{CK_PER, _CK_PER},
505 	{CK_MPU, _CK_MPU},
506 	{CK_AXI, _ACLK},
507 	{CK_MCU, _CK_MCU},
508 	{CK_HSE, _HSE},
509 	{CK_CSI, _CSI},
510 	{CK_LSI, _LSI},
511 	{CK_LSE, _LSE},
512 	{CK_HSI, _HSI},
513 	{CK_HSE_DIV2, _HSE_KER_DIV2},
514 };
515 
516 static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
517 	STM32MP1_CLK(RCC_DDRITFCR, 0, DDRC1, _UNKNOWN_SEL),
518 	STM32MP1_CLK(RCC_DDRITFCR, 1, DDRC1LP, _UNKNOWN_SEL),
519 	STM32MP1_CLK(RCC_DDRITFCR, 2, DDRC2, _UNKNOWN_SEL),
520 	STM32MP1_CLK(RCC_DDRITFCR, 3, DDRC2LP, _UNKNOWN_SEL),
521 	STM32MP1_CLK_F(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
522 	STM32MP1_CLK(RCC_DDRITFCR, 5, DDRPHYCLP, _UNKNOWN_SEL),
523 	STM32MP1_CLK(RCC_DDRITFCR, 6, DDRCAPB, _UNKNOWN_SEL),
524 	STM32MP1_CLK(RCC_DDRITFCR, 7, DDRCAPBLP, _UNKNOWN_SEL),
525 	STM32MP1_CLK(RCC_DDRITFCR, 8, AXIDCG, _UNKNOWN_SEL),
526 	STM32MP1_CLK(RCC_DDRITFCR, 9, DDRPHYCAPB, _UNKNOWN_SEL),
527 	STM32MP1_CLK(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _UNKNOWN_SEL),
528 
529 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 11, SPI2_K, _SPI23_SEL),
530 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 12, SPI3_K, _SPI23_SEL),
531 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
532 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
533 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
534 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
535 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
536 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
537 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
538 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
539 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
540 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
541 
542 	STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 8, SPI1_K, _SPI1_SEL),
543 	STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 9, SPI4_K, _SPI45_SEL),
544 	STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 10, SPI5_K, _SPI45_SEL),
545 	STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
546 
547 	STM32MP1_CLK_SET_CLR_F(RCC_MP_APB3ENSETR, 13, VREF, _PCLK3),
548 	STM32MP1_CLK_SET_CLR_F(RCC_MP_APB3ENSETR, 11, SYSCFG, _UNKNOWN_SEL),
549 
550 	STM32MP1_CLK_SET_CLR_F(RCC_MP_APB4ENSETR, 0, LTDC_PX, _PLL4_Q),
551 	STM32MP1_CLK_SET_CLR_F(RCC_MP_APB4ENSETR, 4, DSI_PX, _PLL4_Q),
552 	STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 4, DSI_K, _DSI_SEL),
553 	STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
554 	STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
555 	STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
556 
557 	STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 0, SPI6_K, _SPI6_SEL),
558 	STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
559 	STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 3, I2C6_K, _I2C46_SEL),
560 	STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
561 	STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 16, BSEC, _UNKNOWN_SEL),
562 	STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
563 
564 	STM32MP1_CLK_SET_CLR_F(RCC_MP_AHB2ENSETR, 5, ADC12, _HCLK2),
565 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 5, ADC12_K, _ADC12_SEL),
566 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
567 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
568 
569 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB3ENSETR, 11, HSEM, _UNKNOWN_SEL),
570 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB3ENSETR, 12, IPCC, _UNKNOWN_SEL),
571 
572 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
573 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
574 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
575 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
576 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
577 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
578 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
579 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
580 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
581 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
582 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
583 
584 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB5ENSETR, 0, GPIOZ, _UNKNOWN_SEL),
585 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB5ENSETR, 6, RNG1_K, _UNKNOWN_SEL),
586 
587 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 7, ETHCK_K, _ETH_SEL),
588 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 8, ETHTX, _UNKNOWN_SEL),
589 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 9, ETHRX, _UNKNOWN_SEL),
590 	STM32MP1_CLK_SET_CLR_F(RCC_MP_AHB6ENSETR, 10, ETHMAC, _ACLK),
591 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
592 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
593 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
594 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
595 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
596 
597 	STM32MP1_CLK(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
598 
599 	STM32MP1_CLK(RCC_BDCR, 20, RTC, _RTC_SEL),
600 };
601 
602 static const u8 i2c12_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
603 static const u8 i2c35_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
604 static const u8 i2c46_parents[] = {_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER};
605 static const u8 uart6_parents[] = {_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER,
606 					_HSE_KER};
607 static const u8 uart24_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
608 					 _HSE_KER};
609 static const u8 uart35_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
610 					 _HSE_KER};
611 static const u8 uart78_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
612 					 _HSE_KER};
613 static const u8 sdmmc12_parents[] = {_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER};
614 static const u8 sdmmc3_parents[] = {_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER};
615 static const u8 eth_parents[] = {_PLL4_P, _PLL3_Q};
616 static const u8 qspi_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
617 static const u8 fmc_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
618 static const u8 usbphy_parents[] = {_HSE_KER, _PLL4_R, _HSE_KER_DIV2};
619 static const u8 usbo_parents[] = {_PLL4_R, _USB_PHY_48};
620 static const u8 stgen_parents[] = {_HSI_KER, _HSE_KER};
621 static const u8 dsi_parents[] = {_DSI_PHY, _PLL4_P};
622 static const u8 adc_parents[] = {_PLL4_R, _CK_PER, _PLL3_Q};
623 /* same parents for SPI1=RCC_SPI2S1CKSELR and SPI2&3 = RCC_SPI2S23CKSELR */
624 static const u8 spi_parents[] = {_PLL4_P, _PLL3_Q, _I2S_CKIN, _CK_PER,
625 				 _PLL3_R};
626 static const u8 spi45_parents[] = {_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER,
627 				   _HSE_KER};
628 static const u8 spi6_parents[] = {_PCLK5, _PLL4_Q, _HSI_KER, _CSI_KER,
629 				  _HSE_KER, _PLL3_Q};
630 static const u8 rtc_parents[] = {_UNKNOWN_ID, _LSE, _LSI, _HSE};
631 
632 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
633 	STM32MP1_CLK_PARENT(_I2C12_SEL, RCC_I2C12CKSELR, 0, 0x7, i2c12_parents),
634 	STM32MP1_CLK_PARENT(_I2C35_SEL, RCC_I2C35CKSELR, 0, 0x7, i2c35_parents),
635 	STM32MP1_CLK_PARENT(_I2C46_SEL, RCC_I2C46CKSELR, 0, 0x7, i2c46_parents),
636 	STM32MP1_CLK_PARENT(_UART6_SEL, RCC_UART6CKSELR, 0, 0x7, uart6_parents),
637 	STM32MP1_CLK_PARENT(_UART24_SEL, RCC_UART24CKSELR, 0, 0x7,
638 			    uart24_parents),
639 	STM32MP1_CLK_PARENT(_UART35_SEL, RCC_UART35CKSELR, 0, 0x7,
640 			    uart35_parents),
641 	STM32MP1_CLK_PARENT(_UART78_SEL, RCC_UART78CKSELR, 0, 0x7,
642 			    uart78_parents),
643 	STM32MP1_CLK_PARENT(_SDMMC12_SEL, RCC_SDMMC12CKSELR, 0, 0x7,
644 			    sdmmc12_parents),
645 	STM32MP1_CLK_PARENT(_SDMMC3_SEL, RCC_SDMMC3CKSELR, 0, 0x7,
646 			    sdmmc3_parents),
647 	STM32MP1_CLK_PARENT(_ETH_SEL, RCC_ETHCKSELR, 0, 0x3, eth_parents),
648 	STM32MP1_CLK_PARENT(_QSPI_SEL, RCC_QSPICKSELR, 0, 0x3, qspi_parents),
649 	STM32MP1_CLK_PARENT(_FMC_SEL, RCC_FMCCKSELR, 0, 0x3, fmc_parents),
650 	STM32MP1_CLK_PARENT(_USBPHY_SEL, RCC_USBCKSELR, 0, 0x3, usbphy_parents),
651 	STM32MP1_CLK_PARENT(_USBO_SEL, RCC_USBCKSELR, 4, 0x1, usbo_parents),
652 	STM32MP1_CLK_PARENT(_STGEN_SEL, RCC_STGENCKSELR, 0, 0x3, stgen_parents),
653 	STM32MP1_CLK_PARENT(_DSI_SEL, RCC_DSICKSELR, 0, 0x1, dsi_parents),
654 	STM32MP1_CLK_PARENT(_ADC12_SEL, RCC_ADCCKSELR, 0, 0x3, adc_parents),
655 	STM32MP1_CLK_PARENT(_SPI1_SEL, RCC_SPI2S1CKSELR, 0, 0x7, spi_parents),
656 	STM32MP1_CLK_PARENT(_SPI23_SEL, RCC_SPI2S23CKSELR, 0, 0x7, spi_parents),
657 	STM32MP1_CLK_PARENT(_SPI45_SEL, RCC_SPI45CKSELR, 0, 0x7, spi45_parents),
658 	STM32MP1_CLK_PARENT(_SPI6_SEL, RCC_SPI6CKSELR, 0, 0x7, spi6_parents),
659 	STM32MP1_CLK_PARENT(_RTC_SEL, RCC_BDCR, RCC_BDCR_RTCSRC_SHIFT,
660 			    (RCC_BDCR_RTCSRC_MASK >> RCC_BDCR_RTCSRC_SHIFT),
661 			    rtc_parents),
662 };
663 
664 #ifdef STM32MP1_CLOCK_TREE_INIT
665 
666 /* define characteristic of PLL according type */
667 #define DIVM_MIN	0
668 #define DIVM_MAX	63
669 #define DIVN_MIN	24
670 #define DIVP_MIN	0
671 #define DIVP_MAX	127
672 #define FRAC_MAX	8192
673 
674 #define PLL1600_VCO_MIN	800000000
675 #define PLL1600_VCO_MAX	1600000000
676 
677 static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
678 	[PLL_800] = {
679 		.refclk_min = 4,
680 		.refclk_max = 16,
681 		.divn_max = 99,
682 		},
683 	[PLL_1600] = {
684 		.refclk_min = 8,
685 		.refclk_max = 16,
686 		.divn_max = 199,
687 		},
688 };
689 #endif /* STM32MP1_CLOCK_TREE_INIT */
690 
691 static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
692 	STM32MP1_CLK_PLL(_PLL1, PLL_1600,
693 			 RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
694 			 RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
695 			 _HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID),
696 	STM32MP1_CLK_PLL(_PLL2, PLL_1600,
697 			 RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
698 			 RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
699 			 _HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID),
700 	STM32MP1_CLK_PLL(_PLL3, PLL_800,
701 			 RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
702 			 RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
703 			 _HSI, _HSE, _CSI, _UNKNOWN_ID),
704 	STM32MP1_CLK_PLL(_PLL4, PLL_800,
705 			 RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
706 			 RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
707 			 _HSI, _HSE, _CSI, _I2S_CKIN),
708 };
709 
710 /* Prescaler table lookups for clock computation */
711 /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
712 static const u8 stm32mp1_mcu_div[16] = {
713 	0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
714 };
715 
716 /* div = /1 /2 /4 /8 /16 : same divider for pmu and apbx*/
717 #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
718 #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
719 static const u8 stm32mp1_mpu_apbx_div[8] = {
720 	0, 1, 2, 3, 4, 4, 4, 4
721 };
722 
723 /* div = /1 /2 /3 /4 */
724 static const u8 stm32mp1_axi_div[8] = {
725 	1, 2, 3, 4, 4, 4, 4, 4
726 };
727 
728 static const __maybe_unused
729 char * const stm32mp1_clk_parent_name[_PARENT_NB] = {
730 	[_HSI] = "HSI",
731 	[_HSE] = "HSE",
732 	[_CSI] = "CSI",
733 	[_LSI] = "LSI",
734 	[_LSE] = "LSE",
735 	[_I2S_CKIN] = "I2S_CKIN",
736 	[_HSI_KER] = "HSI_KER",
737 	[_HSE_KER] = "HSE_KER",
738 	[_HSE_KER_DIV2] = "HSE_KER_DIV2",
739 	[_CSI_KER] = "CSI_KER",
740 	[_PLL1_P] = "PLL1_P",
741 	[_PLL1_Q] = "PLL1_Q",
742 	[_PLL1_R] = "PLL1_R",
743 	[_PLL2_P] = "PLL2_P",
744 	[_PLL2_Q] = "PLL2_Q",
745 	[_PLL2_R] = "PLL2_R",
746 	[_PLL3_P] = "PLL3_P",
747 	[_PLL3_Q] = "PLL3_Q",
748 	[_PLL3_R] = "PLL3_R",
749 	[_PLL4_P] = "PLL4_P",
750 	[_PLL4_Q] = "PLL4_Q",
751 	[_PLL4_R] = "PLL4_R",
752 	[_ACLK] = "ACLK",
753 	[_PCLK1] = "PCLK1",
754 	[_PCLK2] = "PCLK2",
755 	[_PCLK3] = "PCLK3",
756 	[_PCLK4] = "PCLK4",
757 	[_PCLK5] = "PCLK5",
758 	[_HCLK6] = "KCLK6",
759 	[_HCLK2] = "HCLK2",
760 	[_CK_PER] = "CK_PER",
761 	[_CK_MPU] = "CK_MPU",
762 	[_CK_MCU] = "CK_MCU",
763 	[_USB_PHY_48] = "USB_PHY_48",
764 	[_DSI_PHY] = "DSI_PHY_PLL",
765 };
766 
767 static const __maybe_unused
768 char * const stm32mp1_clk_parent_sel_name[_PARENT_SEL_NB] = {
769 	[_I2C12_SEL] = "I2C12",
770 	[_I2C35_SEL] = "I2C35",
771 	[_I2C46_SEL] = "I2C46",
772 	[_UART6_SEL] = "UART6",
773 	[_UART24_SEL] = "UART24",
774 	[_UART35_SEL] = "UART35",
775 	[_UART78_SEL] = "UART78",
776 	[_SDMMC12_SEL] = "SDMMC12",
777 	[_SDMMC3_SEL] = "SDMMC3",
778 	[_ETH_SEL] = "ETH",
779 	[_QSPI_SEL] = "QSPI",
780 	[_FMC_SEL] = "FMC",
781 	[_USBPHY_SEL] = "USBPHY",
782 	[_USBO_SEL] = "USBO",
783 	[_STGEN_SEL] = "STGEN",
784 	[_DSI_SEL] = "DSI",
785 	[_ADC12_SEL] = "ADC12",
786 	[_SPI1_SEL] = "SPI1",
787 	[_SPI45_SEL] = "SPI45",
788 	[_RTC_SEL] = "RTC",
789 };
790 
791 static const struct stm32mp1_clk_data stm32mp1_data = {
792 	.gate = stm32mp1_clk_gate,
793 	.sel = stm32mp1_clk_sel,
794 	.pll = stm32mp1_clk_pll,
795 	.nb_gate = ARRAY_SIZE(stm32mp1_clk_gate),
796 };
797 
stm32mp1_clk_get_fixed(struct stm32mp1_clk_priv * priv,int idx)798 static ulong stm32mp1_clk_get_fixed(struct stm32mp1_clk_priv *priv, int idx)
799 {
800 	if (idx >= NB_OSC) {
801 		log_debug("clk id %d not found\n", idx);
802 		return 0;
803 	}
804 
805 	return clk_get_rate(&priv->osc_clk[idx]);
806 }
807 
stm32mp1_clk_get_id(struct stm32mp1_clk_priv * priv,unsigned long id)808 static int stm32mp1_clk_get_id(struct stm32mp1_clk_priv *priv, unsigned long id)
809 {
810 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
811 	int i, nb_clks = priv->data->nb_gate;
812 
813 	for (i = 0; i < nb_clks; i++) {
814 		if (gate[i].index == id)
815 			break;
816 	}
817 
818 	if (i == nb_clks) {
819 		log_err("clk id %d not found\n", (u32)id);
820 		return -EINVAL;
821 	}
822 
823 	return i;
824 }
825 
stm32mp1_clk_get_sel(struct stm32mp1_clk_priv * priv,int i)826 static int stm32mp1_clk_get_sel(struct stm32mp1_clk_priv *priv,
827 				int i)
828 {
829 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
830 
831 	if (gate[i].sel > _PARENT_SEL_NB) {
832 		log_err("parents for clk id %d not found\n", i);
833 		return -EINVAL;
834 	}
835 
836 	return gate[i].sel;
837 }
838 
stm32mp1_clk_get_fixed_parent(struct stm32mp1_clk_priv * priv,int i)839 static int stm32mp1_clk_get_fixed_parent(struct stm32mp1_clk_priv *priv,
840 					 int i)
841 {
842 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
843 
844 	if (gate[i].fixed == _UNKNOWN_ID)
845 		return -ENOENT;
846 
847 	return gate[i].fixed;
848 }
849 
stm32mp1_clk_get_parent(struct stm32mp1_clk_priv * priv,unsigned long id)850 static int stm32mp1_clk_get_parent(struct stm32mp1_clk_priv *priv,
851 				   unsigned long id)
852 {
853 	const struct stm32mp1_clk_sel *sel = priv->data->sel;
854 	int i;
855 	int s, p;
856 	unsigned int idx;
857 
858 	for (idx = 0; idx < ARRAY_SIZE(stm32mp1_clks); idx++)
859 		if (stm32mp1_clks[idx][0] == id)
860 			return stm32mp1_clks[idx][1];
861 
862 	i = stm32mp1_clk_get_id(priv, id);
863 	if (i < 0)
864 		return i;
865 
866 	p = stm32mp1_clk_get_fixed_parent(priv, i);
867 	if (p >= 0 && p < _PARENT_NB)
868 		return p;
869 
870 	s = stm32mp1_clk_get_sel(priv, i);
871 	if (s < 0)
872 		return s;
873 
874 	p = (readl(priv->base + sel[s].offset) >> sel[s].src) & sel[s].msk;
875 
876 	if (p < sel[s].nb_parent) {
877 		log_content("%s clock is the parent %s of clk id %d\n",
878 			    stm32mp1_clk_parent_name[sel[s].parent[p]],
879 			    stm32mp1_clk_parent_sel_name[s],
880 			    (u32)id);
881 		return sel[s].parent[p];
882 	}
883 
884 	log_err("no parents defined for clk id %d\n", (u32)id);
885 
886 	return -EINVAL;
887 }
888 
pll_get_fref_ck(struct stm32mp1_clk_priv * priv,int pll_id)889 static ulong  pll_get_fref_ck(struct stm32mp1_clk_priv *priv,
890 			      int pll_id)
891 {
892 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
893 	u32 selr;
894 	int src;
895 	ulong refclk;
896 
897 	/* Get current refclk */
898 	selr = readl(priv->base + pll[pll_id].rckxselr);
899 	src = selr & RCC_SELR_SRC_MASK;
900 
901 	refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]);
902 
903 	return refclk;
904 }
905 
906 /*
907  * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
908  * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
909  * - PLL3 & PLL4 => return VCO     with Fpll_y_ck = FVCO / (DIVy + 1)
910  * => in all the case Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
911  */
pll_get_fvco(struct stm32mp1_clk_priv * priv,int pll_id)912 static ulong pll_get_fvco(struct stm32mp1_clk_priv *priv,
913 			  int pll_id)
914 {
915 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
916 	int divm, divn;
917 	ulong refclk, fvco;
918 	u32 cfgr1, fracr;
919 
920 	cfgr1 = readl(priv->base + pll[pll_id].pllxcfgr1);
921 	fracr = readl(priv->base + pll[pll_id].pllxfracr);
922 
923 	divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
924 	divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
925 
926 	refclk = pll_get_fref_ck(priv, pll_id);
927 
928 	/* with FRACV :
929 	 *   Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
930 	 * without FRACV
931 	 *   Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
932 	 */
933 	if (fracr & RCC_PLLNFRACR_FRACLE) {
934 		u32 fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK)
935 			    >> RCC_PLLNFRACR_FRACV_SHIFT;
936 		fvco = (ulong)lldiv((unsigned long long)refclk *
937 				     (((divn + 1) << 13) + fracv),
938 				     ((unsigned long long)(divm + 1)) << 13);
939 	} else {
940 		fvco = (ulong)(refclk * (divn + 1) / (divm + 1));
941 	}
942 
943 	return fvco;
944 }
945 
stm32mp1_read_pll_freq(struct stm32mp1_clk_priv * priv,int pll_id,int div_id)946 static ulong stm32mp1_read_pll_freq(struct stm32mp1_clk_priv *priv,
947 				    int pll_id, int div_id)
948 {
949 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
950 	int divy;
951 	ulong dfout;
952 	u32 cfgr2;
953 
954 	if (div_id >= _DIV_NB)
955 		return 0;
956 
957 	cfgr2 = readl(priv->base + pll[pll_id].pllxcfgr2);
958 	divy = (cfgr2 >> RCC_PLLNCFGR2_SHIFT(div_id)) & RCC_PLLNCFGR2_DIVX_MASK;
959 
960 	dfout = pll_get_fvco(priv, pll_id) / (divy + 1);
961 
962 	return dfout;
963 }
964 
stm32mp1_clk_get_by_name(const char * name)965 static ulong stm32mp1_clk_get_by_name(const char *name)
966 {
967 	struct clk clk;
968 	struct udevice *dev = NULL;
969 	ulong clock = 0;
970 
971 	if (!uclass_get_device_by_name(UCLASS_CLK, name, &dev)) {
972 		if (clk_request(dev, &clk)) {
973 			log_err("%s request", name);
974 		} else {
975 			clk.id = 0;
976 			clock = clk_get_rate(&clk);
977 		}
978 	}
979 
980 	return clock;
981 }
982 
stm32mp1_clk_get(struct stm32mp1_clk_priv * priv,int p)983 static ulong stm32mp1_clk_get(struct stm32mp1_clk_priv *priv, int p)
984 {
985 	u32 reg;
986 	ulong clock = 0;
987 
988 	switch (p) {
989 	case _CK_MPU:
990 	/* MPU sub system */
991 		reg = readl(priv->base + RCC_MPCKSELR);
992 		switch (reg & RCC_SELR_SRC_MASK) {
993 		case RCC_MPCKSELR_HSI:
994 			clock = stm32mp1_clk_get_fixed(priv, _HSI);
995 			break;
996 		case RCC_MPCKSELR_HSE:
997 			clock = stm32mp1_clk_get_fixed(priv, _HSE);
998 			break;
999 		case RCC_MPCKSELR_PLL:
1000 		case RCC_MPCKSELR_PLL_MPUDIV:
1001 			clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_P);
1002 			if ((reg & RCC_SELR_SRC_MASK) ==
1003 			    RCC_MPCKSELR_PLL_MPUDIV) {
1004 				reg = readl(priv->base + RCC_MPCKDIVR);
1005 				clock >>= stm32mp1_mpu_div[reg &
1006 					RCC_MPUDIV_MASK];
1007 			}
1008 			break;
1009 		}
1010 		break;
1011 	/* AXI sub system */
1012 	case _ACLK:
1013 	case _HCLK2:
1014 	case _HCLK6:
1015 	case _PCLK4:
1016 	case _PCLK5:
1017 		reg = readl(priv->base + RCC_ASSCKSELR);
1018 		switch (reg & RCC_SELR_SRC_MASK) {
1019 		case RCC_ASSCKSELR_HSI:
1020 			clock = stm32mp1_clk_get_fixed(priv, _HSI);
1021 			break;
1022 		case RCC_ASSCKSELR_HSE:
1023 			clock = stm32mp1_clk_get_fixed(priv, _HSE);
1024 			break;
1025 		case RCC_ASSCKSELR_PLL:
1026 			clock = stm32mp1_read_pll_freq(priv, _PLL2, _DIV_P);
1027 			break;
1028 		}
1029 
1030 		/* System clock divider */
1031 		reg = readl(priv->base + RCC_AXIDIVR);
1032 		clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
1033 
1034 		switch (p) {
1035 		case _PCLK4:
1036 			reg = readl(priv->base + RCC_APB4DIVR);
1037 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1038 			break;
1039 		case _PCLK5:
1040 			reg = readl(priv->base + RCC_APB5DIVR);
1041 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1042 			break;
1043 		default:
1044 			break;
1045 		}
1046 		break;
1047 	/* MCU sub system */
1048 	case _CK_MCU:
1049 	case _PCLK1:
1050 	case _PCLK2:
1051 	case _PCLK3:
1052 		reg = readl(priv->base + RCC_MSSCKSELR);
1053 		switch (reg & RCC_SELR_SRC_MASK) {
1054 		case RCC_MSSCKSELR_HSI:
1055 			clock = stm32mp1_clk_get_fixed(priv, _HSI);
1056 			break;
1057 		case RCC_MSSCKSELR_HSE:
1058 			clock = stm32mp1_clk_get_fixed(priv, _HSE);
1059 			break;
1060 		case RCC_MSSCKSELR_CSI:
1061 			clock = stm32mp1_clk_get_fixed(priv, _CSI);
1062 			break;
1063 		case RCC_MSSCKSELR_PLL:
1064 			clock = stm32mp1_read_pll_freq(priv, _PLL3, _DIV_P);
1065 			break;
1066 		}
1067 
1068 		/* MCU clock divider */
1069 		reg = readl(priv->base + RCC_MCUDIVR);
1070 		clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
1071 
1072 		switch (p) {
1073 		case _PCLK1:
1074 			reg = readl(priv->base + RCC_APB1DIVR);
1075 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1076 			break;
1077 		case _PCLK2:
1078 			reg = readl(priv->base + RCC_APB2DIVR);
1079 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1080 			break;
1081 		case _PCLK3:
1082 			reg = readl(priv->base + RCC_APB3DIVR);
1083 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1084 			break;
1085 		case _CK_MCU:
1086 		default:
1087 			break;
1088 		}
1089 		break;
1090 	case _CK_PER:
1091 		reg = readl(priv->base + RCC_CPERCKSELR);
1092 		switch (reg & RCC_SELR_SRC_MASK) {
1093 		case RCC_CPERCKSELR_HSI:
1094 			clock = stm32mp1_clk_get_fixed(priv, _HSI);
1095 			break;
1096 		case RCC_CPERCKSELR_HSE:
1097 			clock = stm32mp1_clk_get_fixed(priv, _HSE);
1098 			break;
1099 		case RCC_CPERCKSELR_CSI:
1100 			clock = stm32mp1_clk_get_fixed(priv, _CSI);
1101 			break;
1102 		}
1103 		break;
1104 	case _HSI:
1105 	case _HSI_KER:
1106 		clock = stm32mp1_clk_get_fixed(priv, _HSI);
1107 		break;
1108 	case _CSI:
1109 	case _CSI_KER:
1110 		clock = stm32mp1_clk_get_fixed(priv, _CSI);
1111 		break;
1112 	case _HSE:
1113 	case _HSE_KER:
1114 	case _HSE_KER_DIV2:
1115 		clock = stm32mp1_clk_get_fixed(priv, _HSE);
1116 		if (p == _HSE_KER_DIV2)
1117 			clock >>= 1;
1118 		break;
1119 	case _LSI:
1120 		clock = stm32mp1_clk_get_fixed(priv, _LSI);
1121 		break;
1122 	case _LSE:
1123 		clock = stm32mp1_clk_get_fixed(priv, _LSE);
1124 		break;
1125 	/* PLL */
1126 	case _PLL1_P:
1127 	case _PLL1_Q:
1128 	case _PLL1_R:
1129 		clock = stm32mp1_read_pll_freq(priv, _PLL1, p - _PLL1_P);
1130 		break;
1131 	case _PLL2_P:
1132 	case _PLL2_Q:
1133 	case _PLL2_R:
1134 		clock = stm32mp1_read_pll_freq(priv, _PLL2, p - _PLL2_P);
1135 		break;
1136 	case _PLL3_P:
1137 	case _PLL3_Q:
1138 	case _PLL3_R:
1139 		clock = stm32mp1_read_pll_freq(priv, _PLL3, p - _PLL3_P);
1140 		break;
1141 	case _PLL4_P:
1142 	case _PLL4_Q:
1143 	case _PLL4_R:
1144 		clock = stm32mp1_read_pll_freq(priv, _PLL4, p - _PLL4_P);
1145 		break;
1146 	/* other */
1147 	case _USB_PHY_48:
1148 		clock = stm32mp1_clk_get_by_name("ck_usbo_48m");
1149 		break;
1150 	case _DSI_PHY:
1151 		clock = stm32mp1_clk_get_by_name("ck_dsi_phy");
1152 		break;
1153 	default:
1154 		break;
1155 	}
1156 
1157 	log_debug("id=%d clock = %lx : %ld kHz\n", p, clock, clock / 1000);
1158 
1159 	return clock;
1160 }
1161 
stm32mp1_clk_enable(struct clk * clk)1162 static int stm32mp1_clk_enable(struct clk *clk)
1163 {
1164 	struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1165 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
1166 	int i = stm32mp1_clk_get_id(priv, clk->id);
1167 
1168 	if (i < 0)
1169 		return i;
1170 
1171 	if (gate[i].set_clr)
1172 		writel(BIT(gate[i].bit), priv->base + gate[i].offset);
1173 	else
1174 		setbits_le32(priv->base + gate[i].offset, BIT(gate[i].bit));
1175 
1176 	dev_dbg(clk->dev, "%s: id clock %d has been enabled\n", __func__, (u32)clk->id);
1177 
1178 	return 0;
1179 }
1180 
stm32mp1_clk_disable(struct clk * clk)1181 static int stm32mp1_clk_disable(struct clk *clk)
1182 {
1183 	struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1184 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
1185 	int i = stm32mp1_clk_get_id(priv, clk->id);
1186 
1187 	if (i < 0)
1188 		return i;
1189 
1190 	if (gate[i].set_clr)
1191 		writel(BIT(gate[i].bit),
1192 		       priv->base + gate[i].offset
1193 		       + RCC_MP_ENCLRR_OFFSET);
1194 	else
1195 		clrbits_le32(priv->base + gate[i].offset, BIT(gate[i].bit));
1196 
1197 	dev_dbg(clk->dev, "%s: id clock %d has been disabled\n", __func__, (u32)clk->id);
1198 
1199 	return 0;
1200 }
1201 
stm32mp1_clk_get_rate(struct clk * clk)1202 static ulong stm32mp1_clk_get_rate(struct clk *clk)
1203 {
1204 	struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1205 	int p = stm32mp1_clk_get_parent(priv, clk->id);
1206 	ulong rate;
1207 
1208 	if (p < 0)
1209 		return 0;
1210 
1211 	rate = stm32mp1_clk_get(priv, p);
1212 
1213 	dev_vdbg(clk->dev, "computed rate for id clock %d is %d (parent is %s)\n",
1214 		 (u32)clk->id, (u32)rate, stm32mp1_clk_parent_name[p]);
1215 
1216 	return rate;
1217 }
1218 
1219 #ifdef STM32MP1_CLOCK_TREE_INIT
1220 
stm32mp1_supports_opp(u32 opp_id,u32 cpu_type)1221 bool stm32mp1_supports_opp(u32 opp_id, u32 cpu_type)
1222 {
1223 	unsigned int id;
1224 
1225 	switch (opp_id) {
1226 	case 1:
1227 	case 2:
1228 		id = opp_id;
1229 		break;
1230 	default:
1231 		id = 1; /* default value */
1232 		break;
1233 	}
1234 
1235 	switch (cpu_type) {
1236 	case CPU_STM32MP157Fxx:
1237 	case CPU_STM32MP157Dxx:
1238 	case CPU_STM32MP153Fxx:
1239 	case CPU_STM32MP153Dxx:
1240 	case CPU_STM32MP151Fxx:
1241 	case CPU_STM32MP151Dxx:
1242 		return true;
1243 	default:
1244 		return id == 1;
1245 	}
1246 }
1247 
board_vddcore_init(u32 voltage_mv)1248 __weak void board_vddcore_init(u32 voltage_mv)
1249 {
1250 }
1251 
1252 /*
1253  * gets OPP parameters (frequency in KHz and voltage in mV) from
1254  * an OPP table subnode. Platform HW support capabilities are also checked.
1255  * Returns 0 on success and a negative FDT error code on failure.
1256  */
stm32mp1_get_opp(u32 cpu_type,ofnode subnode,u32 * freq_khz,u32 * voltage_mv)1257 static int stm32mp1_get_opp(u32 cpu_type, ofnode subnode,
1258 			    u32 *freq_khz, u32 *voltage_mv)
1259 {
1260 	u32 opp_hw;
1261 	u64 read_freq_64;
1262 	u32 read_voltage_32;
1263 
1264 	*freq_khz = 0;
1265 	*voltage_mv = 0;
1266 
1267 	opp_hw = ofnode_read_u32_default(subnode, "opp-supported-hw", 0);
1268 	if (opp_hw)
1269 		if (!stm32mp1_supports_opp(opp_hw, cpu_type))
1270 			return -FDT_ERR_BADVALUE;
1271 
1272 	read_freq_64 = ofnode_read_u64_default(subnode, "opp-hz", 0) /
1273 		       1000ULL;
1274 	read_voltage_32 = ofnode_read_u32_default(subnode, "opp-microvolt", 0) /
1275 			  1000U;
1276 
1277 	if (!read_voltage_32 || !read_freq_64)
1278 		return -FDT_ERR_NOTFOUND;
1279 
1280 	/* Frequency value expressed in KHz must fit on 32 bits */
1281 	if (read_freq_64 > U32_MAX)
1282 		return -FDT_ERR_BADVALUE;
1283 
1284 	/* Millivolt value must fit on 16 bits */
1285 	if (read_voltage_32 > U16_MAX)
1286 		return -FDT_ERR_BADVALUE;
1287 
1288 	*freq_khz = (u32)read_freq_64;
1289 	*voltage_mv = read_voltage_32;
1290 
1291 	return 0;
1292 }
1293 
1294 /*
1295  * parses OPP table in DT and finds the parameters for the
1296  * highest frequency supported by the HW platform.
1297  * Returns 0 on success and a negative FDT error code on failure.
1298  */
stm32mp1_get_max_opp_freq(struct stm32mp1_clk_priv * priv,u64 * freq_hz)1299 int stm32mp1_get_max_opp_freq(struct stm32mp1_clk_priv *priv, u64 *freq_hz)
1300 {
1301 	ofnode node, subnode;
1302 	int ret;
1303 	u32 freq = 0U, voltage = 0U;
1304 	u32 cpu_type = get_cpu_type();
1305 
1306 	node = ofnode_by_compatible(ofnode_null(), "operating-points-v2");
1307 	if (!ofnode_valid(node))
1308 		return -FDT_ERR_NOTFOUND;
1309 
1310 	ofnode_for_each_subnode(subnode, node) {
1311 		unsigned int read_freq;
1312 		unsigned int read_voltage;
1313 
1314 		ret = stm32mp1_get_opp(cpu_type, subnode,
1315 				       &read_freq, &read_voltage);
1316 		if (ret)
1317 			continue;
1318 
1319 		if (read_freq > freq) {
1320 			freq = read_freq;
1321 			voltage = read_voltage;
1322 		}
1323 	}
1324 
1325 	if (!freq || !voltage)
1326 		return -FDT_ERR_NOTFOUND;
1327 
1328 	*freq_hz = (u64)1000U * freq;
1329 	board_vddcore_init(voltage);
1330 
1331 	return 0;
1332 }
1333 
stm32mp1_pll1_opp(struct stm32mp1_clk_priv * priv,int clksrc,u32 * pllcfg,u32 * fracv)1334 static int stm32mp1_pll1_opp(struct stm32mp1_clk_priv *priv, int clksrc,
1335 			     u32 *pllcfg, u32 *fracv)
1336 {
1337 	u32 post_divm;
1338 	u32 input_freq;
1339 	u64 output_freq;
1340 	u64 freq;
1341 	u64 vco;
1342 	u32 divm, divn, divp, frac;
1343 	int i, ret;
1344 	u32 diff;
1345 	u32 best_diff = U32_MAX;
1346 
1347 	/* PLL1 is 1600 */
1348 	const u32 DIVN_MAX = stm32mp1_pll[PLL_1600].divn_max;
1349 	const u32 POST_DIVM_MIN = stm32mp1_pll[PLL_1600].refclk_min * 1000000U;
1350 	const u32 POST_DIVM_MAX = stm32mp1_pll[PLL_1600].refclk_max * 1000000U;
1351 
1352 	ret = stm32mp1_get_max_opp_freq(priv, &output_freq);
1353 	if (ret) {
1354 		log_debug("PLL1 OPP configuration not found (%d).\n", ret);
1355 		return ret;
1356 	}
1357 
1358 	switch (clksrc) {
1359 	case CLK_PLL12_HSI:
1360 		input_freq = stm32mp1_clk_get_fixed(priv, _HSI);
1361 		break;
1362 	case CLK_PLL12_HSE:
1363 		input_freq = stm32mp1_clk_get_fixed(priv, _HSE);
1364 		break;
1365 	default:
1366 		return -EINTR;
1367 	}
1368 
1369 	/* Following parameters have always the same value */
1370 	pllcfg[PLLCFG_Q] = 0;
1371 	pllcfg[PLLCFG_R] = 0;
1372 	pllcfg[PLLCFG_O] = PQR(1, 0, 0);
1373 
1374 	for (divm = DIVM_MAX; divm >= DIVM_MIN; divm--)	{
1375 		post_divm = (u32)(input_freq / (divm + 1));
1376 		if (post_divm < POST_DIVM_MIN || post_divm > POST_DIVM_MAX)
1377 			continue;
1378 
1379 		for (divp = DIVP_MIN; divp <= DIVP_MAX; divp++) {
1380 			freq = output_freq * (divm + 1) * (divp + 1);
1381 			divn = (u32)((freq / input_freq) - 1);
1382 			if (divn < DIVN_MIN || divn > DIVN_MAX)
1383 				continue;
1384 
1385 			frac = (u32)(((freq * FRAC_MAX) / input_freq) -
1386 				     ((divn + 1) * FRAC_MAX));
1387 			/* 2 loops to refine the fractional part */
1388 			for (i = 2; i != 0; i--) {
1389 				if (frac > FRAC_MAX)
1390 					break;
1391 
1392 				vco = (post_divm * (divn + 1)) +
1393 				      ((post_divm * (u64)frac) /
1394 				       FRAC_MAX);
1395 				if (vco < (PLL1600_VCO_MIN / 2) ||
1396 				    vco > (PLL1600_VCO_MAX / 2)) {
1397 					frac++;
1398 					continue;
1399 				}
1400 				freq = vco / (divp + 1);
1401 				if (output_freq < freq)
1402 					diff = (u32)(freq - output_freq);
1403 				else
1404 					diff = (u32)(output_freq - freq);
1405 				if (diff < best_diff)  {
1406 					pllcfg[PLLCFG_M] = divm;
1407 					pllcfg[PLLCFG_N] = divn;
1408 					pllcfg[PLLCFG_P] = divp;
1409 					*fracv = frac;
1410 
1411 					if (diff == 0)
1412 						return 0;
1413 
1414 					best_diff = diff;
1415 				}
1416 				frac++;
1417 			}
1418 		}
1419 	}
1420 
1421 	if (best_diff == U32_MAX)
1422 		return -1;
1423 
1424 	return 0;
1425 }
1426 
stm32mp1_ls_osc_set(int enable,fdt_addr_t rcc,u32 offset,u32 mask_on)1427 static void stm32mp1_ls_osc_set(int enable, fdt_addr_t rcc, u32 offset,
1428 				u32 mask_on)
1429 {
1430 	u32 address = rcc + offset;
1431 
1432 	if (enable)
1433 		setbits_le32(address, mask_on);
1434 	else
1435 		clrbits_le32(address, mask_on);
1436 }
1437 
stm32mp1_hs_ocs_set(int enable,fdt_addr_t rcc,u32 mask_on)1438 static void stm32mp1_hs_ocs_set(int enable, fdt_addr_t rcc, u32 mask_on)
1439 {
1440 	writel(mask_on, rcc + (enable ? RCC_OCENSETR : RCC_OCENCLRR));
1441 }
1442 
stm32mp1_osc_wait(int enable,fdt_addr_t rcc,u32 offset,u32 mask_rdy)1443 static int stm32mp1_osc_wait(int enable, fdt_addr_t rcc, u32 offset,
1444 			     u32 mask_rdy)
1445 {
1446 	u32 mask_test = 0;
1447 	u32 address = rcc + offset;
1448 	u32 val;
1449 	int ret;
1450 
1451 	if (enable)
1452 		mask_test = mask_rdy;
1453 
1454 	ret = readl_poll_timeout(address, val,
1455 				 (val & mask_rdy) == mask_test,
1456 				 TIMEOUT_1S);
1457 
1458 	if (ret)
1459 		log_err("OSC %x @ %x timeout for enable=%d : 0x%x\n",
1460 			mask_rdy, address, enable, readl(address));
1461 
1462 	return ret;
1463 }
1464 
stm32mp1_lse_enable(fdt_addr_t rcc,int bypass,int digbyp,u32 lsedrv)1465 static void stm32mp1_lse_enable(fdt_addr_t rcc, int bypass, int digbyp,
1466 				u32 lsedrv)
1467 {
1468 	u32 value;
1469 
1470 	if (digbyp)
1471 		setbits_le32(rcc + RCC_BDCR, RCC_BDCR_DIGBYP);
1472 
1473 	if (bypass || digbyp)
1474 		setbits_le32(rcc + RCC_BDCR, RCC_BDCR_LSEBYP);
1475 
1476 	/*
1477 	 * warning: not recommended to switch directly from "high drive"
1478 	 * to "medium low drive", and vice-versa.
1479 	 */
1480 	value = (readl(rcc + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK)
1481 		>> RCC_BDCR_LSEDRV_SHIFT;
1482 
1483 	while (value != lsedrv) {
1484 		if (value > lsedrv)
1485 			value--;
1486 		else
1487 			value++;
1488 
1489 		clrsetbits_le32(rcc + RCC_BDCR,
1490 				RCC_BDCR_LSEDRV_MASK,
1491 				value << RCC_BDCR_LSEDRV_SHIFT);
1492 	}
1493 
1494 	stm32mp1_ls_osc_set(1, rcc, RCC_BDCR, RCC_BDCR_LSEON);
1495 }
1496 
stm32mp1_lse_wait(fdt_addr_t rcc)1497 static void stm32mp1_lse_wait(fdt_addr_t rcc)
1498 {
1499 	stm32mp1_osc_wait(1, rcc, RCC_BDCR, RCC_BDCR_LSERDY);
1500 }
1501 
stm32mp1_lsi_set(fdt_addr_t rcc,int enable)1502 static void stm32mp1_lsi_set(fdt_addr_t rcc, int enable)
1503 {
1504 	stm32mp1_ls_osc_set(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSION);
1505 	stm32mp1_osc_wait(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSIRDY);
1506 }
1507 
stm32mp1_hse_enable(fdt_addr_t rcc,int bypass,int digbyp,int css)1508 static void stm32mp1_hse_enable(fdt_addr_t rcc, int bypass, int digbyp, int css)
1509 {
1510 	if (digbyp)
1511 		writel(RCC_OCENR_DIGBYP, rcc + RCC_OCENSETR);
1512 	if (bypass || digbyp)
1513 		writel(RCC_OCENR_HSEBYP, rcc + RCC_OCENSETR);
1514 
1515 	stm32mp1_hs_ocs_set(1, rcc, RCC_OCENR_HSEON);
1516 	stm32mp1_osc_wait(1, rcc, RCC_OCRDYR, RCC_OCRDYR_HSERDY);
1517 
1518 	if (css)
1519 		writel(RCC_OCENR_HSECSSON, rcc + RCC_OCENSETR);
1520 }
1521 
stm32mp1_csi_set(fdt_addr_t rcc,int enable)1522 static void stm32mp1_csi_set(fdt_addr_t rcc, int enable)
1523 {
1524 	stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_CSION);
1525 	stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_CSIRDY);
1526 }
1527 
stm32mp1_hsi_set(fdt_addr_t rcc,int enable)1528 static void stm32mp1_hsi_set(fdt_addr_t rcc, int enable)
1529 {
1530 	stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_HSION);
1531 	stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_HSIRDY);
1532 }
1533 
stm32mp1_set_hsidiv(fdt_addr_t rcc,u8 hsidiv)1534 static int stm32mp1_set_hsidiv(fdt_addr_t rcc, u8 hsidiv)
1535 {
1536 	u32 address = rcc + RCC_OCRDYR;
1537 	u32 val;
1538 	int ret;
1539 
1540 	clrsetbits_le32(rcc + RCC_HSICFGR,
1541 			RCC_HSICFGR_HSIDIV_MASK,
1542 			RCC_HSICFGR_HSIDIV_MASK & hsidiv);
1543 
1544 	ret = readl_poll_timeout(address, val,
1545 				 val & RCC_OCRDYR_HSIDIVRDY,
1546 				 TIMEOUT_200MS);
1547 	if (ret)
1548 		log_err("HSIDIV failed @ 0x%x: 0x%x\n",
1549 			address, readl(address));
1550 
1551 	return ret;
1552 }
1553 
stm32mp1_hsidiv(fdt_addr_t rcc,ulong hsifreq)1554 static int stm32mp1_hsidiv(fdt_addr_t rcc, ulong hsifreq)
1555 {
1556 	u8 hsidiv;
1557 	u32 hsidivfreq = MAX_HSI_HZ;
1558 
1559 	for (hsidiv = 0; hsidiv < 4; hsidiv++,
1560 	     hsidivfreq = hsidivfreq / 2)
1561 		if (hsidivfreq == hsifreq)
1562 			break;
1563 
1564 	if (hsidiv == 4) {
1565 		log_err("hsi frequency invalid");
1566 		return -1;
1567 	}
1568 
1569 	if (hsidiv > 0)
1570 		return stm32mp1_set_hsidiv(rcc, hsidiv);
1571 
1572 	return 0;
1573 }
1574 
pll_start(struct stm32mp1_clk_priv * priv,int pll_id)1575 static void pll_start(struct stm32mp1_clk_priv *priv, int pll_id)
1576 {
1577 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1578 
1579 	clrsetbits_le32(priv->base + pll[pll_id].pllxcr,
1580 			RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1581 			RCC_PLLNCR_DIVREN,
1582 			RCC_PLLNCR_PLLON);
1583 }
1584 
pll_output(struct stm32mp1_clk_priv * priv,int pll_id,int output)1585 static int pll_output(struct stm32mp1_clk_priv *priv, int pll_id, int output)
1586 {
1587 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1588 	u32 pllxcr = priv->base + pll[pll_id].pllxcr;
1589 	u32 val;
1590 	int ret;
1591 
1592 	ret = readl_poll_timeout(pllxcr, val, val & RCC_PLLNCR_PLLRDY,
1593 				 TIMEOUT_200MS);
1594 
1595 	if (ret) {
1596 		log_err("PLL%d start failed @ 0x%x: 0x%x\n",
1597 			pll_id, pllxcr, readl(pllxcr));
1598 		return ret;
1599 	}
1600 
1601 	/* start the requested output */
1602 	setbits_le32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
1603 
1604 	return 0;
1605 }
1606 
pll_stop(struct stm32mp1_clk_priv * priv,int pll_id)1607 static int pll_stop(struct stm32mp1_clk_priv *priv, int pll_id)
1608 {
1609 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1610 	u32 pllxcr = priv->base + pll[pll_id].pllxcr;
1611 	u32 val;
1612 
1613 	/* stop all output */
1614 	clrbits_le32(pllxcr,
1615 		     RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | RCC_PLLNCR_DIVREN);
1616 
1617 	/* stop PLL */
1618 	clrbits_le32(pllxcr, RCC_PLLNCR_PLLON);
1619 
1620 	/* wait PLL stopped */
1621 	return readl_poll_timeout(pllxcr, val, (val & RCC_PLLNCR_PLLRDY) == 0,
1622 				  TIMEOUT_200MS);
1623 }
1624 
pll_config_output(struct stm32mp1_clk_priv * priv,int pll_id,u32 * pllcfg)1625 static void pll_config_output(struct stm32mp1_clk_priv *priv,
1626 			      int pll_id, u32 *pllcfg)
1627 {
1628 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1629 	fdt_addr_t rcc = priv->base;
1630 	u32 value;
1631 
1632 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT)
1633 		& RCC_PLLNCFGR2_DIVP_MASK;
1634 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT)
1635 		 & RCC_PLLNCFGR2_DIVQ_MASK;
1636 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT)
1637 		 & RCC_PLLNCFGR2_DIVR_MASK;
1638 	writel(value, rcc + pll[pll_id].pllxcfgr2);
1639 }
1640 
pll_config(struct stm32mp1_clk_priv * priv,int pll_id,u32 * pllcfg,u32 fracv)1641 static int pll_config(struct stm32mp1_clk_priv *priv, int pll_id,
1642 		      u32 *pllcfg, u32 fracv)
1643 {
1644 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1645 	fdt_addr_t rcc = priv->base;
1646 	enum stm32mp1_plltype type = pll[pll_id].plltype;
1647 	int src;
1648 	ulong refclk;
1649 	u8 ifrge = 0;
1650 	u32 value;
1651 
1652 	src = readl(priv->base + pll[pll_id].rckxselr) & RCC_SELR_SRC_MASK;
1653 
1654 	refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]) /
1655 		 (pllcfg[PLLCFG_M] + 1);
1656 
1657 	if (refclk < (stm32mp1_pll[type].refclk_min * 1000000) ||
1658 	    refclk > (stm32mp1_pll[type].refclk_max * 1000000)) {
1659 		log_err("invalid refclk = %x\n", (u32)refclk);
1660 		return -EINVAL;
1661 	}
1662 	if (type == PLL_800 && refclk >= 8000000)
1663 		ifrge = 1;
1664 
1665 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT)
1666 		 & RCC_PLLNCFGR1_DIVN_MASK;
1667 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT)
1668 		 & RCC_PLLNCFGR1_DIVM_MASK;
1669 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT)
1670 		 & RCC_PLLNCFGR1_IFRGE_MASK;
1671 	writel(value, rcc + pll[pll_id].pllxcfgr1);
1672 
1673 	/* fractional configuration: load sigma-delta modulator (SDM) */
1674 
1675 	/* Write into FRACV the new fractional value , and FRACLE to 0 */
1676 	writel(fracv << RCC_PLLNFRACR_FRACV_SHIFT,
1677 	       rcc + pll[pll_id].pllxfracr);
1678 
1679 	/* Write FRACLE to 1 : FRACV value is loaded into the SDM */
1680 	setbits_le32(rcc + pll[pll_id].pllxfracr,
1681 		     RCC_PLLNFRACR_FRACLE);
1682 
1683 	pll_config_output(priv, pll_id, pllcfg);
1684 
1685 	return 0;
1686 }
1687 
pll_csg(struct stm32mp1_clk_priv * priv,int pll_id,u32 * csg)1688 static void pll_csg(struct stm32mp1_clk_priv *priv, int pll_id, u32 *csg)
1689 {
1690 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1691 	u32 pllxcsg;
1692 
1693 	pllxcsg = ((csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
1694 		    RCC_PLLNCSGR_MOD_PER_MASK) |
1695 		  ((csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
1696 		    RCC_PLLNCSGR_INC_STEP_MASK) |
1697 		  ((csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
1698 		    RCC_PLLNCSGR_SSCG_MODE_MASK);
1699 
1700 	writel(pllxcsg, priv->base + pll[pll_id].pllxcsgr);
1701 
1702 	setbits_le32(priv->base + pll[pll_id].pllxcr, RCC_PLLNCR_SSCG_CTRL);
1703 }
1704 
pll_set_rate(struct udevice * dev,int pll_id,int div_id,unsigned long clk_rate)1705 static  __maybe_unused int pll_set_rate(struct udevice *dev,
1706 					int pll_id,
1707 					int div_id,
1708 					unsigned long clk_rate)
1709 {
1710 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1711 	unsigned int pllcfg[PLLCFG_NB];
1712 	ofnode plloff;
1713 	char name[12];
1714 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1715 	enum stm32mp1_plltype type = pll[pll_id].plltype;
1716 	int divm, divn, divy;
1717 	int ret;
1718 	ulong fck_ref;
1719 	u32 fracv;
1720 	u64 value;
1721 
1722 	if (div_id > _DIV_NB)
1723 		return -EINVAL;
1724 
1725 	sprintf(name, "st,pll@%d", pll_id);
1726 	plloff = dev_read_subnode(dev, name);
1727 	if (!ofnode_valid(plloff))
1728 		return -FDT_ERR_NOTFOUND;
1729 
1730 	ret = ofnode_read_u32_array(plloff, "cfg",
1731 				    pllcfg, PLLCFG_NB);
1732 	if (ret < 0)
1733 		return -FDT_ERR_NOTFOUND;
1734 
1735 	fck_ref = pll_get_fref_ck(priv, pll_id);
1736 
1737 	divm = pllcfg[PLLCFG_M];
1738 	/* select output divider = 0: for _DIV_P, 1:_DIV_Q 2:_DIV_R */
1739 	divy = pllcfg[PLLCFG_P + div_id];
1740 
1741 	/* For: PLL1 & PLL2 => VCO is * 2 but ck_pll_y is also / 2
1742 	 * So same final result than PLL2 et 4
1743 	 * with FRACV
1744 	 * Fck_pll_y = Fck_ref * ((DIVN + 1) + FRACV / 2^13)
1745 	 *             / (DIVy + 1) * (DIVM + 1)
1746 	 * value = (DIVN + 1) * 2^13 + FRACV / 2^13
1747 	 *       = Fck_pll_y (DIVy + 1) * (DIVM + 1) * 2^13 / Fck_ref
1748 	 */
1749 	value = ((u64)clk_rate * (divy + 1) * (divm + 1)) << 13;
1750 	value = lldiv(value, fck_ref);
1751 
1752 	divn = (value >> 13) - 1;
1753 	if (divn < DIVN_MIN ||
1754 	    divn > stm32mp1_pll[type].divn_max) {
1755 		dev_err(dev, "divn invalid = %d", divn);
1756 		return -EINVAL;
1757 	}
1758 	fracv = value - ((divn + 1) << 13);
1759 	pllcfg[PLLCFG_N] = divn;
1760 
1761 	/* reconfigure PLL */
1762 	pll_stop(priv, pll_id);
1763 	pll_config(priv, pll_id, pllcfg, fracv);
1764 	pll_start(priv, pll_id);
1765 	pll_output(priv, pll_id, pllcfg[PLLCFG_O]);
1766 
1767 	return 0;
1768 }
1769 
set_clksrc(struct stm32mp1_clk_priv * priv,unsigned int clksrc)1770 static int set_clksrc(struct stm32mp1_clk_priv *priv, unsigned int clksrc)
1771 {
1772 	u32 address = priv->base + (clksrc >> 4);
1773 	u32 val;
1774 	int ret;
1775 
1776 	clrsetbits_le32(address, RCC_SELR_SRC_MASK, clksrc & RCC_SELR_SRC_MASK);
1777 	ret = readl_poll_timeout(address, val, val & RCC_SELR_SRCRDY,
1778 				 TIMEOUT_200MS);
1779 	if (ret)
1780 		log_err("CLKSRC %x start failed @ 0x%x: 0x%x\n",
1781 			clksrc, address, readl(address));
1782 
1783 	return ret;
1784 }
1785 
stgen_config(struct stm32mp1_clk_priv * priv)1786 static void stgen_config(struct stm32mp1_clk_priv *priv)
1787 {
1788 	int p;
1789 	u32 stgenc, cntfid0;
1790 	ulong rate;
1791 
1792 	stgenc = STM32_STGEN_BASE;
1793 	cntfid0 = readl(stgenc + STGENC_CNTFID0);
1794 	p = stm32mp1_clk_get_parent(priv, STGEN_K);
1795 	rate = stm32mp1_clk_get(priv, p);
1796 
1797 	if (cntfid0 != rate) {
1798 		u64 counter;
1799 
1800 		log_debug("System Generic Counter (STGEN) update\n");
1801 		clrbits_le32(stgenc + STGENC_CNTCR, STGENC_CNTCR_EN);
1802 		counter = (u64)readl(stgenc + STGENC_CNTCVL);
1803 		counter |= ((u64)(readl(stgenc + STGENC_CNTCVU))) << 32;
1804 		counter = lldiv(counter * (u64)rate, cntfid0);
1805 		writel((u32)counter, stgenc + STGENC_CNTCVL);
1806 		writel((u32)(counter >> 32), stgenc + STGENC_CNTCVU);
1807 		writel(rate, stgenc + STGENC_CNTFID0);
1808 		setbits_le32(stgenc + STGENC_CNTCR, STGENC_CNTCR_EN);
1809 
1810 		__asm__ volatile("mcr p15, 0, %0, c14, c0, 0" : : "r" (rate));
1811 
1812 		/* need to update gd->arch.timer_rate_hz with new frequency */
1813 		timer_init();
1814 	}
1815 }
1816 
set_clkdiv(unsigned int clkdiv,u32 address)1817 static int set_clkdiv(unsigned int clkdiv, u32 address)
1818 {
1819 	u32 val;
1820 	int ret;
1821 
1822 	clrsetbits_le32(address, RCC_DIVR_DIV_MASK, clkdiv & RCC_DIVR_DIV_MASK);
1823 	ret = readl_poll_timeout(address, val, val & RCC_DIVR_DIVRDY,
1824 				 TIMEOUT_200MS);
1825 	if (ret)
1826 		log_err("CLKDIV %x start failed @ 0x%x: 0x%x\n",
1827 			clkdiv, address, readl(address));
1828 
1829 	return ret;
1830 }
1831 
stm32mp1_mco_csg(struct stm32mp1_clk_priv * priv,u32 clksrc,u32 clkdiv)1832 static void stm32mp1_mco_csg(struct stm32mp1_clk_priv *priv,
1833 			     u32 clksrc, u32 clkdiv)
1834 {
1835 	u32 address = priv->base + (clksrc >> 4);
1836 
1837 	/*
1838 	 * binding clksrc : bit15-4 offset
1839 	 *                  bit3:   disable
1840 	 *                  bit2-0: MCOSEL[2:0]
1841 	 */
1842 	if (clksrc & 0x8) {
1843 		clrbits_le32(address, RCC_MCOCFG_MCOON);
1844 	} else {
1845 		clrsetbits_le32(address,
1846 				RCC_MCOCFG_MCOSRC_MASK,
1847 				clksrc & RCC_MCOCFG_MCOSRC_MASK);
1848 		clrsetbits_le32(address,
1849 				RCC_MCOCFG_MCODIV_MASK,
1850 				clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
1851 		setbits_le32(address, RCC_MCOCFG_MCOON);
1852 	}
1853 }
1854 
set_rtcsrc(struct stm32mp1_clk_priv * priv,unsigned int clksrc,int lse_css)1855 static void set_rtcsrc(struct stm32mp1_clk_priv *priv,
1856 		       unsigned int clksrc,
1857 		       int lse_css)
1858 {
1859 	u32 address = priv->base + RCC_BDCR;
1860 
1861 	if (readl(address) & RCC_BDCR_RTCCKEN)
1862 		goto skip_rtc;
1863 
1864 	if (clksrc == CLK_RTC_DISABLED)
1865 		goto skip_rtc;
1866 
1867 	clrsetbits_le32(address,
1868 			RCC_BDCR_RTCSRC_MASK,
1869 			clksrc << RCC_BDCR_RTCSRC_SHIFT);
1870 
1871 	setbits_le32(address, RCC_BDCR_RTCCKEN);
1872 
1873 skip_rtc:
1874 	if (lse_css)
1875 		setbits_le32(address, RCC_BDCR_LSECSSON);
1876 }
1877 
pkcs_config(struct stm32mp1_clk_priv * priv,u32 pkcs)1878 static void pkcs_config(struct stm32mp1_clk_priv *priv, u32 pkcs)
1879 {
1880 	u32 address = priv->base + ((pkcs >> 4) & 0xFFF);
1881 	u32 value = pkcs & 0xF;
1882 	u32 mask = 0xF;
1883 
1884 	if (pkcs & BIT(31)) {
1885 		mask <<= 4;
1886 		value <<= 4;
1887 	}
1888 	clrsetbits_le32(address, mask, value);
1889 }
1890 
stm32mp1_clktree(struct udevice * dev)1891 static int stm32mp1_clktree(struct udevice *dev)
1892 {
1893 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1894 	fdt_addr_t rcc = priv->base;
1895 	unsigned int clksrc[CLKSRC_NB];
1896 	unsigned int clkdiv[CLKDIV_NB];
1897 	unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
1898 	unsigned int pllfracv[_PLL_NB];
1899 	unsigned int pllcsg[_PLL_NB][PLLCSG_NB];
1900 	bool pllcfg_valid[_PLL_NB];
1901 	bool pllcsg_set[_PLL_NB];
1902 	int ret;
1903 	int i, len;
1904 	int lse_css = 0;
1905 	const u32 *pkcs_cell;
1906 
1907 	/* check mandatory field */
1908 	ret = dev_read_u32_array(dev, "st,clksrc", clksrc, CLKSRC_NB);
1909 	if (ret < 0) {
1910 		dev_dbg(dev, "field st,clksrc invalid: error %d\n", ret);
1911 		return -FDT_ERR_NOTFOUND;
1912 	}
1913 
1914 	ret = dev_read_u32_array(dev, "st,clkdiv", clkdiv, CLKDIV_NB);
1915 	if (ret < 0) {
1916 		dev_dbg(dev, "field st,clkdiv invalid: error %d\n", ret);
1917 		return -FDT_ERR_NOTFOUND;
1918 	}
1919 
1920 	/* check mandatory field in each pll */
1921 	for (i = 0; i < _PLL_NB; i++) {
1922 		char name[12];
1923 		ofnode node;
1924 
1925 		sprintf(name, "st,pll@%d", i);
1926 		node = dev_read_subnode(dev, name);
1927 		pllcfg_valid[i] = ofnode_valid(node);
1928 		pllcsg_set[i] = false;
1929 		if (pllcfg_valid[i]) {
1930 			dev_dbg(dev, "DT for PLL %d @ %s\n", i, name);
1931 			ret = ofnode_read_u32_array(node, "cfg",
1932 						    pllcfg[i], PLLCFG_NB);
1933 			if (ret < 0) {
1934 				dev_dbg(dev, "field cfg invalid: error %d\n", ret);
1935 				return -FDT_ERR_NOTFOUND;
1936 			}
1937 			pllfracv[i] = ofnode_read_u32_default(node, "frac", 0);
1938 
1939 			ret = ofnode_read_u32_array(node, "csg", pllcsg[i],
1940 						    PLLCSG_NB);
1941 			if (!ret) {
1942 				pllcsg_set[i] = true;
1943 			} else if (ret != -FDT_ERR_NOTFOUND) {
1944 				dev_dbg(dev, "invalid csg node for pll@%d res=%d\n",
1945 					i, ret);
1946 				return ret;
1947 			}
1948 		} else if (i == _PLL1)	{
1949 			/* use OPP for PLL1 for A7 CPU */
1950 			dev_dbg(dev, "DT for PLL %d with OPP\n", i);
1951 			ret = stm32mp1_pll1_opp(priv,
1952 						clksrc[CLKSRC_PLL12],
1953 						pllcfg[i],
1954 						&pllfracv[i]);
1955 			if (ret) {
1956 				dev_dbg(dev, "PLL %d with OPP error = %d\n", i, ret);
1957 				return ret;
1958 			}
1959 			pllcfg_valid[i] = true;
1960 		}
1961 	}
1962 
1963 	dev_dbg(dev, "configuration MCO\n");
1964 	stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
1965 	stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
1966 
1967 	dev_dbg(dev, "switch ON osillator\n");
1968 	/*
1969 	 * switch ON oscillator found in device-tree,
1970 	 * HSI already ON after bootrom
1971 	 */
1972 	if (clk_valid(&priv->osc_clk[_LSI]))
1973 		stm32mp1_lsi_set(rcc, 1);
1974 
1975 	if (clk_valid(&priv->osc_clk[_LSE])) {
1976 		int bypass, digbyp;
1977 		u32 lsedrv;
1978 		struct udevice *dev = priv->osc_clk[_LSE].dev;
1979 
1980 		bypass = dev_read_bool(dev, "st,bypass");
1981 		digbyp = dev_read_bool(dev, "st,digbypass");
1982 		lse_css = dev_read_bool(dev, "st,css");
1983 		lsedrv = dev_read_u32_default(dev, "st,drive",
1984 					      LSEDRV_MEDIUM_HIGH);
1985 
1986 		stm32mp1_lse_enable(rcc, bypass, digbyp, lsedrv);
1987 	}
1988 
1989 	if (clk_valid(&priv->osc_clk[_HSE])) {
1990 		int bypass, digbyp, css;
1991 		struct udevice *dev = priv->osc_clk[_HSE].dev;
1992 
1993 		bypass = dev_read_bool(dev, "st,bypass");
1994 		digbyp = dev_read_bool(dev, "st,digbypass");
1995 		css = dev_read_bool(dev, "st,css");
1996 
1997 		stm32mp1_hse_enable(rcc, bypass, digbyp, css);
1998 	}
1999 	/* CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
2000 	 * => switch on CSI even if node is not present in device tree
2001 	 */
2002 	stm32mp1_csi_set(rcc, 1);
2003 
2004 	/* come back to HSI */
2005 	dev_dbg(dev, "come back to HSI\n");
2006 	set_clksrc(priv, CLK_MPU_HSI);
2007 	set_clksrc(priv, CLK_AXI_HSI);
2008 	set_clksrc(priv, CLK_MCU_HSI);
2009 
2010 	dev_dbg(dev, "pll stop\n");
2011 	for (i = 0; i < _PLL_NB; i++)
2012 		pll_stop(priv, i);
2013 
2014 	/* configure HSIDIV */
2015 	dev_dbg(dev, "configure HSIDIV\n");
2016 	if (clk_valid(&priv->osc_clk[_HSI])) {
2017 		stm32mp1_hsidiv(rcc, clk_get_rate(&priv->osc_clk[_HSI]));
2018 		stgen_config(priv);
2019 	}
2020 
2021 	/* select DIV */
2022 	dev_dbg(dev, "select DIV\n");
2023 	/* no ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
2024 	writel(clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK, rcc + RCC_MPCKDIVR);
2025 	set_clkdiv(clkdiv[CLKDIV_AXI], rcc + RCC_AXIDIVR);
2026 	set_clkdiv(clkdiv[CLKDIV_APB4], rcc + RCC_APB4DIVR);
2027 	set_clkdiv(clkdiv[CLKDIV_APB5], rcc + RCC_APB5DIVR);
2028 	set_clkdiv(clkdiv[CLKDIV_MCU], rcc + RCC_MCUDIVR);
2029 	set_clkdiv(clkdiv[CLKDIV_APB1], rcc + RCC_APB1DIVR);
2030 	set_clkdiv(clkdiv[CLKDIV_APB2], rcc + RCC_APB2DIVR);
2031 	set_clkdiv(clkdiv[CLKDIV_APB3], rcc + RCC_APB3DIVR);
2032 
2033 	/* no ready bit for RTC */
2034 	writel(clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK, rcc + RCC_RTCDIVR);
2035 
2036 	/* configure PLLs source */
2037 	dev_dbg(dev, "configure PLLs source\n");
2038 	set_clksrc(priv, clksrc[CLKSRC_PLL12]);
2039 	set_clksrc(priv, clksrc[CLKSRC_PLL3]);
2040 	set_clksrc(priv, clksrc[CLKSRC_PLL4]);
2041 
2042 	/* configure and start PLLs */
2043 	dev_dbg(dev, "configure PLLs\n");
2044 	for (i = 0; i < _PLL_NB; i++) {
2045 		if (!pllcfg_valid[i])
2046 			continue;
2047 		dev_dbg(dev, "configure PLL %d\n", i);
2048 		pll_config(priv, i, pllcfg[i], pllfracv[i]);
2049 		if (pllcsg_set[i])
2050 			pll_csg(priv, i, pllcsg[i]);
2051 		pll_start(priv, i);
2052 	}
2053 
2054 	/* wait and start PLLs ouptut when ready */
2055 	for (i = 0; i < _PLL_NB; i++) {
2056 		if (!pllcfg_valid[i])
2057 			continue;
2058 		dev_dbg(dev, "output PLL %d\n", i);
2059 		pll_output(priv, i, pllcfg[i][PLLCFG_O]);
2060 	}
2061 
2062 	/* wait LSE ready before to use it */
2063 	if (clk_valid(&priv->osc_clk[_LSE]))
2064 		stm32mp1_lse_wait(rcc);
2065 
2066 	/* configure with expected clock source */
2067 	dev_dbg(dev, "CLKSRC\n");
2068 	set_clksrc(priv, clksrc[CLKSRC_MPU]);
2069 	set_clksrc(priv, clksrc[CLKSRC_AXI]);
2070 	set_clksrc(priv, clksrc[CLKSRC_MCU]);
2071 	set_rtcsrc(priv, clksrc[CLKSRC_RTC], lse_css);
2072 
2073 	/* configure PKCK */
2074 	dev_dbg(dev, "PKCK\n");
2075 	pkcs_cell = dev_read_prop(dev, "st,pkcs", &len);
2076 	if (pkcs_cell) {
2077 		bool ckper_disabled = false;
2078 
2079 		for (i = 0; i < len / sizeof(u32); i++) {
2080 			u32 pkcs = (u32)fdt32_to_cpu(pkcs_cell[i]);
2081 
2082 			if (pkcs == CLK_CKPER_DISABLED) {
2083 				ckper_disabled = true;
2084 				continue;
2085 			}
2086 			pkcs_config(priv, pkcs);
2087 		}
2088 		/* CKPER is source for some peripheral clock
2089 		 * (FMC-NAND / QPSI-NOR) and switching source is allowed
2090 		 * only if previous clock is still ON
2091 		 * => deactivated CKPER only after switching clock
2092 		 */
2093 		if (ckper_disabled)
2094 			pkcs_config(priv, CLK_CKPER_DISABLED);
2095 	}
2096 
2097 	/* STGEN clock source can change with CLK_STGEN_XXX */
2098 	stgen_config(priv);
2099 
2100 	dev_dbg(dev, "oscillator off\n");
2101 	/* switch OFF HSI if not found in device-tree */
2102 	if (!clk_valid(&priv->osc_clk[_HSI]))
2103 		stm32mp1_hsi_set(rcc, 0);
2104 
2105 	/* Software Self-Refresh mode (SSR) during DDR initilialization */
2106 	clrsetbits_le32(priv->base + RCC_DDRITFCR,
2107 			RCC_DDRITFCR_DDRCKMOD_MASK,
2108 			RCC_DDRITFCR_DDRCKMOD_SSR <<
2109 			RCC_DDRITFCR_DDRCKMOD_SHIFT);
2110 
2111 	return 0;
2112 }
2113 #endif /* STM32MP1_CLOCK_TREE_INIT */
2114 
pll_set_output_rate(struct udevice * dev,int pll_id,int div_id,unsigned long clk_rate)2115 static int pll_set_output_rate(struct udevice *dev,
2116 			       int pll_id,
2117 			       int div_id,
2118 			       unsigned long clk_rate)
2119 {
2120 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
2121 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
2122 	u32 pllxcr = priv->base + pll[pll_id].pllxcr;
2123 	int div;
2124 	ulong fvco;
2125 
2126 	if (div_id > _DIV_NB)
2127 		return -EINVAL;
2128 
2129 	fvco = pll_get_fvco(priv, pll_id);
2130 
2131 	if (fvco <= clk_rate)
2132 		div = 1;
2133 	else
2134 		div = DIV_ROUND_UP(fvco, clk_rate);
2135 
2136 	if (div > 128)
2137 		div = 128;
2138 
2139 	/* stop the requested output */
2140 	clrbits_le32(pllxcr, 0x1 << div_id << RCC_PLLNCR_DIVEN_SHIFT);
2141 	/* change divider */
2142 	clrsetbits_le32(priv->base + pll[pll_id].pllxcfgr2,
2143 			RCC_PLLNCFGR2_DIVX_MASK << RCC_PLLNCFGR2_SHIFT(div_id),
2144 			(div - 1) << RCC_PLLNCFGR2_SHIFT(div_id));
2145 	/* start the requested output */
2146 	setbits_le32(pllxcr, 0x1 << div_id << RCC_PLLNCR_DIVEN_SHIFT);
2147 
2148 	return 0;
2149 }
2150 
stm32mp1_clk_set_rate(struct clk * clk,unsigned long clk_rate)2151 static ulong stm32mp1_clk_set_rate(struct clk *clk, unsigned long clk_rate)
2152 {
2153 	struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
2154 	int p;
2155 
2156 	switch (clk->id) {
2157 #if defined(STM32MP1_CLOCK_TREE_INIT) && \
2158 	defined(CONFIG_STM32MP1_DDR_INTERACTIVE)
2159 	case DDRPHYC:
2160 		break;
2161 #endif
2162 	case LTDC_PX:
2163 	case DSI_PX:
2164 		break;
2165 	default:
2166 		dev_err(clk->dev, "Set of clk %ld not supported", clk->id);
2167 		return -EINVAL;
2168 	}
2169 
2170 	p = stm32mp1_clk_get_parent(priv, clk->id);
2171 	dev_vdbg(clk->dev, "parent = %d:%s\n", p, stm32mp1_clk_parent_name[p]);
2172 	if (p < 0)
2173 		return -EINVAL;
2174 
2175 	switch (p) {
2176 #if defined(STM32MP1_CLOCK_TREE_INIT) && \
2177 	defined(CONFIG_STM32MP1_DDR_INTERACTIVE)
2178 	case _PLL2_R: /* DDRPHYC */
2179 	{
2180 		/* only for change DDR clock in interactive mode */
2181 		ulong result;
2182 
2183 		set_clksrc(priv, CLK_AXI_HSI);
2184 		result = pll_set_rate(clk->dev,  _PLL2, _DIV_R, clk_rate);
2185 		set_clksrc(priv, CLK_AXI_PLL2P);
2186 		return result;
2187 	}
2188 #endif
2189 
2190 	case _PLL4_Q:
2191 		/* for LTDC_PX and DSI_PX case */
2192 		return pll_set_output_rate(clk->dev, _PLL4, _DIV_Q, clk_rate);
2193 	}
2194 
2195 	return -EINVAL;
2196 }
2197 
stm32mp1_osc_init(struct udevice * dev)2198 static void stm32mp1_osc_init(struct udevice *dev)
2199 {
2200 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
2201 	int i;
2202 	const char *name[NB_OSC] = {
2203 		[_LSI] = "lsi",
2204 		[_LSE] = "lse",
2205 		[_HSI] = "hsi",
2206 		[_HSE] = "hse",
2207 		[_CSI] = "csi",
2208 		[_I2S_CKIN] = "i2s_ckin",
2209 	};
2210 
2211 	for (i = 0; i < NB_OSC; i++) {
2212 		if (clk_get_by_name(dev, name[i], &priv->osc_clk[i]))
2213 			dev_dbg(dev, "No source clock \"%s\"\n", name[i]);
2214 		else
2215 			dev_dbg(dev, "%s clock rate: %luHz\n",
2216 				name[i], clk_get_rate(&priv->osc_clk[i]));
2217 	}
2218 }
2219 
stm32mp1_clk_dump(struct stm32mp1_clk_priv * priv)2220 static void  __maybe_unused stm32mp1_clk_dump(struct stm32mp1_clk_priv *priv)
2221 {
2222 	char buf[32];
2223 	int i, s, p;
2224 
2225 	printf("Clocks:\n");
2226 	for (i = 0; i < _PARENT_NB; i++) {
2227 		printf("- %s : %s MHz\n",
2228 		       stm32mp1_clk_parent_name[i],
2229 		       strmhz(buf, stm32mp1_clk_get(priv, i)));
2230 	}
2231 	printf("Source Clocks:\n");
2232 	for (i = 0; i < _PARENT_SEL_NB; i++) {
2233 		p = (readl(priv->base + priv->data->sel[i].offset) >>
2234 		     priv->data->sel[i].src) & priv->data->sel[i].msk;
2235 		if (p < priv->data->sel[i].nb_parent) {
2236 			s = priv->data->sel[i].parent[p];
2237 			printf("- %s(%d) => parent %s(%d)\n",
2238 			       stm32mp1_clk_parent_sel_name[i], i,
2239 			       stm32mp1_clk_parent_name[s], s);
2240 		} else {
2241 			printf("- %s(%d) => parent index %d is invalid\n",
2242 			       stm32mp1_clk_parent_sel_name[i], i, p);
2243 		}
2244 	}
2245 }
2246 
2247 #ifdef CONFIG_CMD_CLK
soc_clk_dump(void)2248 int soc_clk_dump(void)
2249 {
2250 	struct udevice *dev;
2251 	struct stm32mp1_clk_priv *priv;
2252 	int ret;
2253 
2254 	ret = uclass_get_device_by_driver(UCLASS_CLK,
2255 					  DM_DRIVER_GET(stm32mp1_clock),
2256 					  &dev);
2257 	if (ret)
2258 		return ret;
2259 
2260 	priv = dev_get_priv(dev);
2261 
2262 	stm32mp1_clk_dump(priv);
2263 
2264 	return 0;
2265 }
2266 #endif
2267 
stm32mp1_clk_probe(struct udevice * dev)2268 static int stm32mp1_clk_probe(struct udevice *dev)
2269 {
2270 	int result = 0;
2271 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
2272 
2273 	priv->base = dev_read_addr(dev->parent);
2274 	if (priv->base == FDT_ADDR_T_NONE)
2275 		return -EINVAL;
2276 
2277 	priv->data = (void *)&stm32mp1_data;
2278 
2279 	if (!priv->data->gate || !priv->data->sel ||
2280 	    !priv->data->pll)
2281 		return -EINVAL;
2282 
2283 	stm32mp1_osc_init(dev);
2284 
2285 #ifdef STM32MP1_CLOCK_TREE_INIT
2286 	/* clock tree init is done only one time, before relocation */
2287 	if (!(gd->flags & GD_FLG_RELOC))
2288 		result = stm32mp1_clktree(dev);
2289 	if (result)
2290 		dev_err(dev, "clock tree initialization failed (%d)\n", result);
2291 #endif
2292 
2293 #ifndef CONFIG_SPL_BUILD
2294 #if defined(VERBOSE_DEBUG)
2295 	/* display debug information for probe after relocation */
2296 	if (gd->flags & GD_FLG_RELOC)
2297 		stm32mp1_clk_dump(priv);
2298 #endif
2299 
2300 	gd->cpu_clk = stm32mp1_clk_get(priv, _CK_MPU);
2301 	gd->bus_clk = stm32mp1_clk_get(priv, _ACLK);
2302 	/* DDRPHYC father */
2303 	gd->mem_clk = stm32mp1_clk_get(priv, _PLL2_R);
2304 #if defined(CONFIG_DISPLAY_CPUINFO)
2305 	if (gd->flags & GD_FLG_RELOC) {
2306 		char buf[32];
2307 
2308 		log_info("Clocks:\n");
2309 		log_info("- MPU : %s MHz\n", strmhz(buf, gd->cpu_clk));
2310 		log_info("- MCU : %s MHz\n",
2311 			 strmhz(buf, stm32mp1_clk_get(priv, _CK_MCU)));
2312 		log_info("- AXI : %s MHz\n", strmhz(buf, gd->bus_clk));
2313 		log_info("- PER : %s MHz\n",
2314 			 strmhz(buf, stm32mp1_clk_get(priv, _CK_PER)));
2315 		log_info("- DDR : %s MHz\n", strmhz(buf, gd->mem_clk));
2316 	}
2317 #endif /* CONFIG_DISPLAY_CPUINFO */
2318 #endif
2319 
2320 	return result;
2321 }
2322 
2323 static const struct clk_ops stm32mp1_clk_ops = {
2324 	.enable = stm32mp1_clk_enable,
2325 	.disable = stm32mp1_clk_disable,
2326 	.get_rate = stm32mp1_clk_get_rate,
2327 	.set_rate = stm32mp1_clk_set_rate,
2328 };
2329 
2330 U_BOOT_DRIVER(stm32mp1_clock) = {
2331 	.name = "stm32mp1_clk",
2332 	.id = UCLASS_CLK,
2333 	.ops = &stm32mp1_clk_ops,
2334 	.priv_auto	= sizeof(struct stm32mp1_clk_priv),
2335 	.probe = stm32mp1_clk_probe,
2336 };
2337