1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2008-2014 Freescale Semiconductor, Inc.
4  * Copyright 2021 NXP
5  */
6 
7 /*
8  * Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
9  * Based on code from spd_sdram.c
10  * Author: James Yang [at freescale.com]
11  */
12 
13 #include <common.h>
14 #include <display_options.h>
15 #include <dm.h>
16 #include <i2c.h>
17 #include <fsl_ddr_sdram.h>
18 #include <fsl_ddr.h>
19 #include <init.h>
20 #include <log.h>
21 #include <asm/bitops.h>
22 
23 /*
24  * CFG_SYS_FSL_DDR_SDRAM_BASE_PHY is the physical address from the view
25  * of DDR controllers. It is the same as CFG_SYS_DDR_SDRAM_BASE for
26  * all Power SoCs. But it could be different for ARM SoCs. For example,
27  * fsl_lsch3 has a mapping mechanism to map DDR memory to ranges (in order) of
28  * 0x00_8000_0000 ~ 0x00_ffff_ffff
29  * 0x80_8000_0000 ~ 0xff_ffff_ffff
30  */
31 #ifndef CFG_SYS_FSL_DDR_SDRAM_BASE_PHY
32 #ifdef CONFIG_MPC83xx
33 #define CFG_SYS_FSL_DDR_SDRAM_BASE_PHY CFG_SYS_SDRAM_BASE
34 #else
35 #define CFG_SYS_FSL_DDR_SDRAM_BASE_PHY CFG_SYS_DDR_SDRAM_BASE
36 #endif
37 #endif
38 
39 #ifdef CONFIG_PPC
40 #include <asm/fsl_law.h>
41 
42 void fsl_ddr_set_lawbar(
43 		const common_timing_params_t *memctl_common_params,
44 		unsigned int memctl_interleaved,
45 		unsigned int ctrl_num);
46 #endif
47 
48 void fsl_ddr_set_intl3r(const unsigned int granule_size);
49 #if defined(SPD_EEPROM_ADDRESS) || \
50     defined(SPD_EEPROM_ADDRESS1) || defined(SPD_EEPROM_ADDRESS2) || \
51     defined(SPD_EEPROM_ADDRESS3) || defined(SPD_EEPROM_ADDRESS4)
52 #if (CONFIG_SYS_NUM_DDR_CTLRS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
53 u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
54 	[0][0] = SPD_EEPROM_ADDRESS,
55 };
56 #elif (CONFIG_SYS_NUM_DDR_CTLRS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
57 u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
58 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
59 	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
60 };
61 #elif (CONFIG_SYS_NUM_DDR_CTLRS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
62 u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
63 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
64 	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
65 };
66 #elif (CONFIG_SYS_NUM_DDR_CTLRS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
67 u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
68 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
69 	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
70 	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
71 	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
72 };
73 #elif (CONFIG_SYS_NUM_DDR_CTLRS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
74 u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
75 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
76 	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
77 	[2][0] = SPD_EEPROM_ADDRESS3,	/* controller 3 */
78 };
79 #elif (CONFIG_SYS_NUM_DDR_CTLRS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
80 u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
81 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
82 	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
83 	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
84 	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
85 	[2][0] = SPD_EEPROM_ADDRESS5,	/* controller 3 */
86 	[2][1] = SPD_EEPROM_ADDRESS6,	/* controller 3 */
87 };
88 
89 #endif
90 
91 #if CONFIG_IS_ENABLED(DM_I2C)
92 #define DEV_TYPE struct udevice
93 #else
94 /* Local udevice */
95 struct ludevice {
96 	u8 chip;
97 };
98 
99 #define DEV_TYPE struct ludevice
100 
101 #endif
102 
103 #define SPD_SPA0_ADDRESS	0x36
104 #define SPD_SPA1_ADDRESS	0x37
105 
ddr_i2c_read(DEV_TYPE * dev,unsigned int addr,int alen,uint8_t * buf,int len)106 static int ddr_i2c_read(DEV_TYPE *dev, unsigned int addr,
107 			int alen, uint8_t *buf, int len)
108 {
109 	int ret;
110 
111 #if CONFIG_IS_ENABLED(DM_I2C)
112 	ret = dm_i2c_read(dev, 0, buf, len);
113 #else
114 	ret = i2c_read(dev->chip, addr, alen, buf, len);
115 #endif
116 
117 	return ret;
118 }
119 
120 #ifdef CONFIG_SYS_FSL_DDR4
ddr_i2c_dummy_write(unsigned int chip_addr)121 static int ddr_i2c_dummy_write(unsigned int chip_addr)
122 {
123 	uint8_t buf = 0;
124 
125 #if CONFIG_IS_ENABLED(DM_I2C)
126 	struct udevice *dev;
127 	int ret;
128 
129 	ret = i2c_get_chip_for_busnum(CONFIG_SYS_SPD_BUS_NUM, chip_addr,
130 				      1, &dev);
131 	if (ret) {
132 		printf("%s: Cannot find udev for a bus %d\n", __func__,
133 		       CONFIG_SYS_SPD_BUS_NUM);
134 		return ret;
135 	}
136 
137 	return dm_i2c_write(dev, 0, &buf, 1);
138 #else
139 	return i2c_write(chip_addr, 0, 1, &buf, 1);
140 #endif
141 
142 	return 0;
143 }
144 #endif
145 
__get_spd(generic_spd_eeprom_t * spd,u8 i2c_address)146 static void __get_spd(generic_spd_eeprom_t *spd, u8 i2c_address)
147 {
148 	int ret;
149 	DEV_TYPE *dev;
150 
151 #if CONFIG_IS_ENABLED(DM_I2C)
152 	ret = i2c_get_chip_for_busnum(CONFIG_SYS_SPD_BUS_NUM, i2c_address,
153 				      1, &dev);
154 	if (ret) {
155 		printf("%s: Cannot find udev for a bus %d\n", __func__,
156 		       CONFIG_SYS_SPD_BUS_NUM);
157 		return;
158 	}
159 #else /* Non DM I2C support - will be removed */
160 	struct ludevice ldev = {
161 		.chip = i2c_address,
162 	};
163 	dev = &ldev;
164 
165 	i2c_set_bus_num(CONFIG_SYS_SPD_BUS_NUM);
166 #endif
167 
168 #ifdef CONFIG_SYS_FSL_DDR4
169 	/*
170 	 * DDR4 SPD has 384 to 512 bytes
171 	 * To access the lower 256 bytes, we need to set EE page address to 0
172 	 * To access the upper 256 bytes, we need to set EE page address to 1
173 	 * See Jedec standar No. 21-C for detail
174 	 */
175 	ddr_i2c_dummy_write(SPD_SPA0_ADDRESS);
176 	ret = ddr_i2c_read(dev, 0, 1, (uchar *)spd, 256);
177 	if (!ret) {
178 		ddr_i2c_dummy_write(SPD_SPA1_ADDRESS);
179 		ret = ddr_i2c_read(dev, 0, 1, (uchar *)((ulong)spd + 256),
180 				   min(256,
181 				       (int)sizeof(generic_spd_eeprom_t)
182 				       - 256));
183 	}
184 
185 #else
186 	ret = ddr_i2c_read(dev, 0, 1, (uchar *)spd,
187 			   sizeof(generic_spd_eeprom_t));
188 #endif
189 
190 	if (ret) {
191 		if (i2c_address ==
192 #ifdef SPD_EEPROM_ADDRESS
193 				SPD_EEPROM_ADDRESS
194 #elif defined(SPD_EEPROM_ADDRESS1)
195 				SPD_EEPROM_ADDRESS1
196 #endif
197 				) {
198 			printf("DDR: failed to read SPD from address %u\n",
199 				i2c_address);
200 		} else {
201 			debug("DDR: failed to read SPD from address %u\n",
202 				i2c_address);
203 		}
204 		memset(spd, 0, sizeof(generic_spd_eeprom_t));
205 	}
206 }
207 
208 __attribute__((weak, alias("__get_spd")))
209 void get_spd(generic_spd_eeprom_t *spd, u8 i2c_address);
210 
211 /* This function allows boards to update SPD address */
update_spd_address(unsigned int ctrl_num,unsigned int slot,unsigned int * addr)212 __weak void update_spd_address(unsigned int ctrl_num,
213 			       unsigned int slot,
214 			       unsigned int *addr)
215 {
216 }
217 
fsl_ddr_get_spd(generic_spd_eeprom_t * ctrl_dimms_spd,unsigned int ctrl_num,unsigned int dimm_slots_per_ctrl)218 void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
219 		      unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
220 {
221 	unsigned int i;
222 	unsigned int i2c_address = 0;
223 
224 	if (ctrl_num >= CONFIG_SYS_NUM_DDR_CTLRS) {
225 		printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
226 		return;
227 	}
228 
229 	for (i = 0; i < dimm_slots_per_ctrl; i++) {
230 		i2c_address = spd_i2c_addr[ctrl_num][i];
231 		update_spd_address(ctrl_num, i, &i2c_address);
232 		get_spd(&(ctrl_dimms_spd[i]), i2c_address);
233 	}
234 }
235 #else
fsl_ddr_get_spd(generic_spd_eeprom_t * ctrl_dimms_spd,unsigned int ctrl_num,unsigned int dimm_slots_per_ctrl)236 void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
237 		      unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
238 {
239 }
240 #endif /* SPD_EEPROM_ADDRESSx */
241 
242 /*
243  * ASSUMPTIONS:
244  *    - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
245  *    - Same memory data bus width on all controllers
246  *
247  * NOTES:
248  *
249  * The memory controller and associated documentation use confusing
250  * terminology when referring to the orgranization of DRAM.
251  *
252  * Here is a terminology translation table:
253  *
254  * memory controller/documention  |industry   |this code  |signals
255  * -------------------------------|-----------|-----------|-----------------
256  * physical bank/bank		  |rank       |rank	  |chip select (CS)
257  * logical bank/sub-bank	  |bank       |bank	  |bank address (BA)
258  * page/row			  |row	      |page	  |row address
259  * ???				  |column     |column	  |column address
260  *
261  * The naming confusion is further exacerbated by the descriptions of the
262  * memory controller interleaving feature, where accesses are interleaved
263  * _BETWEEN_ two seperate memory controllers.  This is configured only in
264  * CS0_CONFIG[INTLV_CTL] of each memory controller.
265  *
266  * memory controller documentation | number of chip selects
267  *				   | per memory controller supported
268  * --------------------------------|-----------------------------------------
269  * cache line interleaving	   | 1 (CS0 only)
270  * page interleaving		   | 1 (CS0 only)
271  * bank interleaving		   | 1 (CS0 only)
272  * superbank interleraving	   | depends on bank (chip select)
273  *				   |   interleraving [rank interleaving]
274  *				   |   mode used on every memory controller
275  *
276  * Even further confusing is the existence of the interleaving feature
277  * _WITHIN_ each memory controller.  The feature is referred to in
278  * documentation as chip select interleaving or bank interleaving,
279  * although it is configured in the DDR_SDRAM_CFG field.
280  *
281  * Name of field		| documentation name	| this code
282  * -----------------------------|-----------------------|------------------
283  * DDR_SDRAM_CFG[BA_INTLV_CTL]	| Bank (chip select)	| rank interleaving
284  *				|  interleaving
285  */
286 
287 const char *step_string_tbl[] = {
288 	"STEP_GET_SPD",
289 	"STEP_COMPUTE_DIMM_PARMS",
290 	"STEP_COMPUTE_COMMON_PARMS",
291 	"STEP_GATHER_OPTS",
292 	"STEP_ASSIGN_ADDRESSES",
293 	"STEP_COMPUTE_REGS",
294 	"STEP_PROGRAM_REGS",
295 	"STEP_ALL"
296 };
297 
step_to_string(unsigned int step)298 const char * step_to_string(unsigned int step) {
299 
300 	unsigned int s = __ilog2(step);
301 
302 	if (s <= 31) {
303 		if ((1 << s) != step)
304 			return step_string_tbl[7];
305 	} else {
306 		if ((1 << (s - 32)) != step)
307 			return step_string_tbl[7];
308 	}
309 	if (s >= ARRAY_SIZE(step_string_tbl)) {
310 		printf("Error for the step in %s\n", __func__);
311 		s = 0;
312 	}
313 
314 	return step_string_tbl[s];
315 }
316 
__step_assign_addresses(fsl_ddr_info_t * pinfo,unsigned int dbw_cap_adj[])317 static unsigned long long __step_assign_addresses(fsl_ddr_info_t *pinfo,
318 			  unsigned int dbw_cap_adj[])
319 {
320 	unsigned int i, j;
321 	unsigned long long total_mem, current_mem_base, total_ctlr_mem;
322 	unsigned long long rank_density, ctlr_density = 0;
323 	unsigned int first_ctrl = pinfo->first_ctrl;
324 	unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
325 
326 	/*
327 	 * If a reduced data width is requested, but the SPD
328 	 * specifies a physically wider device, adjust the
329 	 * computed dimm capacities accordingly before
330 	 * assigning addresses.
331 	 */
332 	for (i = first_ctrl; i <= last_ctrl; i++) {
333 		unsigned int found = 0;
334 
335 		switch (pinfo->memctl_opts[i].data_bus_width) {
336 		case 2:
337 			/* 16-bit */
338 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
339 				unsigned int dw;
340 				if (!pinfo->dimm_params[i][j].n_ranks)
341 					continue;
342 				dw = pinfo->dimm_params[i][j].primary_sdram_width;
343 				if ((dw == 72 || dw == 64)) {
344 					dbw_cap_adj[i] = 2;
345 					break;
346 				} else if ((dw == 40 || dw == 32)) {
347 					dbw_cap_adj[i] = 1;
348 					break;
349 				}
350 			}
351 			break;
352 
353 		case 1:
354 			/* 32-bit */
355 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
356 				unsigned int dw;
357 				dw = pinfo->dimm_params[i][j].data_width;
358 				if (pinfo->dimm_params[i][j].n_ranks
359 				    && (dw == 72 || dw == 64)) {
360 					/*
361 					 * FIXME: can't really do it
362 					 * like this because this just
363 					 * further reduces the memory
364 					 */
365 					found = 1;
366 					break;
367 				}
368 			}
369 			if (found) {
370 				dbw_cap_adj[i] = 1;
371 			}
372 			break;
373 
374 		case 0:
375 			/* 64-bit */
376 			break;
377 
378 		default:
379 			printf("unexpected data bus width "
380 				"specified controller %u\n", i);
381 			return 1;
382 		}
383 		debug("dbw_cap_adj[%d]=%d\n", i, dbw_cap_adj[i]);
384 	}
385 
386 	current_mem_base = pinfo->mem_base;
387 	total_mem = 0;
388 	if (pinfo->memctl_opts[first_ctrl].memctl_interleaving) {
389 		rank_density = pinfo->dimm_params[first_ctrl][0].rank_density >>
390 					dbw_cap_adj[first_ctrl];
391 		switch (pinfo->memctl_opts[first_ctrl].ba_intlv_ctl &
392 					FSL_DDR_CS0_CS1_CS2_CS3) {
393 		case FSL_DDR_CS0_CS1_CS2_CS3:
394 			ctlr_density = 4 * rank_density;
395 			break;
396 		case FSL_DDR_CS0_CS1:
397 		case FSL_DDR_CS0_CS1_AND_CS2_CS3:
398 			ctlr_density = 2 * rank_density;
399 			break;
400 		case FSL_DDR_CS2_CS3:
401 		default:
402 			ctlr_density = rank_density;
403 			break;
404 		}
405 		debug("rank density is 0x%llx, ctlr density is 0x%llx\n",
406 			rank_density, ctlr_density);
407 		for (i = first_ctrl; i <= last_ctrl; i++) {
408 			if (pinfo->memctl_opts[i].memctl_interleaving) {
409 				switch (pinfo->memctl_opts[i].memctl_interleaving_mode) {
410 				case FSL_DDR_256B_INTERLEAVING:
411 				case FSL_DDR_CACHE_LINE_INTERLEAVING:
412 				case FSL_DDR_PAGE_INTERLEAVING:
413 				case FSL_DDR_BANK_INTERLEAVING:
414 				case FSL_DDR_SUPERBANK_INTERLEAVING:
415 					total_ctlr_mem = 2 * ctlr_density;
416 					break;
417 				case FSL_DDR_3WAY_1KB_INTERLEAVING:
418 				case FSL_DDR_3WAY_4KB_INTERLEAVING:
419 				case FSL_DDR_3WAY_8KB_INTERLEAVING:
420 					total_ctlr_mem = 3 * ctlr_density;
421 					break;
422 				case FSL_DDR_4WAY_1KB_INTERLEAVING:
423 				case FSL_DDR_4WAY_4KB_INTERLEAVING:
424 				case FSL_DDR_4WAY_8KB_INTERLEAVING:
425 					total_ctlr_mem = 4 * ctlr_density;
426 					break;
427 				default:
428 					panic("Unknown interleaving mode");
429 				}
430 				pinfo->common_timing_params[i].base_address =
431 							current_mem_base;
432 				pinfo->common_timing_params[i].total_mem =
433 							total_ctlr_mem;
434 				total_mem = current_mem_base + total_ctlr_mem;
435 				debug("ctrl %d base 0x%llx\n", i, current_mem_base);
436 				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
437 			} else {
438 				/* when 3rd controller not interleaved */
439 				current_mem_base = total_mem;
440 				total_ctlr_mem = 0;
441 				pinfo->common_timing_params[i].base_address =
442 							current_mem_base;
443 				for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
444 					unsigned long long cap =
445 						pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
446 					pinfo->dimm_params[i][j].base_address =
447 						current_mem_base;
448 					debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
449 					current_mem_base += cap;
450 					total_ctlr_mem += cap;
451 				}
452 				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
453 				pinfo->common_timing_params[i].total_mem =
454 							total_ctlr_mem;
455 				total_mem += total_ctlr_mem;
456 			}
457 		}
458 	} else {
459 		/*
460 		 * Simple linear assignment if memory
461 		 * controllers are not interleaved.
462 		 */
463 		for (i = first_ctrl; i <= last_ctrl; i++) {
464 			total_ctlr_mem = 0;
465 			pinfo->common_timing_params[i].base_address =
466 						current_mem_base;
467 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
468 				/* Compute DIMM base addresses. */
469 				unsigned long long cap =
470 					pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
471 				pinfo->dimm_params[i][j].base_address =
472 					current_mem_base;
473 				debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
474 				current_mem_base += cap;
475 				total_ctlr_mem += cap;
476 			}
477 			debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
478 			pinfo->common_timing_params[i].total_mem =
479 							total_ctlr_mem;
480 			total_mem += total_ctlr_mem;
481 		}
482 	}
483 	debug("Total mem by %s is 0x%llx\n", __func__, total_mem);
484 
485 	return total_mem;
486 }
487 
488 /* Use weak function to allow board file to override the address assignment */
489 __attribute__((weak, alias("__step_assign_addresses")))
490 unsigned long long step_assign_addresses(fsl_ddr_info_t *pinfo,
491 			  unsigned int dbw_cap_adj[]);
492 
493 unsigned long long
fsl_ddr_compute(fsl_ddr_info_t * pinfo,unsigned int start_step,unsigned int size_only)494 fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step,
495 				       unsigned int size_only)
496 {
497 	unsigned int i, j;
498 	unsigned long long total_mem = 0;
499 	int assert_reset = 0;
500 	unsigned int first_ctrl =  pinfo->first_ctrl;
501 	unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
502 	__maybe_unused int retval;
503 	__maybe_unused bool goodspd = false;
504 	__maybe_unused int dimm_slots_per_ctrl = pinfo->dimm_slots_per_ctrl;
505 
506 	fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;
507 	common_timing_params_t *timing_params = pinfo->common_timing_params;
508 	if (pinfo->board_need_mem_reset)
509 		assert_reset = pinfo->board_need_mem_reset();
510 
511 	/* data bus width capacity adjust shift amount */
512 	unsigned int dbw_capacity_adjust[CONFIG_SYS_NUM_DDR_CTLRS];
513 
514 	for (i = first_ctrl; i <= last_ctrl; i++)
515 		dbw_capacity_adjust[i] = 0;
516 
517 	debug("starting at step %u (%s)\n",
518 	      start_step, step_to_string(start_step));
519 
520 	switch (start_step) {
521 	case STEP_GET_SPD:
522 #if defined(CONFIG_DDR_SPD) || defined(CONFIG_SPD_EEPROM)
523 		/* STEP 1:  Gather all DIMM SPD data */
524 		for (i = first_ctrl; i <= last_ctrl; i++) {
525 			fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i,
526 					dimm_slots_per_ctrl);
527 		}
528 
529 	case STEP_COMPUTE_DIMM_PARMS:
530 		/* STEP 2:  Compute DIMM parameters from SPD data */
531 
532 		for (i = first_ctrl; i <= last_ctrl; i++) {
533 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
534 				generic_spd_eeprom_t *spd =
535 					&(pinfo->spd_installed_dimms[i][j]);
536 				dimm_params_t *pdimm =
537 					&(pinfo->dimm_params[i][j]);
538 				retval = compute_dimm_parameters(
539 							i, spd, pdimm, j);
540 #ifdef CONFIG_SYS_DDR_RAW_TIMING
541 				if (!j && retval) {
542 					printf("SPD error on controller %d! "
543 					"Trying fallback to raw timing "
544 					"calculation\n", i);
545 					retval = fsl_ddr_get_dimm_params(pdimm,
546 									 i, j);
547 				}
548 #else
549 				if (retval == 2) {
550 					printf("Error: compute_dimm_parameters"
551 					" non-zero returned FATAL value "
552 					"for memctl=%u dimm=%u\n", i, j);
553 					return 0;
554 				}
555 #endif
556 				if (retval) {
557 					debug("Warning: compute_dimm_parameters"
558 					" non-zero return value for memctl=%u "
559 					"dimm=%u\n", i, j);
560 				} else {
561 					goodspd = true;
562 				}
563 			}
564 		}
565 		if (!goodspd) {
566 			/*
567 			 * No valid SPD found
568 			 * Throw an error if this is for main memory, i.e.
569 			 * first_ctrl == 0. Otherwise, siliently return 0
570 			 * as the memory size.
571 			 */
572 			if (first_ctrl == 0)
573 				printf("Error: No valid SPD detected.\n");
574 
575 			return 0;
576 		}
577 #elif defined(CONFIG_SYS_DDR_RAW_TIMING)
578 	case STEP_COMPUTE_DIMM_PARMS:
579 		for (i = first_ctrl; i <= last_ctrl; i++) {
580 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
581 				dimm_params_t *pdimm =
582 					&(pinfo->dimm_params[i][j]);
583 				fsl_ddr_get_dimm_params(pdimm, i, j);
584 			}
585 		}
586 		debug("Filling dimm parameters from board specific file\n");
587 #endif
588 	case STEP_COMPUTE_COMMON_PARMS:
589 		/*
590 		 * STEP 3: Compute a common set of timing parameters
591 		 * suitable for all of the DIMMs on each memory controller
592 		 */
593 		for (i = first_ctrl; i <= last_ctrl; i++) {
594 			debug("Computing lowest common DIMM"
595 				" parameters for memctl=%u\n", i);
596 			compute_lowest_common_dimm_parameters
597 				(i,
598 				 pinfo->dimm_params[i],
599 				 &timing_params[i],
600 				 CONFIG_DIMM_SLOTS_PER_CTLR);
601 		}
602 
603 	case STEP_GATHER_OPTS:
604 		/* STEP 4:  Gather configuration requirements from user */
605 		for (i = first_ctrl; i <= last_ctrl; i++) {
606 			debug("Reloading memory controller "
607 				"configuration options for memctl=%u\n", i);
608 			/*
609 			 * This "reloads" the memory controller options
610 			 * to defaults.  If the user "edits" an option,
611 			 * next_step points to the step after this,
612 			 * which is currently STEP_ASSIGN_ADDRESSES.
613 			 */
614 			populate_memctl_options(
615 					&timing_params[i],
616 					&pinfo->memctl_opts[i],
617 					pinfo->dimm_params[i], i);
618 			/*
619 			 * For RDIMMs, JEDEC spec requires clocks to be stable
620 			 * before reset signal is deasserted. For the boards
621 			 * using fixed parameters, this function should be
622 			 * be called from board init file.
623 			 */
624 			if (timing_params[i].all_dimms_registered)
625 				assert_reset = 1;
626 		}
627 		if (assert_reset && !size_only) {
628 			if (pinfo->board_mem_reset) {
629 				debug("Asserting mem reset\n");
630 				pinfo->board_mem_reset();
631 			} else {
632 				debug("Asserting mem reset missing\n");
633 			}
634 		}
635 
636 	case STEP_ASSIGN_ADDRESSES:
637 		/* STEP 5:  Assign addresses to chip selects */
638 		check_interleaving_options(pinfo);
639 		total_mem = step_assign_addresses(pinfo, dbw_capacity_adjust);
640 		debug("Total mem %llu assigned\n", total_mem);
641 
642 	case STEP_COMPUTE_REGS:
643 		/* STEP 6:  compute controller register values */
644 		debug("FSL Memory ctrl register computation\n");
645 		for (i = first_ctrl; i <= last_ctrl; i++) {
646 			if (timing_params[i].ndimms_present == 0) {
647 				memset(&ddr_reg[i], 0,
648 					sizeof(fsl_ddr_cfg_regs_t));
649 				continue;
650 			}
651 
652 			compute_fsl_memctl_config_regs
653 				(i,
654 				 &pinfo->memctl_opts[i],
655 				 &ddr_reg[i], &timing_params[i],
656 				 pinfo->dimm_params[i],
657 				 dbw_capacity_adjust[i],
658 				 size_only);
659 		}
660 
661 	default:
662 		break;
663 	}
664 
665 	{
666 		/*
667 		 * Compute the amount of memory available just by
668 		 * looking for the highest valid CSn_BNDS value.
669 		 * This allows us to also experiment with using
670 		 * only CS0 when using dual-rank DIMMs.
671 		 */
672 		unsigned int max_end = 0;
673 
674 		for (i = first_ctrl; i <= last_ctrl; i++) {
675 			for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {
676 				fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];
677 				if (reg->cs[j].config & 0x80000000) {
678 					unsigned int end;
679 					/*
680 					 * 0xfffffff is a special value we put
681 					 * for unused bnds
682 					 */
683 					if (reg->cs[j].bnds == 0xffffffff)
684 						continue;
685 					end = reg->cs[j].bnds & 0xffff;
686 					if (end > max_end) {
687 						max_end = end;
688 					}
689 				}
690 			}
691 		}
692 
693 		total_mem = 1 + (((unsigned long long)max_end << 24ULL) |
694 			    0xFFFFFFULL) - pinfo->mem_base;
695 	}
696 
697 	return total_mem;
698 }
699 
__fsl_ddr_sdram(fsl_ddr_info_t * pinfo)700 phys_size_t __fsl_ddr_sdram(fsl_ddr_info_t *pinfo)
701 {
702 	unsigned int i, first_ctrl, last_ctrl;
703 #ifdef CONFIG_PPC
704 	unsigned int law_memctl = LAW_TRGT_IF_DDR_1;
705 #endif
706 	unsigned long long total_memory;
707 	int deassert_reset = 0;
708 
709 	first_ctrl = pinfo->first_ctrl;
710 	last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
711 
712 	/* Compute it once normally. */
713 #ifdef CONFIG_FSL_DDR_INTERACTIVE
714 	if (tstc() && (getchar() == 'd')) {	/* we got a key press of 'd' */
715 		total_memory = fsl_ddr_interactive(pinfo, 0);
716 	} else if (fsl_ddr_interactive_env_var_exists()) {
717 		total_memory = fsl_ddr_interactive(pinfo, 1);
718 	} else
719 #endif
720 		total_memory = fsl_ddr_compute(pinfo, STEP_GET_SPD, 0);
721 
722 	/* setup 3-way interleaving before enabling DDRC */
723 	switch (pinfo->memctl_opts[first_ctrl].memctl_interleaving_mode) {
724 	case FSL_DDR_3WAY_1KB_INTERLEAVING:
725 	case FSL_DDR_3WAY_4KB_INTERLEAVING:
726 	case FSL_DDR_3WAY_8KB_INTERLEAVING:
727 		fsl_ddr_set_intl3r(
728 			pinfo->memctl_opts[first_ctrl].
729 			memctl_interleaving_mode);
730 		break;
731 	default:
732 		break;
733 	}
734 
735 	/*
736 	 * Program configuration registers.
737 	 * JEDEC specs requires clocks to be stable before deasserting reset
738 	 * for RDIMMs. Clocks start after chip select is enabled and clock
739 	 * control register is set. During step 1, all controllers have their
740 	 * registers set but not enabled. Step 2 proceeds after deasserting
741 	 * reset through board FPGA or GPIO.
742 	 * For non-registered DIMMs, initialization can go through but it is
743 	 * also OK to follow the same flow.
744 	 */
745 	if (pinfo->board_need_mem_reset)
746 		deassert_reset = pinfo->board_need_mem_reset();
747 	for (i = first_ctrl; i <= last_ctrl; i++) {
748 		if (pinfo->common_timing_params[i].all_dimms_registered)
749 			deassert_reset = 1;
750 	}
751 	for (i = first_ctrl; i <= last_ctrl; i++) {
752 		debug("Programming controller %u\n", i);
753 		if (pinfo->common_timing_params[i].ndimms_present == 0) {
754 			debug("No dimms present on controller %u; "
755 					"skipping programming\n", i);
756 			continue;
757 		}
758 		/*
759 		 * The following call with step = 1 returns before enabling
760 		 * the controller. It has to finish with step = 2 later.
761 		 */
762 		fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]), i,
763 					deassert_reset ? 1 : 0);
764 	}
765 	if (deassert_reset) {
766 		/* Use board FPGA or GPIO to deassert reset signal */
767 		if (pinfo->board_mem_de_reset) {
768 			debug("Deasserting mem reset\n");
769 			pinfo->board_mem_de_reset();
770 		} else {
771 			debug("Deasserting mem reset missing\n");
772 		}
773 		for (i = first_ctrl; i <= last_ctrl; i++) {
774 			/* Call with step = 2 to continue initialization */
775 			fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]),
776 						i, 2);
777 		}
778 	}
779 
780 #ifdef CONFIG_FSL_DDR_SYNC_REFRESH
781 	fsl_ddr_sync_memctl_refresh(first_ctrl, last_ctrl);
782 #endif
783 
784 #ifdef CONFIG_PPC
785 	/* program LAWs */
786 	for (i = first_ctrl; i <= last_ctrl; i++) {
787 		if (pinfo->memctl_opts[i].memctl_interleaving) {
788 			switch (pinfo->memctl_opts[i].
789 				memctl_interleaving_mode) {
790 			case FSL_DDR_CACHE_LINE_INTERLEAVING:
791 			case FSL_DDR_PAGE_INTERLEAVING:
792 			case FSL_DDR_BANK_INTERLEAVING:
793 			case FSL_DDR_SUPERBANK_INTERLEAVING:
794 				if (i % 2)
795 					break;
796 				if (i == 0) {
797 					law_memctl = LAW_TRGT_IF_DDR_INTRLV;
798 					fsl_ddr_set_lawbar(
799 						&pinfo->common_timing_params[i],
800 						law_memctl, i);
801 				}
802 #if CONFIG_SYS_NUM_DDR_CTLRS > 3
803 				else if (i == 2) {
804 					law_memctl = LAW_TRGT_IF_DDR_INTLV_34;
805 					fsl_ddr_set_lawbar(
806 						&pinfo->common_timing_params[i],
807 						law_memctl, i);
808 				}
809 #endif
810 				break;
811 			case FSL_DDR_3WAY_1KB_INTERLEAVING:
812 			case FSL_DDR_3WAY_4KB_INTERLEAVING:
813 			case FSL_DDR_3WAY_8KB_INTERLEAVING:
814 				law_memctl = LAW_TRGT_IF_DDR_INTLV_123;
815 				if (i == 0) {
816 					fsl_ddr_set_lawbar(
817 						&pinfo->common_timing_params[i],
818 						law_memctl, i);
819 				}
820 				break;
821 			case FSL_DDR_4WAY_1KB_INTERLEAVING:
822 			case FSL_DDR_4WAY_4KB_INTERLEAVING:
823 			case FSL_DDR_4WAY_8KB_INTERLEAVING:
824 				law_memctl = LAW_TRGT_IF_DDR_INTLV_1234;
825 				if (i == 0)
826 					fsl_ddr_set_lawbar(
827 						&pinfo->common_timing_params[i],
828 						law_memctl, i);
829 				/* place holder for future 4-way interleaving */
830 				break;
831 			default:
832 				break;
833 			}
834 		} else {
835 			switch (i) {
836 			case 0:
837 				law_memctl = LAW_TRGT_IF_DDR_1;
838 				break;
839 			case 1:
840 				law_memctl = LAW_TRGT_IF_DDR_2;
841 				break;
842 			case 2:
843 				law_memctl = LAW_TRGT_IF_DDR_3;
844 				break;
845 			case 3:
846 				law_memctl = LAW_TRGT_IF_DDR_4;
847 				break;
848 			default:
849 				break;
850 			}
851 			fsl_ddr_set_lawbar(&pinfo->common_timing_params[i],
852 					   law_memctl, i);
853 		}
854 	}
855 #endif
856 
857 	debug("total_memory by %s = %llu\n", __func__, total_memory);
858 
859 #if !defined(CONFIG_PHYS_64BIT)
860 	/*
861 	 * Show warning about big DDR moodules. But avoid warning for 4 GB DDR
862 	 * modules when U-Boot supports RAM of maximal size 4 GB - 1 byte.
863 	 */
864 	if ((first_ctrl == 0) && (total_memory - 1 > (phys_size_t)~0ULL)) {
865 		puts("Detected ");
866 		print_size(total_memory, " of memory\n");
867 #ifndef CONFIG_SPL_BUILD
868 		puts("       "); /* re-align to match init_dram print */
869 #endif
870 		puts("This U-Boot only supports <= ");
871 		print_size((unsigned long long)((phys_size_t)~0ULL)+1, " of DDR\n");
872 #ifndef CONFIG_SPL_BUILD
873 		puts("       "); /* re-align to match init_dram print */
874 #endif
875 		puts("You could rebuild it with CONFIG_PHYS_64BIT\n");
876 #ifndef CONFIG_SPL_BUILD
877 		puts("       "); /* re-align to match init_dram print */
878 #endif
879 	}
880 #endif
881 
882 	/* Ensure that total_memory does not overflow on return */
883 	if (total_memory > (phys_size_t)~0ULL)
884 		total_memory = (phys_size_t)~0ULL;
885 
886 	return total_memory;
887 }
888 
889 /*
890  * fsl_ddr_sdram(void) -- this is the main function to be
891  * called by dram_init() in the board file.
892  *
893  * It returns amount of memory configured in bytes.
894  */
fsl_ddr_sdram(void)895 phys_size_t fsl_ddr_sdram(void)
896 {
897 	fsl_ddr_info_t info;
898 
899 	/* Reset info structure. */
900 	memset(&info, 0, sizeof(fsl_ddr_info_t));
901 	info.mem_base = CFG_SYS_FSL_DDR_SDRAM_BASE_PHY;
902 	info.first_ctrl = 0;
903 	info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
904 	info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
905 	info.board_need_mem_reset = board_need_mem_reset;
906 	info.board_mem_reset = board_assert_mem_reset;
907 	info.board_mem_de_reset = board_deassert_mem_reset;
908 	remove_unused_controllers(&info);
909 
910 	return __fsl_ddr_sdram(&info);
911 }
912 
913 #ifdef CONFIG_SYS_FSL_OTHER_DDR_NUM_CTRLS
fsl_other_ddr_sdram(unsigned long long base,unsigned int first_ctrl,unsigned int num_ctrls,unsigned int dimm_slots_per_ctrl,int (* board_need_reset)(void),void (* board_reset)(void),void (* board_de_reset)(void))914 phys_size_t fsl_other_ddr_sdram(unsigned long long base,
915 				unsigned int first_ctrl,
916 				unsigned int num_ctrls,
917 				unsigned int dimm_slots_per_ctrl,
918 				int (*board_need_reset)(void),
919 				void (*board_reset)(void),
920 				void (*board_de_reset)(void))
921 {
922 	fsl_ddr_info_t info;
923 
924 	/* Reset info structure. */
925 	memset(&info, 0, sizeof(fsl_ddr_info_t));
926 	info.mem_base = base;
927 	info.first_ctrl = first_ctrl;
928 	info.num_ctrls = num_ctrls;
929 	info.dimm_slots_per_ctrl = dimm_slots_per_ctrl;
930 	info.board_need_mem_reset = board_need_reset;
931 	info.board_mem_reset = board_reset;
932 	info.board_mem_de_reset = board_de_reset;
933 
934 	return __fsl_ddr_sdram(&info);
935 }
936 #endif
937 
938 /*
939  * fsl_ddr_sdram_size(first_ctrl, last_intlv) - This function only returns the
940  * size of the total memory without setting ddr control registers.
941  */
942 phys_size_t
fsl_ddr_sdram_size(void)943 fsl_ddr_sdram_size(void)
944 {
945 	fsl_ddr_info_t  info;
946 	unsigned long long total_memory = 0;
947 
948 	memset(&info, 0 , sizeof(fsl_ddr_info_t));
949 	info.mem_base = CFG_SYS_FSL_DDR_SDRAM_BASE_PHY;
950 	info.first_ctrl = 0;
951 	info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
952 	info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
953 	info.board_need_mem_reset = NULL;
954 	remove_unused_controllers(&info);
955 
956 	/* Compute it once normally. */
957 	total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 1);
958 
959 	/* Ensure that total_memory does not overflow on return */
960 	if (total_memory > (phys_size_t)~0ULL)
961 		total_memory = (phys_size_t)~0ULL;
962 
963 	return total_memory;
964 }
965