1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
4 * Rohit Choraria <rohitkc@ti.com>
5 */
6
7 #include <common.h>
8 #include <log.h>
9 #include <asm/io.h>
10 #include <dm/uclass.h>
11 #include <linux/errno.h>
12
13 #ifdef CONFIG_ARCH_OMAP2PLUS
14 #include <asm/arch/mem.h>
15 #endif
16
17 #include <linux/mtd/omap_gpmc.h>
18 #include <linux/mtd/nand_ecc.h>
19 #include <linux/mtd/rawnand.h>
20 #include <linux/bch.h>
21 #include <linux/compiler.h>
22 #include <nand.h>
23
24 #include "omap_elm.h"
25
26 #ifndef GPMC_MAX_CS
27 #define GPMC_MAX_CS 4
28 #endif
29
30 #define BADBLOCK_MARKER_LENGTH 2
31 #define SECTOR_BYTES 512
32 #define ECCSIZE0_SHIFT 12
33 #define ECCSIZE1_SHIFT 22
34 #define ECC1RESULTSIZE 0x1
35 #define ECCCLEAR (0x1 << 8)
36 #define ECCRESULTREG1 (0x1 << 0)
37 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
38 #define BCH4_BIT_PAD 4
39
40 #ifdef CONFIG_BCH
41 static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
42 0x97, 0x79, 0xe5, 0x24, 0xb5};
43 #endif
44 static uint8_t cs_next;
45
46 #if defined(CONFIG_NAND_OMAP_GPMC_WSCFG)
47 static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE] =
48 { CONFIG_NAND_OMAP_GPMC_WSCFG };
49 #else
50 /* wscfg is preset to zero since its a static variable */
51 static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE];
52 #endif
53
54 /*
55 * Driver configurations
56 */
57 struct omap_nand_info {
58 struct bch_control *control;
59 enum omap_ecc ecc_scheme;
60 uint8_t cs;
61 uint8_t ws; /* wait status pin (0,1) */
62 void __iomem *fifo;
63 };
64
65 /* We are wasting a bit of memory but al least we are safe */
66 static struct omap_nand_info omap_nand_info[GPMC_MAX_CS];
67
68 /*
69 * omap_nand_hwcontrol - Set the address pointers corretly for the
70 * following address/data/command operation
71 */
omap_nand_hwcontrol(struct mtd_info * mtd,int32_t cmd,uint32_t ctrl)72 static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
73 uint32_t ctrl)
74 {
75 register struct nand_chip *this = mtd_to_nand(mtd);
76 struct omap_nand_info *info = nand_get_controller_data(this);
77 int cs = info->cs;
78
79 /*
80 * Point the IO_ADDR to DATA and ADDRESS registers instead
81 * of chip address
82 */
83 switch (ctrl) {
84 case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
85 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
86 break;
87 case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
88 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
89 break;
90 case NAND_CTRL_CHANGE | NAND_NCE:
91 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
92 break;
93 }
94
95 if (cmd != NAND_CMD_NONE)
96 writeb(cmd, this->IO_ADDR_W);
97 }
98
99 /* Check wait pin as dev ready indicator */
omap_dev_ready(struct mtd_info * mtd)100 static int omap_dev_ready(struct mtd_info *mtd)
101 {
102 register struct nand_chip *this = mtd_to_nand(mtd);
103 struct omap_nand_info *info = nand_get_controller_data(this);
104 return gpmc_cfg->status & (1 << (8 + info->ws));
105 }
106
107 /*
108 * gen_true_ecc - This function will generate true ECC value, which
109 * can be used when correcting data read from NAND flash memory core
110 *
111 * @ecc_buf: buffer to store ecc code
112 *
113 * @return: re-formatted ECC value
114 */
gen_true_ecc(uint8_t * ecc_buf)115 static uint32_t gen_true_ecc(uint8_t *ecc_buf)
116 {
117 return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
118 ((ecc_buf[2] & 0x0F) << 8);
119 }
120
121 /*
122 * omap_correct_data - Compares the ecc read from nand spare area with ECC
123 * registers values and corrects one bit error if it has occurred
124 * Further details can be had from OMAP TRM and the following selected links:
125 * http://en.wikipedia.org/wiki/Hamming_code
126 * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
127 *
128 * @mtd: MTD device structure
129 * @dat: page data
130 * @read_ecc: ecc read from nand flash
131 * @calc_ecc: ecc read from ECC registers
132 *
133 * Return: 0 if data is OK or corrected, else returns -1
134 */
omap_correct_data(struct mtd_info * mtd,uint8_t * dat,uint8_t * read_ecc,uint8_t * calc_ecc)135 static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
136 uint8_t *read_ecc, uint8_t *calc_ecc)
137 {
138 uint32_t orig_ecc, new_ecc, res, hm;
139 uint16_t parity_bits, byte;
140 uint8_t bit;
141
142 /* Regenerate the orginal ECC */
143 orig_ecc = gen_true_ecc(read_ecc);
144 new_ecc = gen_true_ecc(calc_ecc);
145 /* Get the XOR of real ecc */
146 res = orig_ecc ^ new_ecc;
147 if (res) {
148 /* Get the hamming width */
149 hm = hweight32(res);
150 /* Single bit errors can be corrected! */
151 if (hm == 12) {
152 /* Correctable data! */
153 parity_bits = res >> 16;
154 bit = (parity_bits & 0x7);
155 byte = (parity_bits >> 3) & 0x1FF;
156 /* Flip the bit to correct */
157 dat[byte] ^= (0x1 << bit);
158 } else if (hm == 1) {
159 printf("Error: Ecc is wrong\n");
160 /* ECC itself is corrupted */
161 return 2;
162 } else {
163 /*
164 * hm distance != parity pairs OR one, could mean 2 bit
165 * error OR potentially be on a blank page..
166 * orig_ecc: contains spare area data from nand flash.
167 * new_ecc: generated ecc while reading data area.
168 * Note: if the ecc = 0, all data bits from which it was
169 * generated are 0xFF.
170 * The 3 byte(24 bits) ecc is generated per 512byte
171 * chunk of a page. If orig_ecc(from spare area)
172 * is 0xFF && new_ecc(computed now from data area)=0x0,
173 * this means that data area is 0xFF and spare area is
174 * 0xFF. A sure sign of a erased page!
175 */
176 if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
177 return 0;
178 printf("Error: Bad compare! failed\n");
179 /* detected 2 bit error */
180 return -EBADMSG;
181 }
182 }
183 return 0;
184 }
185
186 /*
187 * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
188 * @mtd: MTD device structure
189 * @mode: Read/Write mode
190 */
191 __maybe_unused
omap_enable_hwecc(struct mtd_info * mtd,int32_t mode)192 static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
193 {
194 struct nand_chip *nand = mtd_to_nand(mtd);
195 struct omap_nand_info *info = nand_get_controller_data(nand);
196 unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
197 u32 val;
198
199 /* Clear ecc and enable bits */
200 writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
201
202 /* program ecc and result sizes */
203 val = ((((nand->ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
204 ECC1RESULTSIZE);
205 writel(val, &gpmc_cfg->ecc_size_config);
206
207 switch (mode) {
208 case NAND_ECC_READ:
209 case NAND_ECC_WRITE:
210 writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
211 break;
212 case NAND_ECC_READSYN:
213 writel(ECCCLEAR, &gpmc_cfg->ecc_control);
214 break;
215 default:
216 printf("%s: error: unrecognized Mode[%d]!\n", __func__, mode);
217 break;
218 }
219
220 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
221 val = (dev_width << 7) | (info->cs << 1) | (0x1);
222 writel(val, &gpmc_cfg->ecc_config);
223 }
224
225 /*
226 * omap_calculate_ecc - Read ECC result
227 * @mtd: MTD structure
228 * @dat: unused
229 * @ecc_code: ecc_code buffer
230 * Using noninverted ECC can be considered ugly since writing a blank
231 * page ie. padding will clear the ECC bytes. This is no problem as
232 * long nobody is trying to write data on the seemingly unused page.
233 * Reading an erased page will produce an ECC mismatch between
234 * generated and read ECC bytes that has to be dealt with separately.
235 * E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
236 * is used, the result of read will be 0x0 while the ECC offsets of the
237 * spare area will be 0xFF which will result in an ECC mismatch.
238 */
omap_calculate_ecc(struct mtd_info * mtd,const uint8_t * dat,uint8_t * ecc_code)239 static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
240 uint8_t *ecc_code)
241 {
242 u32 val;
243
244 val = readl(&gpmc_cfg->ecc1_result);
245 ecc_code[0] = val & 0xFF;
246 ecc_code[1] = (val >> 16) & 0xFF;
247 ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
248
249 return 0;
250 }
251
252 /* GPMC ecc engine settings for read */
253 #define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
254 #define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
255 #define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
256 #define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
257 #define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
258
259 /* GPMC ecc engine settings for write */
260 #define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
261 #define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
262 #define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
263
264 /**
265 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
266 * @mtd: MTD device structure
267 * @mode: Read/Write mode
268 *
269 * When using BCH with SW correction (i.e. no ELM), sector size is set
270 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
271 * for both reading and writing with:
272 * eccsize0 = 0 (no additional protected byte in spare area)
273 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
274 */
omap_enable_hwecc_bch(struct mtd_info * mtd,int mode)275 static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd,
276 int mode)
277 {
278 unsigned int bch_type;
279 unsigned int dev_width, nsectors;
280 struct nand_chip *chip = mtd_to_nand(mtd);
281 struct omap_nand_info *info = nand_get_controller_data(chip);
282 u32 val, wr_mode;
283 unsigned int ecc_size1, ecc_size0;
284
285 /* GPMC configurations for calculating ECC */
286 switch (info->ecc_scheme) {
287 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
288 bch_type = 1;
289 nsectors = 1;
290 wr_mode = BCH_WRAPMODE_6;
291 ecc_size0 = BCH_ECC_SIZE0;
292 ecc_size1 = BCH_ECC_SIZE1;
293 break;
294 case OMAP_ECC_BCH8_CODE_HW:
295 bch_type = 1;
296 nsectors = chip->ecc.steps;
297 if (mode == NAND_ECC_READ) {
298 wr_mode = BCH_WRAPMODE_1;
299 ecc_size0 = BCH8R_ECC_SIZE0;
300 ecc_size1 = BCH8R_ECC_SIZE1;
301 } else {
302 wr_mode = BCH_WRAPMODE_6;
303 ecc_size0 = BCH_ECC_SIZE0;
304 ecc_size1 = BCH_ECC_SIZE1;
305 }
306 break;
307 case OMAP_ECC_BCH16_CODE_HW:
308 bch_type = 0x2;
309 nsectors = chip->ecc.steps;
310 if (mode == NAND_ECC_READ) {
311 wr_mode = 0x01;
312 ecc_size0 = 52; /* ECC bits in nibbles per sector */
313 ecc_size1 = 0; /* non-ECC bits in nibbles per sector */
314 } else {
315 wr_mode = 0x01;
316 ecc_size0 = 0; /* extra bits in nibbles per sector */
317 ecc_size1 = 52; /* OOB bits in nibbles per sector */
318 }
319 break;
320 default:
321 return;
322 }
323
324 writel(ECCRESULTREG1, &gpmc_cfg->ecc_control);
325
326 /* Configure ecc size for BCH */
327 val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
328 writel(val, &gpmc_cfg->ecc_size_config);
329
330 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
331
332 /* BCH configuration */
333 val = ((1 << 16) | /* enable BCH */
334 (bch_type << 12) | /* BCH4/BCH8/BCH16 */
335 (wr_mode << 8) | /* wrap mode */
336 (dev_width << 7) | /* bus width */
337 (((nsectors - 1) & 0x7) << 4) | /* number of sectors */
338 (info->cs << 1) | /* ECC CS */
339 (0x1)); /* enable ECC */
340
341 writel(val, &gpmc_cfg->ecc_config);
342
343 /* Clear ecc and enable bits */
344 writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
345 }
346
347 /**
348 * _omap_calculate_ecc_bch - Generate BCH ECC bytes for one sector
349 * @mtd: MTD device structure
350 * @dat: The pointer to data on which ecc is computed
351 * @ecc_code: The ecc_code buffer
352 * @sector: The sector number (for a multi sector page)
353 *
354 * Support calculating of BCH4/8/16 ECC vectors for one sector
355 * within a page. Sector number is in @sector.
356 */
_omap_calculate_ecc_bch(struct mtd_info * mtd,const u8 * dat,u8 * ecc_code,int sector)357 static int _omap_calculate_ecc_bch(struct mtd_info *mtd, const u8 *dat,
358 u8 *ecc_code, int sector)
359 {
360 struct nand_chip *chip = mtd_to_nand(mtd);
361 struct omap_nand_info *info = nand_get_controller_data(chip);
362 const uint32_t *ptr;
363 uint32_t val = 0;
364 int8_t i = 0, j;
365
366 switch (info->ecc_scheme) {
367 #ifdef CONFIG_BCH
368 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
369 #endif
370 case OMAP_ECC_BCH8_CODE_HW:
371 ptr = &gpmc_cfg->bch_result_0_3[sector].bch_result_x[3];
372 val = readl(ptr);
373 ecc_code[i++] = (val >> 0) & 0xFF;
374 ptr--;
375 for (j = 0; j < 3; j++) {
376 val = readl(ptr);
377 ecc_code[i++] = (val >> 24) & 0xFF;
378 ecc_code[i++] = (val >> 16) & 0xFF;
379 ecc_code[i++] = (val >> 8) & 0xFF;
380 ecc_code[i++] = (val >> 0) & 0xFF;
381 ptr--;
382 }
383
384 break;
385 case OMAP_ECC_BCH16_CODE_HW:
386 val = readl(&gpmc_cfg->bch_result_4_6[sector].bch_result_x[2]);
387 ecc_code[i++] = (val >> 8) & 0xFF;
388 ecc_code[i++] = (val >> 0) & 0xFF;
389 val = readl(&gpmc_cfg->bch_result_4_6[sector].bch_result_x[1]);
390 ecc_code[i++] = (val >> 24) & 0xFF;
391 ecc_code[i++] = (val >> 16) & 0xFF;
392 ecc_code[i++] = (val >> 8) & 0xFF;
393 ecc_code[i++] = (val >> 0) & 0xFF;
394 val = readl(&gpmc_cfg->bch_result_4_6[sector].bch_result_x[0]);
395 ecc_code[i++] = (val >> 24) & 0xFF;
396 ecc_code[i++] = (val >> 16) & 0xFF;
397 ecc_code[i++] = (val >> 8) & 0xFF;
398 ecc_code[i++] = (val >> 0) & 0xFF;
399 for (j = 3; j >= 0; j--) {
400 val = readl(&gpmc_cfg->bch_result_0_3[sector].bch_result_x[j]
401 );
402 ecc_code[i++] = (val >> 24) & 0xFF;
403 ecc_code[i++] = (val >> 16) & 0xFF;
404 ecc_code[i++] = (val >> 8) & 0xFF;
405 ecc_code[i++] = (val >> 0) & 0xFF;
406 }
407 break;
408 default:
409 return -EINVAL;
410 }
411 /* ECC scheme specific syndrome customizations */
412 switch (info->ecc_scheme) {
413 #ifdef CONFIG_BCH
414 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
415 /* Add constant polynomial to remainder, so that
416 * ECC of blank pages results in 0x0 on reading back
417 */
418 for (i = 0; i < chip->ecc.bytes; i++)
419 ecc_code[i] ^= bch8_polynomial[i];
420 break;
421 #endif
422 case OMAP_ECC_BCH8_CODE_HW:
423 /* Set 14th ECC byte as 0x0 for ROM compatibility */
424 ecc_code[chip->ecc.bytes - 1] = 0x0;
425 break;
426 case OMAP_ECC_BCH16_CODE_HW:
427 break;
428 default:
429 return -EINVAL;
430 }
431 return 0;
432 }
433
434 /**
435 * omap_calculate_ecc_bch - ECC generator for 1 sector
436 * @mtd: MTD device structure
437 * @dat: The pointer to data on which ecc is computed
438 * @ecc_code: The ecc_code buffer
439 *
440 * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
441 * when SW based correction is required as ECC is required for one sector
442 * at a time.
443 */
omap_calculate_ecc_bch(struct mtd_info * mtd,const u_char * dat,u_char * ecc_calc)444 static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
445 const u_char *dat, u_char *ecc_calc)
446 {
447 return _omap_calculate_ecc_bch(mtd, dat, ecc_calc, 0);
448 }
449
omap_nand_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)450 static inline void omap_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
451 {
452 struct nand_chip *chip = mtd_to_nand(mtd);
453 struct omap_nand_info *info = nand_get_controller_data(chip);
454 u32 alignment = ((uintptr_t)buf | len) & 3;
455
456 if (alignment & 1)
457 readsb(info->fifo, buf, len);
458 else if (alignment & 3)
459 readsw(info->fifo, buf, len >> 1);
460 else
461 readsl(info->fifo, buf, len >> 2);
462 }
463
464 #ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
465
466 #define PREFETCH_CONFIG1_CS_SHIFT 24
467 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40
468 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
469 #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
470 #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
471 #define ENABLE_PREFETCH (1 << 7)
472
473 /**
474 * omap_prefetch_enable - configures and starts prefetch transfer
475 * @fifo_th: fifo threshold to be used for read/ write
476 * @count: number of bytes to be transferred
477 * @is_write: prefetch read(0) or write post(1) mode
478 * @cs: chip select to use
479 */
omap_prefetch_enable(int fifo_th,unsigned int count,int is_write,int cs)480 static int omap_prefetch_enable(int fifo_th, unsigned int count, int is_write, int cs)
481 {
482 uint32_t val;
483
484 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
485 return -EINVAL;
486
487 if (readl(&gpmc_cfg->prefetch_control))
488 return -EBUSY;
489
490 /* Set the amount of bytes to be prefetched */
491 writel(count, &gpmc_cfg->prefetch_config2);
492
493 val = (cs << PREFETCH_CONFIG1_CS_SHIFT) | (is_write & 1) |
494 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH;
495 writel(val, &gpmc_cfg->prefetch_config1);
496
497 /* Start the prefetch engine */
498 writel(1, &gpmc_cfg->prefetch_control);
499
500 return 0;
501 }
502
503 /**
504 * omap_prefetch_reset - disables and stops the prefetch engine
505 */
omap_prefetch_reset(void)506 static void omap_prefetch_reset(void)
507 {
508 writel(0, &gpmc_cfg->prefetch_control);
509 writel(0, &gpmc_cfg->prefetch_config1);
510 }
511
__read_prefetch_aligned(struct nand_chip * chip,uint32_t * buf,int len)512 static int __read_prefetch_aligned(struct nand_chip *chip, uint32_t *buf, int len)
513 {
514 int ret;
515 uint32_t cnt;
516 struct omap_nand_info *info = nand_get_controller_data(chip);
517
518 ret = omap_prefetch_enable(PREFETCH_FIFOTHRESHOLD_MAX, len, 0, info->cs);
519 if (ret < 0)
520 return ret;
521
522 do {
523 int i;
524
525 cnt = readl(&gpmc_cfg->prefetch_status);
526 cnt = PREFETCH_STATUS_FIFO_CNT(cnt);
527
528 for (i = 0; i < cnt / 4; i++) {
529 *buf++ = readl(info->fifo);
530 len -= 4;
531 }
532 } while (len);
533
534 omap_prefetch_reset();
535
536 return 0;
537 }
538
omap_nand_read_prefetch(struct mtd_info * mtd,uint8_t * buf,int len)539 static void omap_nand_read_prefetch(struct mtd_info *mtd, uint8_t *buf, int len)
540 {
541 int ret;
542 uintptr_t head, tail;
543 struct nand_chip *chip = mtd_to_nand(mtd);
544
545 /*
546 * If the destination buffer is unaligned, start with reading
547 * the overlap byte-wise.
548 */
549 head = ((uintptr_t)buf) % 4;
550 if (head) {
551 omap_nand_read_buf(mtd, buf, head);
552 buf += head;
553 len -= head;
554 }
555
556 /*
557 * Only transfer multiples of 4 bytes in a pre-fetched fashion.
558 * If there's a residue, care for it byte-wise afterwards.
559 */
560 tail = len % 4;
561
562 ret = __read_prefetch_aligned(chip, (uint32_t *)buf, len - tail);
563 if (ret < 0) {
564 /* fallback in case the prefetch engine is busy */
565 omap_nand_read_buf(mtd, buf, len);
566 } else if (tail) {
567 buf += len - tail;
568 omap_nand_read_buf(mtd, buf, tail);
569 }
570 }
571 #endif /* CONFIG_NAND_OMAP_GPMC_PREFETCH */
572
573 #ifdef CONFIG_NAND_OMAP_ELM
574
575 /**
576 * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
577 * @mtd: MTD device structure
578 * @dat: The pointer to data on which ecc is computed
579 * @ecc_code: The ecc_code buffer
580 *
581 * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
582 */
omap_calculate_ecc_bch_multi(struct mtd_info * mtd,const u_char * dat,u_char * ecc_calc)583 static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
584 const u_char *dat, u_char *ecc_calc)
585 {
586 struct nand_chip *chip = mtd_to_nand(mtd);
587 int eccbytes = chip->ecc.bytes;
588 unsigned long nsectors;
589 int i, ret;
590
591 nsectors = ((readl(&gpmc_cfg->ecc_config) >> 4) & 0x7) + 1;
592 for (i = 0; i < nsectors; i++) {
593 ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
594 if (ret)
595 return ret;
596
597 ecc_calc += eccbytes;
598 }
599
600 return 0;
601 }
602
603 /*
604 * omap_reverse_list - re-orders list elements in reverse order [internal]
605 * @list: pointer to start of list
606 * @length: length of list
607 */
omap_reverse_list(u8 * list,unsigned int length)608 static void omap_reverse_list(u8 *list, unsigned int length)
609 {
610 unsigned int i, j;
611 unsigned int half_length = length / 2;
612 u8 tmp;
613 for (i = 0, j = length - 1; i < half_length; i++, j--) {
614 tmp = list[i];
615 list[i] = list[j];
616 list[j] = tmp;
617 }
618 }
619
620 /*
621 * omap_correct_data_bch - Compares the ecc read from nand spare area
622 * with ECC registers values and corrects one bit error if it has occurred
623 *
624 * @mtd: MTD device structure
625 * @dat: page data
626 * @read_ecc: ecc read from nand flash (ignored)
627 * @calc_ecc: ecc read from ECC registers
628 *
629 * Return: 0 if data is OK or corrected, else returns -1
630 */
omap_correct_data_bch(struct mtd_info * mtd,uint8_t * dat,uint8_t * read_ecc,uint8_t * calc_ecc)631 static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
632 uint8_t *read_ecc, uint8_t *calc_ecc)
633 {
634 struct nand_chip *chip = mtd_to_nand(mtd);
635 struct omap_nand_info *info = nand_get_controller_data(chip);
636 struct nand_ecc_ctrl *ecc = &chip->ecc;
637 uint32_t error_count = 0, error_max;
638 uint32_t error_loc[ELM_MAX_ERROR_COUNT];
639 enum bch_level bch_type;
640 uint32_t i, ecc_flag = 0;
641 uint8_t count;
642 uint32_t byte_pos, bit_pos;
643 int err = 0;
644
645 /* check calculated ecc */
646 for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
647 if (calc_ecc[i] != 0x00)
648 goto not_ecc_match;
649 }
650 return 0;
651 not_ecc_match:
652
653 /* check for whether it's an erased-page */
654 for (i = 0; i < ecc->bytes; i++) {
655 if (read_ecc[i] != 0xff)
656 goto not_erased;
657 }
658 for (i = 0; i < SECTOR_BYTES; i++) {
659 if (dat[i] != 0xff)
660 goto not_erased;
661 }
662 return 0;
663 not_erased:
664
665 /*
666 * Check for whether it's an erased page with a correctable
667 * number of bitflips. Erased pages have all 1's in the data,
668 * so we just compute the number of 0 bits in the data and
669 * see if it's under the correction threshold.
670 *
671 * NOTE: The check for a perfect erased page above is faster for
672 * the more common case, even though it's logically redundant.
673 */
674 for (i = 0; i < ecc->bytes; i++)
675 error_count += hweight8(~read_ecc[i]);
676
677 for (i = 0; i < SECTOR_BYTES; i++)
678 error_count += hweight8(~dat[i]);
679
680 if (error_count <= ecc->strength) {
681 memset(read_ecc, 0xFF, ecc->bytes);
682 memset(dat, 0xFF, SECTOR_BYTES);
683 debug("nand: %u bit-flip(s) corrected in erased page\n",
684 error_count);
685 return error_count;
686 }
687
688 /*
689 * while reading ECC result we read it in big endian.
690 * Hence while loading to ELM we have rotate to get the right endian.
691 */
692 switch (info->ecc_scheme) {
693 case OMAP_ECC_BCH8_CODE_HW:
694 bch_type = BCH_8_BIT;
695 omap_reverse_list(calc_ecc, ecc->bytes - 1);
696 break;
697 case OMAP_ECC_BCH16_CODE_HW:
698 bch_type = BCH_16_BIT;
699 omap_reverse_list(calc_ecc, ecc->bytes);
700 break;
701 default:
702 return -EINVAL;
703 }
704 /* use elm module to check for errors */
705 elm_config(bch_type);
706 error_count = 0;
707 err = elm_check_error(calc_ecc, bch_type, &error_count, error_loc);
708 if (err)
709 return err;
710
711 /* correct bch error */
712 for (count = 0; count < error_count; count++) {
713 switch (info->ecc_scheme) {
714 case OMAP_ECC_BCH8_CODE_HW:
715 /* 14th byte in ECC is reserved to match ROM layout */
716 error_max = SECTOR_BYTES + (ecc->bytes - 1);
717 break;
718 case OMAP_ECC_BCH16_CODE_HW:
719 error_max = SECTOR_BYTES + ecc->bytes;
720 break;
721 default:
722 return -EINVAL;
723 }
724 byte_pos = error_max - (error_loc[count] / 8) - 1;
725 bit_pos = error_loc[count] % 8;
726 if (byte_pos < SECTOR_BYTES) {
727 dat[byte_pos] ^= 1 << bit_pos;
728 debug("nand: bit-flip corrected @data=%d\n", byte_pos);
729 } else if (byte_pos < error_max) {
730 read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos;
731 debug("nand: bit-flip corrected @oob=%d\n", byte_pos -
732 SECTOR_BYTES);
733 } else {
734 err = -EBADMSG;
735 printf("nand: error: invalid bit-flip location\n");
736 }
737 }
738 return (err) ? err : error_count;
739 }
740
741 /**
742 * omap_read_page_bch - hardware ecc based page read function
743 * @mtd: mtd info structure
744 * @chip: nand chip info structure
745 * @buf: buffer to store read data
746 * @oob_required: caller expects OOB data read to chip->oob_poi
747 * @page: page number to read
748 *
749 */
omap_read_page_bch(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)750 static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
751 uint8_t *buf, int oob_required, int page)
752 {
753 int i, eccsize = chip->ecc.size;
754 int eccbytes = chip->ecc.bytes;
755 int ecctotal = chip->ecc.total;
756 int eccsteps = chip->ecc.steps;
757 uint8_t *p = buf;
758 uint8_t *ecc_calc = chip->buffers->ecccalc;
759 uint8_t *ecc_code = chip->buffers->ecccode;
760 uint32_t *eccpos = chip->ecc.layout->eccpos;
761 uint8_t *oob = chip->oob_poi;
762 uint32_t oob_pos;
763
764 /* oob area start */
765 oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
766 oob += chip->ecc.layout->eccpos[0];
767
768 /* Enable ECC engine */
769 chip->ecc.hwctl(mtd, NAND_ECC_READ);
770
771 /* read entire page */
772 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, 0, -1);
773 chip->read_buf(mtd, buf, mtd->writesize);
774
775 /* read all ecc bytes from oob area */
776 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
777 chip->read_buf(mtd, oob, ecctotal);
778
779 /* Calculate ecc bytes */
780 omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc);
781
782 for (i = 0; i < chip->ecc.total; i++)
783 ecc_code[i] = chip->oob_poi[eccpos[i]];
784
785 /* error detect & correct */
786 eccsteps = chip->ecc.steps;
787 p = buf;
788
789 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
790 int stat;
791 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
792 if (stat < 0)
793 mtd->ecc_stats.failed++;
794 else
795 mtd->ecc_stats.corrected += stat;
796 }
797
798 return 0;
799 }
800 #endif /* CONFIG_NAND_OMAP_ELM */
801
802 /*
803 * OMAP3 BCH8 support (with BCH library)
804 */
805 #ifdef CONFIG_BCH
806 /**
807 * omap_correct_data_bch_sw - Decode received data and correct errors
808 * @mtd: MTD device structure
809 * @data: page data
810 * @read_ecc: ecc read from nand flash
811 * @calc_ecc: ecc read from HW ECC registers
812 */
omap_correct_data_bch_sw(struct mtd_info * mtd,u_char * data,u_char * read_ecc,u_char * calc_ecc)813 static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
814 u_char *read_ecc, u_char *calc_ecc)
815 {
816 int i, count;
817 /* cannot correct more than 8 errors */
818 unsigned int errloc[8];
819 struct nand_chip *chip = mtd_to_nand(mtd);
820 struct omap_nand_info *info = nand_get_controller_data(chip);
821
822 count = decode_bch(info->control, NULL, SECTOR_BYTES,
823 read_ecc, calc_ecc, NULL, errloc);
824 if (count > 0) {
825 /* correct errors */
826 for (i = 0; i < count; i++) {
827 /* correct data only, not ecc bytes */
828 if (errloc[i] < SECTOR_BYTES << 3)
829 data[errloc[i] >> 3] ^= 1 << (errloc[i] & 7);
830 debug("corrected bitflip %u\n", errloc[i]);
831 #ifdef DEBUG
832 puts("read_ecc: ");
833 /*
834 * BCH8 have 13 bytes of ECC; BCH4 needs adoption
835 * here!
836 */
837 for (i = 0; i < 13; i++)
838 printf("%02x ", read_ecc[i]);
839 puts("\n");
840 puts("calc_ecc: ");
841 for (i = 0; i < 13; i++)
842 printf("%02x ", calc_ecc[i]);
843 puts("\n");
844 #endif
845 }
846 } else if (count < 0) {
847 puts("ecc unrecoverable error\n");
848 }
849 return count;
850 }
851
852 /**
853 * omap_free_bch - Release BCH ecc resources
854 * @mtd: MTD device structure
855 */
omap_free_bch(struct mtd_info * mtd)856 static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
857 {
858 struct nand_chip *chip = mtd_to_nand(mtd);
859 struct omap_nand_info *info = nand_get_controller_data(chip);
860
861 if (info->control) {
862 free_bch(info->control);
863 info->control = NULL;
864 }
865 }
866 #endif /* CONFIG_BCH */
867
868 /**
869 * omap_select_ecc_scheme - configures driver for particular ecc-scheme
870 * @nand: NAND chip device structure
871 * @ecc_scheme: ecc scheme to configure
872 * @pagesize: number of main-area bytes per page of NAND device
873 * @oobsize: number of OOB/spare bytes per page of NAND device
874 */
omap_select_ecc_scheme(struct nand_chip * nand,enum omap_ecc ecc_scheme,unsigned int pagesize,unsigned int oobsize)875 static int omap_select_ecc_scheme(struct nand_chip *nand,
876 enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
877 struct omap_nand_info *info = nand_get_controller_data(nand);
878 struct nand_ecclayout *ecclayout = nand->ecc.layout;
879 int eccsteps = pagesize / SECTOR_BYTES;
880 int i;
881
882 switch (ecc_scheme) {
883 case OMAP_ECC_HAM1_CODE_SW:
884 debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
885 /* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
886 * initialized in nand_scan_tail(), so just set ecc.mode */
887 info->control = NULL;
888 nand->ecc.mode = NAND_ECC_SOFT;
889 nand->ecc.layout = NULL;
890 nand->ecc.size = 0;
891 break;
892
893 case OMAP_ECC_HAM1_CODE_HW:
894 debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
895 /* check ecc-scheme requirements before updating ecc info */
896 if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
897 printf("nand: error: insufficient OOB: require=%d\n", (
898 (3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
899 return -EINVAL;
900 }
901 info->control = NULL;
902 /* populate ecc specific fields */
903 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
904 nand->ecc.mode = NAND_ECC_HW;
905 nand->ecc.strength = 1;
906 nand->ecc.size = SECTOR_BYTES;
907 nand->ecc.bytes = 3;
908 nand->ecc.hwctl = omap_enable_hwecc;
909 nand->ecc.correct = omap_correct_data;
910 nand->ecc.calculate = omap_calculate_ecc;
911 /* define ecc-layout */
912 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
913 for (i = 0; i < ecclayout->eccbytes; i++) {
914 if (nand->options & NAND_BUSWIDTH_16)
915 ecclayout->eccpos[i] = i + 2;
916 else
917 ecclayout->eccpos[i] = i + 1;
918 }
919 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
920 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
921 BADBLOCK_MARKER_LENGTH;
922 break;
923
924 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
925 #ifdef CONFIG_BCH
926 debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
927 /* check ecc-scheme requirements before updating ecc info */
928 if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
929 printf("nand: error: insufficient OOB: require=%d\n", (
930 (13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
931 return -EINVAL;
932 }
933 /* check if BCH S/W library can be used for error detection */
934 info->control = init_bch(13, 8, 0x201b);
935 if (!info->control) {
936 printf("nand: error: could not init_bch()\n");
937 return -ENODEV;
938 }
939 /* populate ecc specific fields */
940 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
941 nand->ecc.mode = NAND_ECC_HW;
942 nand->ecc.strength = 8;
943 nand->ecc.size = SECTOR_BYTES;
944 nand->ecc.bytes = 13;
945 nand->ecc.hwctl = omap_enable_hwecc_bch;
946 nand->ecc.correct = omap_correct_data_bch_sw;
947 nand->ecc.calculate = omap_calculate_ecc_bch;
948 /* define ecc-layout */
949 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
950 ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
951 for (i = 1; i < ecclayout->eccbytes; i++) {
952 if (i % nand->ecc.bytes)
953 ecclayout->eccpos[i] =
954 ecclayout->eccpos[i - 1] + 1;
955 else
956 ecclayout->eccpos[i] =
957 ecclayout->eccpos[i - 1] + 2;
958 }
959 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
960 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
961 BADBLOCK_MARKER_LENGTH;
962 break;
963 #else
964 printf("nand: error: CONFIG_BCH required for ECC\n");
965 return -EINVAL;
966 #endif
967
968 case OMAP_ECC_BCH8_CODE_HW:
969 #ifdef CONFIG_NAND_OMAP_ELM
970 debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
971 /* check ecc-scheme requirements before updating ecc info */
972 if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
973 printf("nand: error: insufficient OOB: require=%d\n", (
974 (14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
975 return -EINVAL;
976 }
977 /* intialize ELM for ECC error detection */
978 elm_init();
979 info->control = NULL;
980 /* populate ecc specific fields */
981 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
982 nand->ecc.mode = NAND_ECC_HW;
983 nand->ecc.strength = 8;
984 nand->ecc.size = SECTOR_BYTES;
985 nand->ecc.bytes = 14;
986 nand->ecc.hwctl = omap_enable_hwecc_bch;
987 nand->ecc.correct = omap_correct_data_bch;
988 nand->ecc.calculate = omap_calculate_ecc_bch;
989 nand->ecc.read_page = omap_read_page_bch;
990 /* define ecc-layout */
991 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
992 for (i = 0; i < ecclayout->eccbytes; i++)
993 ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
994 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
995 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
996 BADBLOCK_MARKER_LENGTH;
997 break;
998 #else
999 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
1000 return -EINVAL;
1001 #endif
1002
1003 case OMAP_ECC_BCH16_CODE_HW:
1004 #ifdef CONFIG_NAND_OMAP_ELM
1005 debug("nand: using OMAP_ECC_BCH16_CODE_HW\n");
1006 /* check ecc-scheme requirements before updating ecc info */
1007 if ((26 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
1008 printf("nand: error: insufficient OOB: require=%d\n", (
1009 (26 * eccsteps) + BADBLOCK_MARKER_LENGTH));
1010 return -EINVAL;
1011 }
1012 /* intialize ELM for ECC error detection */
1013 elm_init();
1014 /* populate ecc specific fields */
1015 nand->ecc.mode = NAND_ECC_HW;
1016 nand->ecc.size = SECTOR_BYTES;
1017 nand->ecc.bytes = 26;
1018 nand->ecc.strength = 16;
1019 nand->ecc.hwctl = omap_enable_hwecc_bch;
1020 nand->ecc.correct = omap_correct_data_bch;
1021 nand->ecc.calculate = omap_calculate_ecc_bch;
1022 nand->ecc.read_page = omap_read_page_bch;
1023 /* define ecc-layout */
1024 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
1025 for (i = 0; i < ecclayout->eccbytes; i++)
1026 ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
1027 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
1028 ecclayout->oobfree[0].length = oobsize - nand->ecc.bytes -
1029 BADBLOCK_MARKER_LENGTH;
1030 break;
1031 #else
1032 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
1033 return -EINVAL;
1034 #endif
1035 default:
1036 debug("nand: error: ecc scheme not enabled or supported\n");
1037 return -EINVAL;
1038 }
1039
1040 /* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
1041 if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
1042 nand->ecc.layout = ecclayout;
1043
1044 info->ecc_scheme = ecc_scheme;
1045 return 0;
1046 }
1047
1048 #ifndef CONFIG_SPL_BUILD
1049 /*
1050 * omap_nand_switch_ecc - switch the ECC operation between different engines
1051 * (h/w and s/w) and different algorithms (hamming and BCHx)
1052 *
1053 * @hardware - true if one of the HW engines should be used
1054 * @eccstrength - the number of bits that could be corrected
1055 * (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
1056 */
omap_nand_switch_ecc(uint32_t hardware,uint32_t eccstrength)1057 int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
1058 {
1059 struct nand_chip *nand;
1060 struct mtd_info *mtd = get_nand_dev_by_index(nand_curr_device);
1061 int err = 0;
1062
1063 if (!mtd) {
1064 printf("nand: error: no NAND devices found\n");
1065 return -ENODEV;
1066 }
1067
1068 nand = mtd_to_nand(mtd);
1069 nand->options |= NAND_OWN_BUFFERS;
1070 nand->options &= ~NAND_SUBPAGE_READ;
1071 /* Setup the ecc configurations again */
1072 if (hardware) {
1073 if (eccstrength == 1) {
1074 err = omap_select_ecc_scheme(nand,
1075 OMAP_ECC_HAM1_CODE_HW,
1076 mtd->writesize, mtd->oobsize);
1077 } else if (eccstrength == 8) {
1078 err = omap_select_ecc_scheme(nand,
1079 OMAP_ECC_BCH8_CODE_HW,
1080 mtd->writesize, mtd->oobsize);
1081 } else if (eccstrength == 16) {
1082 err = omap_select_ecc_scheme(nand,
1083 OMAP_ECC_BCH16_CODE_HW,
1084 mtd->writesize, mtd->oobsize);
1085 } else {
1086 printf("nand: error: unsupported ECC scheme\n");
1087 return -EINVAL;
1088 }
1089 } else {
1090 if (eccstrength == 1) {
1091 err = omap_select_ecc_scheme(nand,
1092 OMAP_ECC_HAM1_CODE_SW,
1093 mtd->writesize, mtd->oobsize);
1094 } else if (eccstrength == 8) {
1095 err = omap_select_ecc_scheme(nand,
1096 OMAP_ECC_BCH8_CODE_HW_DETECTION_SW,
1097 mtd->writesize, mtd->oobsize);
1098 } else {
1099 printf("nand: error: unsupported ECC scheme\n");
1100 return -EINVAL;
1101 }
1102 }
1103
1104 /* Update NAND handling after ECC mode switch */
1105 if (!err)
1106 err = nand_scan_tail(mtd);
1107 return err;
1108 }
1109 #endif /* CONFIG_SPL_BUILD */
1110
1111 /*
1112 * Board-specific NAND initialization. The following members of the
1113 * argument are board-specific:
1114 * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
1115 * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
1116 * - cmd_ctrl: hardwarespecific function for accesing control-lines
1117 * - waitfunc: hardwarespecific function for accesing device ready/busy line
1118 * - ecc.hwctl: function to enable (reset) hardware ecc generator
1119 * - ecc.mode: mode of ecc, see defines
1120 * - chip_delay: chip dependent delay for transfering data from array to
1121 * read regs (tR)
1122 * - options: various chip options. They can partly be set to inform
1123 * nand_scan about special functionality. See the defines for further
1124 * explanation
1125 */
gpmc_nand_init(struct nand_chip * nand)1126 int gpmc_nand_init(struct nand_chip *nand)
1127 {
1128 int32_t gpmc_config = 0;
1129 int cs = cs_next++;
1130 int err = 0;
1131 struct omap_nand_info *info;
1132
1133 /*
1134 * xloader/Uboot's gpmc configuration would have configured GPMC for
1135 * nand type of memory. The following logic scans and latches on to the
1136 * first CS with NAND type memory.
1137 * TBD: need to make this logic generic to handle multiple CS NAND
1138 * devices.
1139 */
1140 while (cs < GPMC_MAX_CS) {
1141 /* Check if NAND type is set */
1142 if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
1143 /* Found it!! */
1144 break;
1145 }
1146 cs++;
1147 }
1148 if (cs >= GPMC_MAX_CS) {
1149 printf("nand: error: Unable to find NAND settings in "
1150 "GPMC Configuration - quitting\n");
1151 return -ENODEV;
1152 }
1153
1154 gpmc_config = readl(&gpmc_cfg->config);
1155 /* Disable Write protect */
1156 gpmc_config |= 0x10;
1157 writel(gpmc_config, &gpmc_cfg->config);
1158
1159 nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
1160 nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
1161
1162 info = &omap_nand_info[cs];
1163 info->control = NULL;
1164 info->cs = cs;
1165 info->ws = wscfg[cs];
1166 info->fifo = (void __iomem *)CFG_SYS_NAND_BASE;
1167 nand_set_controller_data(nand, &omap_nand_info[cs]);
1168 nand->cmd_ctrl = omap_nand_hwcontrol;
1169 nand->options |= NAND_NO_PADDING | NAND_CACHEPRG;
1170 nand->chip_delay = 100;
1171 nand->ecc.layout = kzalloc(sizeof(*nand->ecc.layout), GFP_KERNEL);
1172 if (!nand->ecc.layout)
1173 return -ENOMEM;
1174
1175 /* configure driver and controller based on NAND device bus-width */
1176 gpmc_config = readl(&gpmc_cfg->cs[cs].config1);
1177 #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
1178 nand->options |= NAND_BUSWIDTH_16;
1179 writel(gpmc_config | (0x1 << 12), &gpmc_cfg->cs[cs].config1);
1180 #else
1181 nand->options &= ~NAND_BUSWIDTH_16;
1182 writel(gpmc_config & ~(0x1 << 12), &gpmc_cfg->cs[cs].config1);
1183 #endif
1184 /* select ECC scheme */
1185 #if defined(CONFIG_NAND_OMAP_ECCSCHEME)
1186 err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
1187 CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
1188 #else
1189 /* pagesize and oobsize are not required to configure sw ecc-scheme */
1190 err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
1191 0, 0);
1192 #endif
1193 if (err)
1194 return err;
1195
1196 #ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
1197 nand->read_buf = omap_nand_read_prefetch;
1198 #else
1199 nand->read_buf = omap_nand_read_buf;
1200 #endif
1201
1202 nand->dev_ready = omap_dev_ready;
1203
1204 return 0;
1205 }
1206
1207 /* First NAND chip for SPL use only */
1208 static __maybe_unused struct nand_chip *nand_chip;
1209
1210 #if CONFIG_IS_ENABLED(SYS_NAND_SELF_INIT)
1211
gpmc_nand_probe(struct udevice * dev)1212 static int gpmc_nand_probe(struct udevice *dev)
1213 {
1214 struct nand_chip *nand = dev_get_priv(dev);
1215 struct mtd_info *mtd = nand_to_mtd(nand);
1216 int ret;
1217
1218 gpmc_nand_init(nand);
1219
1220 ret = nand_scan(mtd, CONFIG_SYS_NAND_MAX_CHIPS);
1221 if (ret)
1222 return ret;
1223
1224 ret = nand_register(0, mtd);
1225 if (ret)
1226 return ret;
1227
1228 if (!nand_chip)
1229 nand_chip = nand;
1230
1231 return 0;
1232 }
1233
1234 static const struct udevice_id gpmc_nand_ids[] = {
1235 { .compatible = "ti,am64-nand" },
1236 { .compatible = "ti,omap2-nand" },
1237 { }
1238 };
1239
1240 U_BOOT_DRIVER(gpmc_nand) = {
1241 .name = "gpmc-nand",
1242 .id = UCLASS_MTD,
1243 .of_match = gpmc_nand_ids,
1244 .probe = gpmc_nand_probe,
1245 .priv_auto = sizeof(struct nand_chip),
1246 };
1247
board_nand_init(void)1248 void board_nand_init(void)
1249 {
1250 struct udevice *dev;
1251 int ret;
1252
1253 #ifdef CONFIG_NAND_OMAP_ELM
1254 ret = uclass_get_device_by_driver(UCLASS_MTD,
1255 DM_DRIVER_GET(gpmc_elm), &dev);
1256 if (ret && ret != -ENODEV) {
1257 pr_err("%s: Failed to get ELM device: %d\n", __func__, ret);
1258 return;
1259 }
1260 #endif
1261
1262 ret = uclass_get_device_by_driver(UCLASS_MTD,
1263 DM_DRIVER_GET(gpmc_nand), &dev);
1264 if (ret && ret != -ENODEV)
1265 pr_err("%s: Failed to get GPMC device: %d\n", __func__, ret);
1266 }
1267
1268 #else
1269
board_nand_init(struct nand_chip * nand)1270 int board_nand_init(struct nand_chip *nand)
1271 {
1272 return gpmc_nand_init(nand);
1273 }
1274
1275 #endif /* CONFIG_SYS_NAND_SELF_INIT */
1276
1277 #if defined(CONFIG_SPL_NAND_INIT)
1278
1279 /* nand_init() is provided by nand.c */
1280
1281 /* Unselect after operation */
nand_deselect(void)1282 void nand_deselect(void)
1283 {
1284 struct mtd_info *mtd = nand_to_mtd(nand_chip);
1285
1286 if (nand_chip->select_chip)
1287 nand_chip->select_chip(mtd, -1);
1288 }
1289
nand_is_bad_block(int block)1290 static int nand_is_bad_block(int block)
1291 {
1292 struct mtd_info *mtd = nand_to_mtd(nand_chip);
1293
1294 loff_t ofs = block * CONFIG_SYS_NAND_BLOCK_SIZE;
1295
1296 return nand_chip->block_bad(mtd, ofs);
1297 }
1298
nand_read_page(int block,int page,uchar * dst)1299 static int nand_read_page(int block, int page, uchar *dst)
1300 {
1301 int page_addr = block * CONFIG_SYS_NAND_PAGE_COUNT + page;
1302 loff_t ofs = page_addr * CONFIG_SYS_NAND_PAGE_SIZE;
1303 int ret;
1304 size_t len = CONFIG_SYS_NAND_PAGE_SIZE;
1305 struct mtd_info *mtd = nand_to_mtd(nand_chip);
1306
1307 ret = nand_read(mtd, ofs, &len, dst);
1308 if (ret)
1309 printf("nand_read failed %d\n", ret);
1310
1311 return ret;
1312 }
1313
1314 #include "nand_spl_loaders.c"
1315 #endif /* CONFIG_SPL_NAND_INIT */
1316