1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Simple MTD partitioning layer
4 *
5 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
6 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
7 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
8 *
9 */
10
11 #ifndef __UBOOT__
12 #include <log.h>
13 #include <dm/devres.h>
14 #include <linux/module.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/list.h>
19 #include <linux/kmod.h>
20 #endif
21
22 #include <common.h>
23 #include <malloc.h>
24 #include <linux/bug.h>
25 #include <linux/errno.h>
26 #include <linux/compat.h>
27 #include <ubi_uboot.h>
28
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/partitions.h>
31 #include <linux/err.h>
32 #include <linux/sizes.h>
33
34 #include "mtdcore.h"
35
36 #ifndef __UBOOT__
37 static DEFINE_MUTEX(mtd_partitions_mutex);
38 #else
39 DEFINE_MUTEX(mtd_partitions_mutex);
40 #endif
41
42 #ifdef __UBOOT__
43 /* from mm/util.c */
44
45 /**
46 * kstrdup - allocate space for and copy an existing string
47 * @s: the string to duplicate
48 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
49 */
kstrdup(const char * s,gfp_t gfp)50 char *kstrdup(const char *s, gfp_t gfp)
51 {
52 size_t len;
53 char *buf;
54
55 if (!s)
56 return NULL;
57
58 len = strlen(s) + 1;
59 buf = kmalloc(len, gfp);
60 if (buf)
61 memcpy(buf, s, len);
62 return buf;
63 }
64 #endif
65
66 #define MTD_SIZE_REMAINING (~0LLU)
67 #define MTD_OFFSET_NOT_SPECIFIED (~0LLU)
68
mtd_partitions_used(struct mtd_info * master)69 bool mtd_partitions_used(struct mtd_info *master)
70 {
71 struct mtd_info *slave;
72
73 list_for_each_entry(slave, &master->partitions, node) {
74 if (slave->usecount)
75 return true;
76 }
77
78 return false;
79 }
80
81 /**
82 * mtd_parse_partition - Parse @mtdparts partition definition, fill @partition
83 * with it and update the @mtdparts string pointer.
84 *
85 * The partition name is allocated and must be freed by the caller.
86 *
87 * This function is widely inspired from part_parse (mtdparts.c).
88 *
89 * @mtdparts: String describing the partition with mtdparts command syntax
90 * @partition: MTD partition structure to fill
91 *
92 * Return: 0 on success, an error otherwise.
93 */
mtd_parse_partition(const char ** _mtdparts,struct mtd_partition * partition)94 static int mtd_parse_partition(const char **_mtdparts,
95 struct mtd_partition *partition)
96 {
97 const char *mtdparts = *_mtdparts;
98 const char *name = NULL;
99 int name_len;
100 char *buf;
101
102 /* Ensure the partition structure is empty */
103 memset(partition, 0, sizeof(struct mtd_partition));
104
105 /* Fetch the partition size */
106 if (*mtdparts == '-') {
107 /* Assign all remaining space to this partition */
108 partition->size = MTD_SIZE_REMAINING;
109 mtdparts++;
110 } else {
111 partition->size = ustrtoull(mtdparts, (char **)&mtdparts, 0);
112 if (partition->size < SZ_4K) {
113 printf("Minimum partition size 4kiB, %lldB requested\n",
114 partition->size);
115 return -EINVAL;
116 }
117 }
118
119 /* Check for the offset */
120 partition->offset = MTD_OFFSET_NOT_SPECIFIED;
121 if (*mtdparts == '@') {
122 mtdparts++;
123 partition->offset = ustrtoull(mtdparts, (char **)&mtdparts, 0);
124 }
125
126 /* Now look for the name */
127 if (*mtdparts == '(') {
128 name = ++mtdparts;
129 mtdparts = strchr(name, ')');
130 if (!mtdparts) {
131 printf("No closing ')' found in partition name\n");
132 return -EINVAL;
133 }
134 name_len = mtdparts - name + 1;
135 if ((name_len - 1) == 0) {
136 printf("Empty partition name\n");
137 return -EINVAL;
138 }
139 mtdparts++;
140 } else {
141 /* Name will be of the form size@offset */
142 name_len = 22;
143 }
144
145 /* Check if the partition is read-only */
146 if (strncmp(mtdparts, "ro", 2) == 0) {
147 partition->mask_flags |= MTD_WRITEABLE;
148 mtdparts += 2;
149 }
150
151 /* Check for a potential next partition definition */
152 if (*mtdparts == ',') {
153 if (partition->size == MTD_SIZE_REMAINING) {
154 printf("No partitions allowed after a fill-up\n");
155 return -EINVAL;
156 }
157 ++mtdparts;
158 } else if ((*mtdparts == ';') || (*mtdparts == '\0')) {
159 /* NOP */
160 } else {
161 printf("Unexpected character '%c' in mtdparts\n", *mtdparts);
162 return -EINVAL;
163 }
164
165 /*
166 * Allocate a buffer for the name and either copy the provided name or
167 * auto-generate it with the form 'size@offset'.
168 */
169 buf = malloc(name_len);
170 if (!buf)
171 return -ENOMEM;
172
173 if (name)
174 strncpy(buf, name, name_len - 1);
175 else
176 snprintf(buf, name_len, "0x%08llx@0x%08llx",
177 partition->size, partition->offset);
178
179 buf[name_len - 1] = '\0';
180 partition->name = buf;
181
182 *_mtdparts = mtdparts;
183
184 return 0;
185 }
186
187 /**
188 * mtd_parse_partitions - Create a partition array from an mtdparts definition
189 *
190 * Stateless function that takes a @parent MTD device, a string @_mtdparts
191 * describing the partitions (with the "mtdparts" command syntax) and creates
192 * the corresponding MTD partition structure array @_parts. Both the name and
193 * the structure partition itself must be freed freed, the caller may use
194 * @mtd_free_parsed_partitions() for this purpose.
195 *
196 * @parent: MTD device which contains the partitions
197 * @_mtdparts: Pointer to a string describing the partitions with "mtdparts"
198 * command syntax.
199 * @_parts: Allocated array containing the partitions, must be freed by the
200 * caller.
201 * @_nparts: Size of @_parts array.
202 *
203 * Return: 0 on success, an error otherwise.
204 */
mtd_parse_partitions(struct mtd_info * parent,const char ** _mtdparts,struct mtd_partition ** _parts,int * _nparts)205 int mtd_parse_partitions(struct mtd_info *parent, const char **_mtdparts,
206 struct mtd_partition **_parts, int *_nparts)
207 {
208 struct mtd_partition partition = {}, *parts;
209 const char *mtdparts = *_mtdparts;
210 uint64_t cur_off = 0, cur_sz = 0;
211 int nparts = 0;
212 int ret, idx;
213 u64 sz;
214
215 /* First, iterate over the partitions until we know their number */
216 while (mtdparts[0] != '\0' && mtdparts[0] != ';') {
217 ret = mtd_parse_partition(&mtdparts, &partition);
218 if (ret)
219 return ret;
220
221 free((char *)partition.name);
222 nparts++;
223 }
224
225 /* Allocate an array of partitions to give back to the caller */
226 parts = malloc(sizeof(*parts) * nparts);
227 if (!parts) {
228 printf("Not enough space to save partitions meta-data\n");
229 return -ENOMEM;
230 }
231
232 /* Iterate again over each partition to save the data in our array */
233 for (idx = 0; idx < nparts; idx++) {
234 ret = mtd_parse_partition(_mtdparts, &parts[idx]);
235 if (ret)
236 return ret;
237
238 if (parts[idx].size == MTD_SIZE_REMAINING)
239 parts[idx].size = parent->size - cur_sz;
240 cur_sz += parts[idx].size;
241
242 sz = parts[idx].size;
243 if (sz < parent->writesize || do_div(sz, parent->writesize)) {
244 printf("Partition size must be a multiple of %d\n",
245 parent->writesize);
246 return -EINVAL;
247 }
248
249 if (parts[idx].offset == MTD_OFFSET_NOT_SPECIFIED)
250 parts[idx].offset = cur_off;
251 cur_off += parts[idx].size;
252
253 parts[idx].ecclayout = parent->ecclayout;
254 }
255
256 /* Offset by one mtdparts to point to the next device if any */
257 if (*_mtdparts[0] == ';')
258 (*_mtdparts)++;
259
260 *_parts = parts;
261 *_nparts = nparts;
262
263 return 0;
264 }
265
266 /**
267 * mtd_free_parsed_partitions - Free dynamically allocated partitions
268 *
269 * Each successful call to @mtd_parse_partitions must be followed by a call to
270 * @mtd_free_parsed_partitions to free any allocated array during the parsing
271 * process.
272 *
273 * @parts: Array containing the partitions that will be freed.
274 * @nparts: Size of @parts array.
275 */
mtd_free_parsed_partitions(struct mtd_partition * parts,unsigned int nparts)276 void mtd_free_parsed_partitions(struct mtd_partition *parts,
277 unsigned int nparts)
278 {
279 int i;
280
281 for (i = 0; i < nparts; i++)
282 free((char *)parts[i].name);
283
284 free(parts);
285 }
286
287 /*
288 * MTD methods which simply translate the effective address and pass through
289 * to the _real_ device.
290 */
291
part_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)292 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
293 size_t *retlen, u_char *buf)
294 {
295 struct mtd_ecc_stats stats;
296 int res;
297
298 stats = mtd->parent->ecc_stats;
299 res = mtd->parent->_read(mtd->parent, from + mtd->offset, len,
300 retlen, buf);
301 if (unlikely(mtd_is_eccerr(res)))
302 mtd->ecc_stats.failed +=
303 mtd->parent->ecc_stats.failed - stats.failed;
304 else
305 mtd->ecc_stats.corrected +=
306 mtd->parent->ecc_stats.corrected - stats.corrected;
307 return res;
308 }
309
310 #ifndef __UBOOT__
part_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)311 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
312 size_t *retlen, void **virt, resource_size_t *phys)
313 {
314 return mtd->parent->_point(mtd->parent, from + mtd->offset, len,
315 retlen, virt, phys);
316 }
317
part_unpoint(struct mtd_info * mtd,loff_t from,size_t len)318 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
319 {
320 return mtd->parent->_unpoint(mtd->parent, from + mtd->offset, len);
321 }
322 #endif
323
part_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)324 static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
325 unsigned long len,
326 unsigned long offset,
327 unsigned long flags)
328 {
329 offset += mtd->offset;
330 return mtd->parent->_get_unmapped_area(mtd->parent, len, offset, flags);
331 }
332
part_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)333 static int part_read_oob(struct mtd_info *mtd, loff_t from,
334 struct mtd_oob_ops *ops)
335 {
336 int res;
337
338 if (from >= mtd->size)
339 return -EINVAL;
340 if (ops->datbuf && from + ops->len > mtd->size)
341 return -EINVAL;
342
343 /*
344 * If OOB is also requested, make sure that we do not read past the end
345 * of this partition.
346 */
347 if (ops->oobbuf) {
348 size_t len, pages;
349
350 if (ops->mode == MTD_OPS_AUTO_OOB)
351 len = mtd->oobavail;
352 else
353 len = mtd->oobsize;
354 pages = mtd_div_by_ws(mtd->size, mtd);
355 pages -= mtd_div_by_ws(from, mtd);
356 if (ops->ooboffs + ops->ooblen > pages * len)
357 return -EINVAL;
358 }
359
360 res = mtd->parent->_read_oob(mtd->parent, from + mtd->offset, ops);
361 if (unlikely(res)) {
362 if (mtd_is_bitflip(res))
363 mtd->ecc_stats.corrected++;
364 if (mtd_is_eccerr(res))
365 mtd->ecc_stats.failed++;
366 }
367 return res;
368 }
369
part_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)370 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
371 size_t len, size_t *retlen, u_char *buf)
372 {
373 return mtd->parent->_read_user_prot_reg(mtd->parent, from, len,
374 retlen, buf);
375 }
376
part_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)377 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
378 size_t *retlen, struct otp_info *buf)
379 {
380 return mtd->parent->_get_user_prot_info(mtd->parent, len, retlen,
381 buf);
382 }
383
part_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)384 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
385 size_t len, size_t *retlen, u_char *buf)
386 {
387 return mtd->parent->_read_fact_prot_reg(mtd->parent, from, len,
388 retlen, buf);
389 }
390
part_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)391 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
392 size_t *retlen, struct otp_info *buf)
393 {
394 return mtd->parent->_get_fact_prot_info(mtd->parent, len, retlen,
395 buf);
396 }
397
part_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)398 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
399 size_t *retlen, const u_char *buf)
400 {
401 return mtd->parent->_write(mtd->parent, to + mtd->offset, len,
402 retlen, buf);
403 }
404
part_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)405 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
406 size_t *retlen, const u_char *buf)
407 {
408 return mtd->parent->_panic_write(mtd->parent, to + mtd->offset, len,
409 retlen, buf);
410 }
411
part_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)412 static int part_write_oob(struct mtd_info *mtd, loff_t to,
413 struct mtd_oob_ops *ops)
414 {
415 if (to >= mtd->size)
416 return -EINVAL;
417 if (ops->datbuf && to + ops->len > mtd->size)
418 return -EINVAL;
419 return mtd->parent->_write_oob(mtd->parent, to + mtd->offset, ops);
420 }
421
part_write_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)422 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
423 size_t len, size_t *retlen, u_char *buf)
424 {
425 return mtd->parent->_write_user_prot_reg(mtd->parent, from, len,
426 retlen, buf);
427 }
428
part_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)429 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
430 size_t len)
431 {
432 return mtd->parent->_lock_user_prot_reg(mtd->parent, from, len);
433 }
434
435 #ifndef __UBOOT__
part_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)436 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
437 unsigned long count, loff_t to, size_t *retlen)
438 {
439 return mtd->parent->_writev(mtd->parent, vecs, count,
440 to + mtd->offset, retlen);
441 }
442 #endif
443
part_erase(struct mtd_info * mtd,struct erase_info * instr)444 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
445 {
446 int ret;
447
448 instr->addr += mtd->offset;
449
450 ret = mtd->parent->_erase(mtd->parent, instr);
451 if (ret && instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
452 instr->fail_addr -= mtd->offset;
453
454 instr->addr -= mtd->offset;
455
456 return ret;
457 }
458
part_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)459 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
460 {
461 return mtd->parent->_lock(mtd->parent, ofs + mtd->offset, len);
462 }
463
part_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)464 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
465 {
466 return mtd->parent->_unlock(mtd->parent, ofs + mtd->offset, len);
467 }
468
part_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)469 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
470 {
471 return mtd->parent->_is_locked(mtd->parent, ofs + mtd->offset, len);
472 }
473
part_sync(struct mtd_info * mtd)474 static void part_sync(struct mtd_info *mtd)
475 {
476 mtd->parent->_sync(mtd->parent);
477 }
478
479 #ifndef __UBOOT__
part_suspend(struct mtd_info * mtd)480 static int part_suspend(struct mtd_info *mtd)
481 {
482 return mtd->parent->_suspend(mtd->parent);
483 }
484
part_resume(struct mtd_info * mtd)485 static void part_resume(struct mtd_info *mtd)
486 {
487 mtd->parent->_resume(mtd->parent);
488 }
489 #endif
490
part_block_isreserved(struct mtd_info * mtd,loff_t ofs)491 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
492 {
493 ofs += mtd->offset;
494 return mtd->parent->_block_isreserved(mtd->parent, ofs);
495 }
496
part_block_isbad(struct mtd_info * mtd,loff_t ofs)497 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
498 {
499 ofs += mtd->offset;
500 return mtd->parent->_block_isbad(mtd->parent, ofs);
501 }
502
part_block_markbad(struct mtd_info * mtd,loff_t ofs)503 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
504 {
505 int res;
506
507 ofs += mtd->offset;
508 res = mtd->parent->_block_markbad(mtd->parent, ofs);
509 if (!res)
510 mtd->ecc_stats.badblocks++;
511 return res;
512 }
513
free_partition(struct mtd_info * p)514 static inline void free_partition(struct mtd_info *p)
515 {
516 kfree(p->name);
517 kfree(p);
518 }
519
520 /*
521 * This function unregisters and destroy all slave MTD objects which are
522 * attached to the given master MTD object, recursively.
523 */
do_del_mtd_partitions(struct mtd_info * master)524 static int do_del_mtd_partitions(struct mtd_info *master)
525 {
526 struct mtd_info *slave, *next;
527 int ret, err = 0;
528
529 list_for_each_entry_safe(slave, next, &master->partitions, node) {
530 if (mtd_has_partitions(slave))
531 del_mtd_partitions(slave);
532
533 debug("Deleting %s MTD partition\n", slave->name);
534 ret = del_mtd_device(slave);
535 if (ret < 0) {
536 printf("Error when deleting partition \"%s\" (%d)\n",
537 slave->name, ret);
538 err = ret;
539 continue;
540 }
541
542 list_del(&slave->node);
543 free_partition(slave);
544 }
545
546 return err;
547 }
548
del_mtd_partitions(struct mtd_info * master)549 int del_mtd_partitions(struct mtd_info *master)
550 {
551 int ret;
552
553 debug("Deleting MTD partitions on \"%s\":\n", master->name);
554
555 mutex_lock(&mtd_partitions_mutex);
556 ret = do_del_mtd_partitions(master);
557 mutex_unlock(&mtd_partitions_mutex);
558
559 return ret;
560 }
561
allocate_partition(struct mtd_info * master,const struct mtd_partition * part,int partno,uint64_t cur_offset)562 static struct mtd_info *allocate_partition(struct mtd_info *master,
563 const struct mtd_partition *part,
564 int partno, uint64_t cur_offset)
565 {
566 struct mtd_info *slave;
567 char *name;
568
569 /* allocate the partition structure */
570 slave = kzalloc(sizeof(*slave), GFP_KERNEL);
571 name = kstrdup(part->name, GFP_KERNEL);
572 if (!name || !slave) {
573 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
574 master->name);
575 kfree(name);
576 kfree(slave);
577 return ERR_PTR(-ENOMEM);
578 }
579
580 /* set up the MTD object for this partition */
581 slave->type = master->type;
582 slave->flags = master->flags & ~part->mask_flags;
583 slave->size = part->size;
584 slave->writesize = master->writesize;
585 slave->writebufsize = master->writebufsize;
586 slave->oobsize = master->oobsize;
587 slave->oobavail = master->oobavail;
588 slave->subpage_sft = master->subpage_sft;
589
590 slave->name = name;
591 slave->owner = master->owner;
592 #ifndef __UBOOT__
593 slave->backing_dev_info = master->backing_dev_info;
594
595 /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
596 * to have the same data be in two different partitions.
597 */
598 slave->dev.parent = master->dev.parent;
599 #endif
600
601 if (master->_read)
602 slave->_read = part_read;
603 if (master->_write)
604 slave->_write = part_write;
605
606 if (master->_panic_write)
607 slave->_panic_write = part_panic_write;
608
609 #ifndef __UBOOT__
610 if (master->_point && master->_unpoint) {
611 slave->_point = part_point;
612 slave->_unpoint = part_unpoint;
613 }
614 #endif
615
616 if (master->_get_unmapped_area)
617 slave->_get_unmapped_area = part_get_unmapped_area;
618 if (master->_read_oob)
619 slave->_read_oob = part_read_oob;
620 if (master->_write_oob)
621 slave->_write_oob = part_write_oob;
622 if (master->_read_user_prot_reg)
623 slave->_read_user_prot_reg = part_read_user_prot_reg;
624 if (master->_read_fact_prot_reg)
625 slave->_read_fact_prot_reg = part_read_fact_prot_reg;
626 if (master->_write_user_prot_reg)
627 slave->_write_user_prot_reg = part_write_user_prot_reg;
628 if (master->_lock_user_prot_reg)
629 slave->_lock_user_prot_reg = part_lock_user_prot_reg;
630 if (master->_get_user_prot_info)
631 slave->_get_user_prot_info = part_get_user_prot_info;
632 if (master->_get_fact_prot_info)
633 slave->_get_fact_prot_info = part_get_fact_prot_info;
634 if (master->_sync)
635 slave->_sync = part_sync;
636 #ifndef __UBOOT__
637 if (!partno && !master->dev.class && master->_suspend &&
638 master->_resume) {
639 slave->_suspend = part_suspend;
640 slave->_resume = part_resume;
641 }
642 if (master->_writev)
643 slave->_writev = part_writev;
644 #endif
645 if (master->_lock)
646 slave->_lock = part_lock;
647 if (master->_unlock)
648 slave->_unlock = part_unlock;
649 if (master->_is_locked)
650 slave->_is_locked = part_is_locked;
651 if (master->_block_isreserved)
652 slave->_block_isreserved = part_block_isreserved;
653 if (master->_block_isbad)
654 slave->_block_isbad = part_block_isbad;
655 if (master->_block_markbad)
656 slave->_block_markbad = part_block_markbad;
657 slave->_erase = part_erase;
658 slave->parent = master;
659 slave->offset = part->offset;
660 INIT_LIST_HEAD(&slave->partitions);
661 INIT_LIST_HEAD(&slave->node);
662
663 if (slave->offset == MTDPART_OFS_APPEND)
664 slave->offset = cur_offset;
665 if (slave->offset == MTDPART_OFS_NXTBLK) {
666 slave->offset = cur_offset;
667 if (mtd_mod_by_eb(cur_offset, master) != 0) {
668 /* Round up to next erasesize */
669 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
670 debug("Moving partition %d: "
671 "0x%012llx -> 0x%012llx\n", partno,
672 (unsigned long long)cur_offset, (unsigned long long)slave->offset);
673 }
674 }
675 if (slave->offset == MTDPART_OFS_RETAIN) {
676 slave->offset = cur_offset;
677 if (master->size - slave->offset >= slave->size) {
678 slave->size = master->size - slave->offset
679 - slave->size;
680 } else {
681 debug("mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
682 part->name, master->size - slave->offset,
683 slave->size);
684 /* register to preserve ordering */
685 goto out_register;
686 }
687 }
688 if (slave->size == MTDPART_SIZ_FULL)
689 slave->size = master->size - slave->offset;
690
691 debug("0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
692 (unsigned long long)(slave->offset + slave->size), slave->name);
693
694 /* let's do some sanity checks */
695 if (slave->offset >= master->size) {
696 /* let's register it anyway to preserve ordering */
697 slave->offset = 0;
698 slave->size = 0;
699 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
700 part->name);
701 goto out_register;
702 }
703 if (slave->offset + slave->size > master->size) {
704 slave->size = master->size - slave->offset;
705 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
706 part->name, master->name, slave->size);
707 }
708 if (master->numeraseregions > 1) {
709 /* Deal with variable erase size stuff */
710 int i, max = master->numeraseregions;
711 u64 end = slave->offset + slave->size;
712 struct mtd_erase_region_info *regions = master->eraseregions;
713
714 /* Find the first erase regions which is part of this
715 * partition. */
716 for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
717 ;
718 /* The loop searched for the region _behind_ the first one */
719 if (i > 0)
720 i--;
721
722 /* Pick biggest erasesize */
723 for (; i < max && regions[i].offset < end; i++) {
724 if (slave->erasesize < regions[i].erasesize)
725 slave->erasesize = regions[i].erasesize;
726 }
727 WARN_ON(slave->erasesize == 0);
728 } else {
729 /* Single erase size */
730 slave->erasesize = master->erasesize;
731 }
732
733 if ((slave->flags & MTD_WRITEABLE) &&
734 mtd_mod_by_eb(slave->offset, slave)) {
735 /* Doesn't start on a boundary of major erase size */
736 /* FIXME: Let it be writable if it is on a boundary of
737 * _minor_ erase size though */
738 slave->flags &= ~MTD_WRITEABLE;
739 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
740 part->name);
741 }
742 if ((slave->flags & MTD_WRITEABLE) &&
743 mtd_mod_by_eb(slave->size, slave)) {
744 slave->flags &= ~MTD_WRITEABLE;
745 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
746 part->name);
747 }
748
749 slave->ecclayout = master->ecclayout;
750 slave->ecc_step_size = master->ecc_step_size;
751 slave->ecc_strength = master->ecc_strength;
752 slave->bitflip_threshold = master->bitflip_threshold;
753
754 if (master->_block_isbad) {
755 uint64_t offs = 0;
756
757 while (offs < slave->size) {
758 if (mtd_block_isbad(master, offs + slave->offset))
759 slave->ecc_stats.badblocks++;
760 offs += slave->erasesize;
761 }
762 }
763
764 out_register:
765 return slave;
766 }
767
768 #ifndef __UBOOT__
mtd_add_partition(struct mtd_info * master,const char * name,long long offset,long long length)769 int mtd_add_partition(struct mtd_info *master, const char *name,
770 long long offset, long long length)
771 {
772 struct mtd_partition part;
773 struct mtd_info *p, *new;
774 uint64_t start, end;
775 int ret = 0;
776
777 /* the direct offset is expected */
778 if (offset == MTDPART_OFS_APPEND ||
779 offset == MTDPART_OFS_NXTBLK)
780 return -EINVAL;
781
782 if (length == MTDPART_SIZ_FULL)
783 length = master->size - offset;
784
785 if (length <= 0)
786 return -EINVAL;
787
788 part.name = name;
789 part.size = length;
790 part.offset = offset;
791 part.mask_flags = 0;
792 part.ecclayout = NULL;
793
794 new = allocate_partition(master, &part, -1, offset);
795 if (IS_ERR(new))
796 return PTR_ERR(new);
797
798 start = offset;
799 end = offset + length;
800
801 mutex_lock(&mtd_partitions_mutex);
802 list_for_each_entry(p, &master->partitions, node) {
803 if (start >= p->offset &&
804 (start < (p->offset + p->size)))
805 goto err_inv;
806
807 if (end >= p->offset &&
808 (end < (p->offset + p->size)))
809 goto err_inv;
810 }
811
812 list_add_tail(&new->node, &master->partitions);
813 mutex_unlock(&mtd_partitions_mutex);
814
815 add_mtd_device(new);
816
817 return ret;
818 err_inv:
819 mutex_unlock(&mtd_partitions_mutex);
820 free_partition(new);
821 return -EINVAL;
822 }
823 EXPORT_SYMBOL_GPL(mtd_add_partition);
824
mtd_del_partition(struct mtd_info * master,int partno)825 int mtd_del_partition(struct mtd_info *master, int partno)
826 {
827 struct mtd_info *slave, *next;
828 int ret = -EINVAL;
829
830 mutex_lock(&mtd_partitions_mutex);
831 list_for_each_entry_safe(slave, next, &master->partitions, node)
832 if (slave->index == partno) {
833 ret = del_mtd_device(slave);
834 if (ret < 0)
835 break;
836
837 list_del(&slave->node);
838 free_partition(slave);
839 break;
840 }
841 mutex_unlock(&mtd_partitions_mutex);
842
843 return ret;
844 }
845 EXPORT_SYMBOL_GPL(mtd_del_partition);
846 #endif
847
848 /*
849 * This function, given a master MTD object and a partition table, creates
850 * and registers slave MTD objects which are bound to the master according to
851 * the partition definitions.
852 *
853 * We don't register the master, or expect the caller to have done so,
854 * for reasons of data integrity.
855 */
856
add_mtd_partitions(struct mtd_info * master,const struct mtd_partition * parts,int nbparts)857 int add_mtd_partitions(struct mtd_info *master,
858 const struct mtd_partition *parts,
859 int nbparts)
860 {
861 struct mtd_info *slave;
862 uint64_t cur_offset = 0;
863 int i;
864
865 debug("Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
866
867 for (i = 0; i < nbparts; i++) {
868 slave = allocate_partition(master, parts + i, i, cur_offset);
869 if (IS_ERR(slave))
870 return PTR_ERR(slave);
871
872 mutex_lock(&mtd_partitions_mutex);
873 list_add_tail(&slave->node, &master->partitions);
874 mutex_unlock(&mtd_partitions_mutex);
875
876 add_mtd_device(slave);
877
878 cur_offset = slave->offset + slave->size;
879 }
880
881 return 0;
882 }
883
884 #if CONFIG_IS_ENABLED(DM) && CONFIG_IS_ENABLED(OF_CONTROL)
add_mtd_partitions_of(struct mtd_info * master)885 int add_mtd_partitions_of(struct mtd_info *master)
886 {
887 ofnode parts, child;
888 int i = 0;
889
890 if (!master->dev && !ofnode_valid(master->flash_node))
891 return 0;
892
893 if (master->dev)
894 parts = ofnode_find_subnode(mtd_get_ofnode(master), "partitions");
895 else
896 parts = ofnode_find_subnode(master->flash_node, "partitions");
897
898 if (!ofnode_valid(parts) || !ofnode_is_enabled(parts) ||
899 !ofnode_device_is_compatible(parts, "fixed-partitions"))
900 return 0;
901
902 ofnode_for_each_subnode(child, parts) {
903 struct mtd_partition part = { 0 };
904 struct mtd_info *slave;
905 fdt_addr_t offset;
906 fdt_size_t size;
907
908 if (!ofnode_is_enabled(child))
909 continue;
910
911 offset = ofnode_get_addr_size_index_notrans(child, 0, &size);
912 if (offset == FDT_ADDR_T_NONE || !size) {
913 debug("Missing partition offset/size on \"%s\" partition\n",
914 master->name);
915 continue;
916 }
917
918 part.name = ofnode_read_string(child, "label");
919 if (!part.name)
920 part.name = ofnode_read_string(child, "name");
921
922 /*
923 * .mask_flags is used to remove flags in allocate_partition(),
924 * so when "read-only" is present, we add MTD_WRITABLE to the
925 * mask, and so MTD_WRITABLE will be removed on partition
926 * allocation
927 */
928 if (ofnode_read_bool(child, "read-only"))
929 part.mask_flags |= MTD_WRITEABLE;
930 if (ofnode_read_bool(child, "lock"))
931 part.mask_flags |= MTD_POWERUP_LOCK;
932
933 part.offset = offset;
934 part.size = size;
935 part.ecclayout = master->ecclayout;
936
937 slave = allocate_partition(master, &part, i++, 0);
938 if (IS_ERR(slave))
939 return PTR_ERR(slave);
940
941 mutex_lock(&mtd_partitions_mutex);
942 list_add_tail(&slave->node, &master->partitions);
943 mutex_unlock(&mtd_partitions_mutex);
944
945 add_mtd_device(slave);
946 }
947
948 return 0;
949 }
950 #endif /* CONFIG_IS_ENABLED(DM) && CONFIG_IS_ENABLED(OF_CONTROL) */
951
952 #ifndef __UBOOT__
953 static DEFINE_SPINLOCK(part_parser_lock);
954 static LIST_HEAD(part_parsers);
955
get_partition_parser(const char * name)956 static struct mtd_part_parser *get_partition_parser(const char *name)
957 {
958 struct mtd_part_parser *p, *ret = NULL;
959
960 spin_lock(&part_parser_lock);
961
962 list_for_each_entry(p, &part_parsers, list)
963 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
964 ret = p;
965 break;
966 }
967
968 spin_unlock(&part_parser_lock);
969
970 return ret;
971 }
972
973 #define put_partition_parser(p) do { module_put((p)->owner); } while (0)
974
register_mtd_parser(struct mtd_part_parser * p)975 void register_mtd_parser(struct mtd_part_parser *p)
976 {
977 spin_lock(&part_parser_lock);
978 list_add(&p->list, &part_parsers);
979 spin_unlock(&part_parser_lock);
980 }
981 EXPORT_SYMBOL_GPL(register_mtd_parser);
982
deregister_mtd_parser(struct mtd_part_parser * p)983 void deregister_mtd_parser(struct mtd_part_parser *p)
984 {
985 spin_lock(&part_parser_lock);
986 list_del(&p->list);
987 spin_unlock(&part_parser_lock);
988 }
989 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
990
991 /*
992 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
993 * are changing this array!
994 */
995 static const char * const default_mtd_part_types[] = {
996 "cmdlinepart",
997 "ofpart",
998 NULL
999 };
1000
1001 /**
1002 * parse_mtd_partitions - parse MTD partitions
1003 * @master: the master partition (describes whole MTD device)
1004 * @types: names of partition parsers to try or %NULL
1005 * @pparts: array of partitions found is returned here
1006 * @data: MTD partition parser-specific data
1007 *
1008 * This function tries to find partition on MTD device @master. It uses MTD
1009 * partition parsers, specified in @types. However, if @types is %NULL, then
1010 * the default list of parsers is used. The default list contains only the
1011 * "cmdlinepart" and "ofpart" parsers ATM.
1012 * Note: If there are more then one parser in @types, the kernel only takes the
1013 * partitions parsed out by the first parser.
1014 *
1015 * This function may return:
1016 * o a negative error code in case of failure
1017 * o zero if no partitions were found
1018 * o a positive number of found partitions, in which case on exit @pparts will
1019 * point to an array containing this number of &struct mtd_info objects.
1020 */
parse_mtd_partitions(struct mtd_info * master,const char * const * types,struct mtd_partition ** pparts,struct mtd_part_parser_data * data)1021 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
1022 struct mtd_partition **pparts,
1023 struct mtd_part_parser_data *data)
1024 {
1025 struct mtd_part_parser *parser;
1026 int ret = 0;
1027
1028 if (!types)
1029 types = default_mtd_part_types;
1030
1031 for ( ; ret <= 0 && *types; types++) {
1032 parser = get_partition_parser(*types);
1033 if (!parser && !request_module("%s", *types))
1034 parser = get_partition_parser(*types);
1035 if (!parser)
1036 continue;
1037 ret = (*parser->parse_fn)(master, pparts, data);
1038 put_partition_parser(parser);
1039 if (ret > 0) {
1040 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
1041 ret, parser->name, master->name);
1042 break;
1043 }
1044 }
1045 return ret;
1046 }
1047 #endif
1048
1049 /* Returns the size of the entire flash chip */
mtd_get_device_size(const struct mtd_info * mtd)1050 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
1051 {
1052 if (mtd_is_partition(mtd))
1053 return mtd->parent->size;
1054
1055 return mtd->size;
1056 }
1057 EXPORT_SYMBOL_GPL(mtd_get_device_size);
1058