1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Simple MTD partitioning layer
4  *
5  * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
6  * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
7  * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
8  *
9  */
10 
11 #ifndef __UBOOT__
12 #include <log.h>
13 #include <dm/devres.h>
14 #include <linux/module.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/list.h>
19 #include <linux/kmod.h>
20 #endif
21 
22 #include <common.h>
23 #include <malloc.h>
24 #include <linux/bug.h>
25 #include <linux/errno.h>
26 #include <linux/compat.h>
27 #include <ubi_uboot.h>
28 
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/partitions.h>
31 #include <linux/err.h>
32 #include <linux/sizes.h>
33 
34 #include "mtdcore.h"
35 
36 #ifndef __UBOOT__
37 static DEFINE_MUTEX(mtd_partitions_mutex);
38 #else
39 DEFINE_MUTEX(mtd_partitions_mutex);
40 #endif
41 
42 #ifdef __UBOOT__
43 /* from mm/util.c */
44 
45 /**
46  * kstrdup - allocate space for and copy an existing string
47  * @s: the string to duplicate
48  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
49  */
kstrdup(const char * s,gfp_t gfp)50 char *kstrdup(const char *s, gfp_t gfp)
51 {
52 	size_t len;
53 	char *buf;
54 
55 	if (!s)
56 		return NULL;
57 
58 	len = strlen(s) + 1;
59 	buf = kmalloc(len, gfp);
60 	if (buf)
61 		memcpy(buf, s, len);
62 	return buf;
63 }
64 #endif
65 
66 #define MTD_SIZE_REMAINING		(~0LLU)
67 #define MTD_OFFSET_NOT_SPECIFIED	(~0LLU)
68 
mtd_partitions_used(struct mtd_info * master)69 bool mtd_partitions_used(struct mtd_info *master)
70 {
71 	struct mtd_info *slave;
72 
73 	list_for_each_entry(slave, &master->partitions, node) {
74 		if (slave->usecount)
75 			return true;
76 	}
77 
78 	return false;
79 }
80 
81 /**
82  * mtd_parse_partition - Parse @mtdparts partition definition, fill @partition
83  *                       with it and update the @mtdparts string pointer.
84  *
85  * The partition name is allocated and must be freed by the caller.
86  *
87  * This function is widely inspired from part_parse (mtdparts.c).
88  *
89  * @mtdparts: String describing the partition with mtdparts command syntax
90  * @partition: MTD partition structure to fill
91  *
92  * Return: 0 on success, an error otherwise.
93  */
mtd_parse_partition(const char ** _mtdparts,struct mtd_partition * partition)94 static int mtd_parse_partition(const char **_mtdparts,
95 			       struct mtd_partition *partition)
96 {
97 	const char *mtdparts = *_mtdparts;
98 	const char *name = NULL;
99 	int name_len;
100 	char *buf;
101 
102 	/* Ensure the partition structure is empty */
103 	memset(partition, 0, sizeof(struct mtd_partition));
104 
105 	/* Fetch the partition size */
106 	if (*mtdparts == '-') {
107 		/* Assign all remaining space to this partition */
108 		partition->size = MTD_SIZE_REMAINING;
109 		mtdparts++;
110 	} else {
111 		partition->size = ustrtoull(mtdparts, (char **)&mtdparts, 0);
112 		if (partition->size < SZ_4K) {
113 			printf("Minimum partition size 4kiB, %lldB requested\n",
114 			       partition->size);
115 			return -EINVAL;
116 		}
117 	}
118 
119 	/* Check for the offset */
120 	partition->offset = MTD_OFFSET_NOT_SPECIFIED;
121 	if (*mtdparts == '@') {
122 		mtdparts++;
123 		partition->offset = ustrtoull(mtdparts, (char **)&mtdparts, 0);
124 	}
125 
126 	/* Now look for the name */
127 	if (*mtdparts == '(') {
128 		name = ++mtdparts;
129 		mtdparts = strchr(name, ')');
130 		if (!mtdparts) {
131 			printf("No closing ')' found in partition name\n");
132 			return -EINVAL;
133 		}
134 		name_len = mtdparts - name + 1;
135 		if ((name_len - 1) == 0) {
136 			printf("Empty partition name\n");
137 			return -EINVAL;
138 		}
139 		mtdparts++;
140 	} else {
141 		/* Name will be of the form size@offset */
142 		name_len = 22;
143 	}
144 
145 	/* Check if the partition is read-only */
146 	if (strncmp(mtdparts, "ro", 2) == 0) {
147 		partition->mask_flags |= MTD_WRITEABLE;
148 		mtdparts += 2;
149 	}
150 
151 	/* Check for a potential next partition definition */
152 	if (*mtdparts == ',') {
153 		if (partition->size == MTD_SIZE_REMAINING) {
154 			printf("No partitions allowed after a fill-up\n");
155 			return -EINVAL;
156 		}
157 		++mtdparts;
158 	} else if ((*mtdparts == ';') || (*mtdparts == '\0')) {
159 		/* NOP */
160 	} else {
161 		printf("Unexpected character '%c' in mtdparts\n", *mtdparts);
162 		return -EINVAL;
163 	}
164 
165 	/*
166 	 * Allocate a buffer for the name and either copy the provided name or
167 	 * auto-generate it with the form 'size@offset'.
168 	 */
169 	buf = malloc(name_len);
170 	if (!buf)
171 		return -ENOMEM;
172 
173 	if (name)
174 		strncpy(buf, name, name_len - 1);
175 	else
176 		snprintf(buf, name_len, "0x%08llx@0x%08llx",
177 			 partition->size, partition->offset);
178 
179 	buf[name_len - 1] = '\0';
180 	partition->name = buf;
181 
182 	*_mtdparts = mtdparts;
183 
184 	return 0;
185 }
186 
187 /**
188  * mtd_parse_partitions - Create a partition array from an mtdparts definition
189  *
190  * Stateless function that takes a @parent MTD device, a string @_mtdparts
191  * describing the partitions (with the "mtdparts" command syntax) and creates
192  * the corresponding MTD partition structure array @_parts. Both the name and
193  * the structure partition itself must be freed freed, the caller may use
194  * @mtd_free_parsed_partitions() for this purpose.
195  *
196  * @parent: MTD device which contains the partitions
197  * @_mtdparts: Pointer to a string describing the partitions with "mtdparts"
198  *             command syntax.
199  * @_parts: Allocated array containing the partitions, must be freed by the
200  *          caller.
201  * @_nparts: Size of @_parts array.
202  *
203  * Return: 0 on success, an error otherwise.
204  */
mtd_parse_partitions(struct mtd_info * parent,const char ** _mtdparts,struct mtd_partition ** _parts,int * _nparts)205 int mtd_parse_partitions(struct mtd_info *parent, const char **_mtdparts,
206 			 struct mtd_partition **_parts, int *_nparts)
207 {
208 	struct mtd_partition partition = {}, *parts;
209 	const char *mtdparts = *_mtdparts;
210 	uint64_t cur_off = 0, cur_sz = 0;
211 	int nparts = 0;
212 	int ret, idx;
213 	u64 sz;
214 
215 	/* First, iterate over the partitions until we know their number */
216 	while (mtdparts[0] != '\0' && mtdparts[0] != ';') {
217 		ret = mtd_parse_partition(&mtdparts, &partition);
218 		if (ret)
219 			return ret;
220 
221 		free((char *)partition.name);
222 		nparts++;
223 	}
224 
225 	/* Allocate an array of partitions to give back to the caller */
226 	parts = malloc(sizeof(*parts) * nparts);
227 	if (!parts) {
228 		printf("Not enough space to save partitions meta-data\n");
229 		return -ENOMEM;
230 	}
231 
232 	/* Iterate again over each partition to save the data in our array */
233 	for (idx = 0; idx < nparts; idx++) {
234 		ret = mtd_parse_partition(_mtdparts, &parts[idx]);
235 		if (ret)
236 			return ret;
237 
238 		if (parts[idx].size == MTD_SIZE_REMAINING)
239 			parts[idx].size = parent->size - cur_sz;
240 		cur_sz += parts[idx].size;
241 
242 		sz = parts[idx].size;
243 		if (sz < parent->writesize || do_div(sz, parent->writesize)) {
244 			printf("Partition size must be a multiple of %d\n",
245 			       parent->writesize);
246 			return -EINVAL;
247 		}
248 
249 		if (parts[idx].offset == MTD_OFFSET_NOT_SPECIFIED)
250 			parts[idx].offset = cur_off;
251 		cur_off += parts[idx].size;
252 
253 		parts[idx].ecclayout = parent->ecclayout;
254 	}
255 
256 	/* Offset by one mtdparts to point to the next device if any */
257 	if (*_mtdparts[0] == ';')
258 		(*_mtdparts)++;
259 
260 	*_parts = parts;
261 	*_nparts = nparts;
262 
263 	return 0;
264 }
265 
266 /**
267  * mtd_free_parsed_partitions - Free dynamically allocated partitions
268  *
269  * Each successful call to @mtd_parse_partitions must be followed by a call to
270  * @mtd_free_parsed_partitions to free any allocated array during the parsing
271  * process.
272  *
273  * @parts: Array containing the partitions that will be freed.
274  * @nparts: Size of @parts array.
275  */
mtd_free_parsed_partitions(struct mtd_partition * parts,unsigned int nparts)276 void mtd_free_parsed_partitions(struct mtd_partition *parts,
277 				unsigned int nparts)
278 {
279 	int i;
280 
281 	for (i = 0; i < nparts; i++)
282 		free((char *)parts[i].name);
283 
284 	free(parts);
285 }
286 
287 /*
288  * MTD methods which simply translate the effective address and pass through
289  * to the _real_ device.
290  */
291 
part_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)292 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
293 		size_t *retlen, u_char *buf)
294 {
295 	struct mtd_ecc_stats stats;
296 	int res;
297 
298 	stats = mtd->parent->ecc_stats;
299 	res = mtd->parent->_read(mtd->parent, from + mtd->offset, len,
300 				 retlen, buf);
301 	if (unlikely(mtd_is_eccerr(res)))
302 		mtd->ecc_stats.failed +=
303 			mtd->parent->ecc_stats.failed - stats.failed;
304 	else
305 		mtd->ecc_stats.corrected +=
306 			mtd->parent->ecc_stats.corrected - stats.corrected;
307 	return res;
308 }
309 
310 #ifndef __UBOOT__
part_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)311 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
312 		size_t *retlen, void **virt, resource_size_t *phys)
313 {
314 	return mtd->parent->_point(mtd->parent, from + mtd->offset, len,
315 				   retlen, virt, phys);
316 }
317 
part_unpoint(struct mtd_info * mtd,loff_t from,size_t len)318 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
319 {
320 	return mtd->parent->_unpoint(mtd->parent, from + mtd->offset, len);
321 }
322 #endif
323 
part_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)324 static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
325 					    unsigned long len,
326 					    unsigned long offset,
327 					    unsigned long flags)
328 {
329 	offset += mtd->offset;
330 	return mtd->parent->_get_unmapped_area(mtd->parent, len, offset, flags);
331 }
332 
part_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)333 static int part_read_oob(struct mtd_info *mtd, loff_t from,
334 		struct mtd_oob_ops *ops)
335 {
336 	int res;
337 
338 	if (from >= mtd->size)
339 		return -EINVAL;
340 	if (ops->datbuf && from + ops->len > mtd->size)
341 		return -EINVAL;
342 
343 	/*
344 	 * If OOB is also requested, make sure that we do not read past the end
345 	 * of this partition.
346 	 */
347 	if (ops->oobbuf) {
348 		size_t len, pages;
349 
350 		if (ops->mode == MTD_OPS_AUTO_OOB)
351 			len = mtd->oobavail;
352 		else
353 			len = mtd->oobsize;
354 		pages = mtd_div_by_ws(mtd->size, mtd);
355 		pages -= mtd_div_by_ws(from, mtd);
356 		if (ops->ooboffs + ops->ooblen > pages * len)
357 			return -EINVAL;
358 	}
359 
360 	res = mtd->parent->_read_oob(mtd->parent, from + mtd->offset, ops);
361 	if (unlikely(res)) {
362 		if (mtd_is_bitflip(res))
363 			mtd->ecc_stats.corrected++;
364 		if (mtd_is_eccerr(res))
365 			mtd->ecc_stats.failed++;
366 	}
367 	return res;
368 }
369 
part_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)370 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
371 		size_t len, size_t *retlen, u_char *buf)
372 {
373 	return mtd->parent->_read_user_prot_reg(mtd->parent, from, len,
374 						retlen, buf);
375 }
376 
part_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)377 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
378 				   size_t *retlen, struct otp_info *buf)
379 {
380 	return mtd->parent->_get_user_prot_info(mtd->parent, len, retlen,
381 						buf);
382 }
383 
part_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)384 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
385 		size_t len, size_t *retlen, u_char *buf)
386 {
387 	return mtd->parent->_read_fact_prot_reg(mtd->parent, from, len,
388 						retlen, buf);
389 }
390 
part_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)391 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
392 				   size_t *retlen, struct otp_info *buf)
393 {
394 	return mtd->parent->_get_fact_prot_info(mtd->parent, len, retlen,
395 						buf);
396 }
397 
part_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)398 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
399 		size_t *retlen, const u_char *buf)
400 {
401 	return mtd->parent->_write(mtd->parent, to + mtd->offset, len,
402 				   retlen, buf);
403 }
404 
part_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)405 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
406 		size_t *retlen, const u_char *buf)
407 {
408 	return mtd->parent->_panic_write(mtd->parent, to + mtd->offset, len,
409 					 retlen, buf);
410 }
411 
part_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)412 static int part_write_oob(struct mtd_info *mtd, loff_t to,
413 		struct mtd_oob_ops *ops)
414 {
415 	if (to >= mtd->size)
416 		return -EINVAL;
417 	if (ops->datbuf && to + ops->len > mtd->size)
418 		return -EINVAL;
419 	return mtd->parent->_write_oob(mtd->parent, to + mtd->offset, ops);
420 }
421 
part_write_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)422 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
423 		size_t len, size_t *retlen, u_char *buf)
424 {
425 	return mtd->parent->_write_user_prot_reg(mtd->parent, from, len,
426 						 retlen, buf);
427 }
428 
part_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)429 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
430 		size_t len)
431 {
432 	return mtd->parent->_lock_user_prot_reg(mtd->parent, from, len);
433 }
434 
435 #ifndef __UBOOT__
part_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)436 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
437 		unsigned long count, loff_t to, size_t *retlen)
438 {
439 	return mtd->parent->_writev(mtd->parent, vecs, count,
440 				    to + mtd->offset, retlen);
441 }
442 #endif
443 
part_erase(struct mtd_info * mtd,struct erase_info * instr)444 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
445 {
446 	int ret;
447 
448 	instr->addr += mtd->offset;
449 
450 	ret = mtd->parent->_erase(mtd->parent, instr);
451 	if (ret && instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
452 		instr->fail_addr -= mtd->offset;
453 
454 	instr->addr -= mtd->offset;
455 
456 	return ret;
457 }
458 
part_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)459 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
460 {
461 	return mtd->parent->_lock(mtd->parent, ofs + mtd->offset, len);
462 }
463 
part_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)464 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
465 {
466 	return mtd->parent->_unlock(mtd->parent, ofs + mtd->offset, len);
467 }
468 
part_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)469 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
470 {
471 	return mtd->parent->_is_locked(mtd->parent, ofs + mtd->offset, len);
472 }
473 
part_sync(struct mtd_info * mtd)474 static void part_sync(struct mtd_info *mtd)
475 {
476 	mtd->parent->_sync(mtd->parent);
477 }
478 
479 #ifndef __UBOOT__
part_suspend(struct mtd_info * mtd)480 static int part_suspend(struct mtd_info *mtd)
481 {
482 	return mtd->parent->_suspend(mtd->parent);
483 }
484 
part_resume(struct mtd_info * mtd)485 static void part_resume(struct mtd_info *mtd)
486 {
487 	mtd->parent->_resume(mtd->parent);
488 }
489 #endif
490 
part_block_isreserved(struct mtd_info * mtd,loff_t ofs)491 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
492 {
493 	ofs += mtd->offset;
494 	return mtd->parent->_block_isreserved(mtd->parent, ofs);
495 }
496 
part_block_isbad(struct mtd_info * mtd,loff_t ofs)497 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
498 {
499 	ofs += mtd->offset;
500 	return mtd->parent->_block_isbad(mtd->parent, ofs);
501 }
502 
part_block_markbad(struct mtd_info * mtd,loff_t ofs)503 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
504 {
505 	int res;
506 
507 	ofs += mtd->offset;
508 	res = mtd->parent->_block_markbad(mtd->parent, ofs);
509 	if (!res)
510 		mtd->ecc_stats.badblocks++;
511 	return res;
512 }
513 
free_partition(struct mtd_info * p)514 static inline void free_partition(struct mtd_info *p)
515 {
516 	kfree(p->name);
517 	kfree(p);
518 }
519 
520 /*
521  * This function unregisters and destroy all slave MTD objects which are
522  * attached to the given master MTD object, recursively.
523  */
do_del_mtd_partitions(struct mtd_info * master)524 static int do_del_mtd_partitions(struct mtd_info *master)
525 {
526 	struct mtd_info *slave, *next;
527 	int ret, err = 0;
528 
529 	list_for_each_entry_safe(slave, next, &master->partitions, node) {
530 		if (mtd_has_partitions(slave))
531 			del_mtd_partitions(slave);
532 
533 		debug("Deleting %s MTD partition\n", slave->name);
534 		ret = del_mtd_device(slave);
535 		if (ret < 0) {
536 			printf("Error when deleting partition \"%s\" (%d)\n",
537 			       slave->name, ret);
538 			err = ret;
539 			continue;
540 		}
541 
542 		list_del(&slave->node);
543 		free_partition(slave);
544 	}
545 
546 	return err;
547 }
548 
del_mtd_partitions(struct mtd_info * master)549 int del_mtd_partitions(struct mtd_info *master)
550 {
551 	int ret;
552 
553 	debug("Deleting MTD partitions on \"%s\":\n", master->name);
554 
555 	mutex_lock(&mtd_partitions_mutex);
556 	ret = do_del_mtd_partitions(master);
557 	mutex_unlock(&mtd_partitions_mutex);
558 
559 	return ret;
560 }
561 
allocate_partition(struct mtd_info * master,const struct mtd_partition * part,int partno,uint64_t cur_offset)562 static struct mtd_info *allocate_partition(struct mtd_info *master,
563 					   const struct mtd_partition *part,
564 					   int partno, uint64_t cur_offset)
565 {
566 	struct mtd_info *slave;
567 	char *name;
568 
569 	/* allocate the partition structure */
570 	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
571 	name = kstrdup(part->name, GFP_KERNEL);
572 	if (!name || !slave) {
573 		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
574 		       master->name);
575 		kfree(name);
576 		kfree(slave);
577 		return ERR_PTR(-ENOMEM);
578 	}
579 
580 	/* set up the MTD object for this partition */
581 	slave->type = master->type;
582 	slave->flags = master->flags & ~part->mask_flags;
583 	slave->size = part->size;
584 	slave->writesize = master->writesize;
585 	slave->writebufsize = master->writebufsize;
586 	slave->oobsize = master->oobsize;
587 	slave->oobavail = master->oobavail;
588 	slave->subpage_sft = master->subpage_sft;
589 
590 	slave->name = name;
591 	slave->owner = master->owner;
592 #ifndef __UBOOT__
593 	slave->backing_dev_info = master->backing_dev_info;
594 
595 	/* NOTE:  we don't arrange MTDs as a tree; it'd be error-prone
596 	 * to have the same data be in two different partitions.
597 	 */
598 	slave->dev.parent = master->dev.parent;
599 #endif
600 
601 	if (master->_read)
602 		slave->_read = part_read;
603 	if (master->_write)
604 		slave->_write = part_write;
605 
606 	if (master->_panic_write)
607 		slave->_panic_write = part_panic_write;
608 
609 #ifndef __UBOOT__
610 	if (master->_point && master->_unpoint) {
611 		slave->_point = part_point;
612 		slave->_unpoint = part_unpoint;
613 	}
614 #endif
615 
616 	if (master->_get_unmapped_area)
617 		slave->_get_unmapped_area = part_get_unmapped_area;
618 	if (master->_read_oob)
619 		slave->_read_oob = part_read_oob;
620 	if (master->_write_oob)
621 		slave->_write_oob = part_write_oob;
622 	if (master->_read_user_prot_reg)
623 		slave->_read_user_prot_reg = part_read_user_prot_reg;
624 	if (master->_read_fact_prot_reg)
625 		slave->_read_fact_prot_reg = part_read_fact_prot_reg;
626 	if (master->_write_user_prot_reg)
627 		slave->_write_user_prot_reg = part_write_user_prot_reg;
628 	if (master->_lock_user_prot_reg)
629 		slave->_lock_user_prot_reg = part_lock_user_prot_reg;
630 	if (master->_get_user_prot_info)
631 		slave->_get_user_prot_info = part_get_user_prot_info;
632 	if (master->_get_fact_prot_info)
633 		slave->_get_fact_prot_info = part_get_fact_prot_info;
634 	if (master->_sync)
635 		slave->_sync = part_sync;
636 #ifndef __UBOOT__
637 	if (!partno && !master->dev.class && master->_suspend &&
638 	    master->_resume) {
639 		slave->_suspend = part_suspend;
640 		slave->_resume = part_resume;
641 	}
642 	if (master->_writev)
643 		slave->_writev = part_writev;
644 #endif
645 	if (master->_lock)
646 		slave->_lock = part_lock;
647 	if (master->_unlock)
648 		slave->_unlock = part_unlock;
649 	if (master->_is_locked)
650 		slave->_is_locked = part_is_locked;
651 	if (master->_block_isreserved)
652 		slave->_block_isreserved = part_block_isreserved;
653 	if (master->_block_isbad)
654 		slave->_block_isbad = part_block_isbad;
655 	if (master->_block_markbad)
656 		slave->_block_markbad = part_block_markbad;
657 	slave->_erase = part_erase;
658 	slave->parent = master;
659 	slave->offset = part->offset;
660 	INIT_LIST_HEAD(&slave->partitions);
661 	INIT_LIST_HEAD(&slave->node);
662 
663 	if (slave->offset == MTDPART_OFS_APPEND)
664 		slave->offset = cur_offset;
665 	if (slave->offset == MTDPART_OFS_NXTBLK) {
666 		slave->offset = cur_offset;
667 		if (mtd_mod_by_eb(cur_offset, master) != 0) {
668 			/* Round up to next erasesize */
669 			slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
670 			debug("Moving partition %d: "
671 			       "0x%012llx -> 0x%012llx\n", partno,
672 			       (unsigned long long)cur_offset, (unsigned long long)slave->offset);
673 		}
674 	}
675 	if (slave->offset == MTDPART_OFS_RETAIN) {
676 		slave->offset = cur_offset;
677 		if (master->size - slave->offset >= slave->size) {
678 			slave->size = master->size - slave->offset
679 							- slave->size;
680 		} else {
681 			debug("mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
682 				part->name, master->size - slave->offset,
683 				slave->size);
684 			/* register to preserve ordering */
685 			goto out_register;
686 		}
687 	}
688 	if (slave->size == MTDPART_SIZ_FULL)
689 		slave->size = master->size - slave->offset;
690 
691 	debug("0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
692 		(unsigned long long)(slave->offset + slave->size), slave->name);
693 
694 	/* let's do some sanity checks */
695 	if (slave->offset >= master->size) {
696 		/* let's register it anyway to preserve ordering */
697 		slave->offset = 0;
698 		slave->size = 0;
699 		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
700 			part->name);
701 		goto out_register;
702 	}
703 	if (slave->offset + slave->size > master->size) {
704 		slave->size = master->size - slave->offset;
705 		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
706 		       part->name, master->name, slave->size);
707 	}
708 	if (master->numeraseregions > 1) {
709 		/* Deal with variable erase size stuff */
710 		int i, max = master->numeraseregions;
711 		u64 end = slave->offset + slave->size;
712 		struct mtd_erase_region_info *regions = master->eraseregions;
713 
714 		/* Find the first erase regions which is part of this
715 		 * partition. */
716 		for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
717 			;
718 		/* The loop searched for the region _behind_ the first one */
719 		if (i > 0)
720 			i--;
721 
722 		/* Pick biggest erasesize */
723 		for (; i < max && regions[i].offset < end; i++) {
724 			if (slave->erasesize < regions[i].erasesize)
725 				slave->erasesize = regions[i].erasesize;
726 		}
727 		WARN_ON(slave->erasesize == 0);
728 	} else {
729 		/* Single erase size */
730 		slave->erasesize = master->erasesize;
731 	}
732 
733 	if ((slave->flags & MTD_WRITEABLE) &&
734 	    mtd_mod_by_eb(slave->offset, slave)) {
735 		/* Doesn't start on a boundary of major erase size */
736 		/* FIXME: Let it be writable if it is on a boundary of
737 		 * _minor_ erase size though */
738 		slave->flags &= ~MTD_WRITEABLE;
739 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
740 			part->name);
741 	}
742 	if ((slave->flags & MTD_WRITEABLE) &&
743 	    mtd_mod_by_eb(slave->size, slave)) {
744 		slave->flags &= ~MTD_WRITEABLE;
745 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
746 			part->name);
747 	}
748 
749 	slave->ecclayout = master->ecclayout;
750 	slave->ecc_step_size = master->ecc_step_size;
751 	slave->ecc_strength = master->ecc_strength;
752 	slave->bitflip_threshold = master->bitflip_threshold;
753 
754 	if (master->_block_isbad) {
755 		uint64_t offs = 0;
756 
757 		while (offs < slave->size) {
758 			if (mtd_block_isbad(master, offs + slave->offset))
759 				slave->ecc_stats.badblocks++;
760 			offs += slave->erasesize;
761 		}
762 	}
763 
764 out_register:
765 	return slave;
766 }
767 
768 #ifndef __UBOOT__
mtd_add_partition(struct mtd_info * master,const char * name,long long offset,long long length)769 int mtd_add_partition(struct mtd_info *master, const char *name,
770 		      long long offset, long long length)
771 {
772 	struct mtd_partition part;
773 	struct mtd_info *p, *new;
774 	uint64_t start, end;
775 	int ret = 0;
776 
777 	/* the direct offset is expected */
778 	if (offset == MTDPART_OFS_APPEND ||
779 	    offset == MTDPART_OFS_NXTBLK)
780 		return -EINVAL;
781 
782 	if (length == MTDPART_SIZ_FULL)
783 		length = master->size - offset;
784 
785 	if (length <= 0)
786 		return -EINVAL;
787 
788 	part.name = name;
789 	part.size = length;
790 	part.offset = offset;
791 	part.mask_flags = 0;
792 	part.ecclayout = NULL;
793 
794 	new = allocate_partition(master, &part, -1, offset);
795 	if (IS_ERR(new))
796 		return PTR_ERR(new);
797 
798 	start = offset;
799 	end = offset + length;
800 
801 	mutex_lock(&mtd_partitions_mutex);
802 	list_for_each_entry(p, &master->partitions, node) {
803 		if (start >= p->offset &&
804 		    (start < (p->offset + p->size)))
805 			goto err_inv;
806 
807 		if (end >= p->offset &&
808 		    (end < (p->offset + p->size)))
809 			goto err_inv;
810 	}
811 
812 	list_add_tail(&new->node, &master->partitions);
813 	mutex_unlock(&mtd_partitions_mutex);
814 
815 	add_mtd_device(new);
816 
817 	return ret;
818 err_inv:
819 	mutex_unlock(&mtd_partitions_mutex);
820 	free_partition(new);
821 	return -EINVAL;
822 }
823 EXPORT_SYMBOL_GPL(mtd_add_partition);
824 
mtd_del_partition(struct mtd_info * master,int partno)825 int mtd_del_partition(struct mtd_info *master, int partno)
826 {
827 	struct mtd_info *slave, *next;
828 	int ret = -EINVAL;
829 
830 	mutex_lock(&mtd_partitions_mutex);
831 	list_for_each_entry_safe(slave, next, &master->partitions, node)
832 		if (slave->index == partno) {
833 			ret = del_mtd_device(slave);
834 			if (ret < 0)
835 				break;
836 
837 			list_del(&slave->node);
838 			free_partition(slave);
839 			break;
840 		}
841 	mutex_unlock(&mtd_partitions_mutex);
842 
843 	return ret;
844 }
845 EXPORT_SYMBOL_GPL(mtd_del_partition);
846 #endif
847 
848 /*
849  * This function, given a master MTD object and a partition table, creates
850  * and registers slave MTD objects which are bound to the master according to
851  * the partition definitions.
852  *
853  * We don't register the master, or expect the caller to have done so,
854  * for reasons of data integrity.
855  */
856 
add_mtd_partitions(struct mtd_info * master,const struct mtd_partition * parts,int nbparts)857 int add_mtd_partitions(struct mtd_info *master,
858 		       const struct mtd_partition *parts,
859 		       int nbparts)
860 {
861 	struct mtd_info *slave;
862 	uint64_t cur_offset = 0;
863 	int i;
864 
865 	debug("Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
866 
867 	for (i = 0; i < nbparts; i++) {
868 		slave = allocate_partition(master, parts + i, i, cur_offset);
869 		if (IS_ERR(slave))
870 			return PTR_ERR(slave);
871 
872 		mutex_lock(&mtd_partitions_mutex);
873 		list_add_tail(&slave->node, &master->partitions);
874 		mutex_unlock(&mtd_partitions_mutex);
875 
876 		add_mtd_device(slave);
877 
878 		cur_offset = slave->offset + slave->size;
879 	}
880 
881 	return 0;
882 }
883 
884 #if CONFIG_IS_ENABLED(DM) && CONFIG_IS_ENABLED(OF_CONTROL)
add_mtd_partitions_of(struct mtd_info * master)885 int add_mtd_partitions_of(struct mtd_info *master)
886 {
887 	ofnode parts, child;
888 	int i = 0;
889 
890 	if (!master->dev && !ofnode_valid(master->flash_node))
891 		return 0;
892 
893 	if (master->dev)
894 		parts = ofnode_find_subnode(mtd_get_ofnode(master), "partitions");
895 	else
896 		parts = ofnode_find_subnode(master->flash_node, "partitions");
897 
898 	if (!ofnode_valid(parts) || !ofnode_is_enabled(parts) ||
899 	    !ofnode_device_is_compatible(parts, "fixed-partitions"))
900 		return 0;
901 
902 	ofnode_for_each_subnode(child, parts) {
903 		struct mtd_partition part = { 0 };
904 		struct mtd_info *slave;
905 		fdt_addr_t offset;
906 		fdt_size_t size;
907 
908 		if (!ofnode_is_enabled(child))
909 			continue;
910 
911 		offset = ofnode_get_addr_size_index_notrans(child, 0, &size);
912 		if (offset == FDT_ADDR_T_NONE || !size) {
913 			debug("Missing partition offset/size on \"%s\" partition\n",
914 			      master->name);
915 			continue;
916 		}
917 
918 		part.name = ofnode_read_string(child, "label");
919 		if (!part.name)
920 			part.name = ofnode_read_string(child, "name");
921 
922 		/*
923 		 * .mask_flags is used to remove flags in allocate_partition(),
924 		 * so when "read-only" is present, we add MTD_WRITABLE to the
925 		 * mask, and so MTD_WRITABLE will be removed on partition
926 		 * allocation
927 		 */
928 		if (ofnode_read_bool(child, "read-only"))
929 			part.mask_flags |= MTD_WRITEABLE;
930 		if (ofnode_read_bool(child, "lock"))
931 			part.mask_flags |= MTD_POWERUP_LOCK;
932 
933 		part.offset = offset;
934 		part.size = size;
935 		part.ecclayout = master->ecclayout;
936 
937 		slave = allocate_partition(master, &part, i++, 0);
938 		if (IS_ERR(slave))
939 			return PTR_ERR(slave);
940 
941 		mutex_lock(&mtd_partitions_mutex);
942 		list_add_tail(&slave->node, &master->partitions);
943 		mutex_unlock(&mtd_partitions_mutex);
944 
945 		add_mtd_device(slave);
946 	}
947 
948 	return 0;
949 }
950 #endif /* CONFIG_IS_ENABLED(DM) && CONFIG_IS_ENABLED(OF_CONTROL) */
951 
952 #ifndef __UBOOT__
953 static DEFINE_SPINLOCK(part_parser_lock);
954 static LIST_HEAD(part_parsers);
955 
get_partition_parser(const char * name)956 static struct mtd_part_parser *get_partition_parser(const char *name)
957 {
958 	struct mtd_part_parser *p, *ret = NULL;
959 
960 	spin_lock(&part_parser_lock);
961 
962 	list_for_each_entry(p, &part_parsers, list)
963 		if (!strcmp(p->name, name) && try_module_get(p->owner)) {
964 			ret = p;
965 			break;
966 		}
967 
968 	spin_unlock(&part_parser_lock);
969 
970 	return ret;
971 }
972 
973 #define put_partition_parser(p) do { module_put((p)->owner); } while (0)
974 
register_mtd_parser(struct mtd_part_parser * p)975 void register_mtd_parser(struct mtd_part_parser *p)
976 {
977 	spin_lock(&part_parser_lock);
978 	list_add(&p->list, &part_parsers);
979 	spin_unlock(&part_parser_lock);
980 }
981 EXPORT_SYMBOL_GPL(register_mtd_parser);
982 
deregister_mtd_parser(struct mtd_part_parser * p)983 void deregister_mtd_parser(struct mtd_part_parser *p)
984 {
985 	spin_lock(&part_parser_lock);
986 	list_del(&p->list);
987 	spin_unlock(&part_parser_lock);
988 }
989 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
990 
991 /*
992  * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
993  * are changing this array!
994  */
995 static const char * const default_mtd_part_types[] = {
996 	"cmdlinepart",
997 	"ofpart",
998 	NULL
999 };
1000 
1001 /**
1002  * parse_mtd_partitions - parse MTD partitions
1003  * @master: the master partition (describes whole MTD device)
1004  * @types: names of partition parsers to try or %NULL
1005  * @pparts: array of partitions found is returned here
1006  * @data: MTD partition parser-specific data
1007  *
1008  * This function tries to find partition on MTD device @master. It uses MTD
1009  * partition parsers, specified in @types. However, if @types is %NULL, then
1010  * the default list of parsers is used. The default list contains only the
1011  * "cmdlinepart" and "ofpart" parsers ATM.
1012  * Note: If there are more then one parser in @types, the kernel only takes the
1013  * partitions parsed out by the first parser.
1014  *
1015  * This function may return:
1016  * o a negative error code in case of failure
1017  * o zero if no partitions were found
1018  * o a positive number of found partitions, in which case on exit @pparts will
1019  *   point to an array containing this number of &struct mtd_info objects.
1020  */
parse_mtd_partitions(struct mtd_info * master,const char * const * types,struct mtd_partition ** pparts,struct mtd_part_parser_data * data)1021 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
1022 			 struct mtd_partition **pparts,
1023 			 struct mtd_part_parser_data *data)
1024 {
1025 	struct mtd_part_parser *parser;
1026 	int ret = 0;
1027 
1028 	if (!types)
1029 		types = default_mtd_part_types;
1030 
1031 	for ( ; ret <= 0 && *types; types++) {
1032 		parser = get_partition_parser(*types);
1033 		if (!parser && !request_module("%s", *types))
1034 			parser = get_partition_parser(*types);
1035 		if (!parser)
1036 			continue;
1037 		ret = (*parser->parse_fn)(master, pparts, data);
1038 		put_partition_parser(parser);
1039 		if (ret > 0) {
1040 			printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
1041 			       ret, parser->name, master->name);
1042 			break;
1043 		}
1044 	}
1045 	return ret;
1046 }
1047 #endif
1048 
1049 /* Returns the size of the entire flash chip */
mtd_get_device_size(const struct mtd_info * mtd)1050 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
1051 {
1052 	if (mtd_is_partition(mtd))
1053 		return mtd->parent->size;
1054 
1055 	return mtd->size;
1056 }
1057 EXPORT_SYMBOL_GPL(mtd_get_device_size);
1058